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a b s t r a c t

Approximate Bayesian Computation (ABC) has become increasingly prominent as amethod
for conducting parameter inference in a range of challenging statistical problems, most
notably those characterized by an intractable likelihood function. In this paper, we focus
on the use of ABC not as a tool for parametric inference, but as a means of generating
probabilistic forecasts; or for conducting what we refer to as ‘approximate Bayesian
forecasting’. The four key issues explored are: (i) the link between the theoretical behavior
of the ABC posterior and that of the ABC-based predictive; (ii) the use of proper scoring
rules to measure the (potential) loss of forecast accuracy when using an approximate
rather than an exact predictive; (iii) the performance of approximate Bayesian forecasting
in state space models; and (iv) the use of forecasting criteria to inform the selection of
ABC summaries in empirical settings. The primary finding of the paper is that ABC can
provide a computationally efficient means of generating probabilistic forecasts that are
nearly identical to those produced by the exact predictive, and in a fraction of the time
required to produce predictions via an exact method.
© 2018 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.

1. Introduction

Approximate Bayesian Computation (ABC) has become
an increasingly prominent inferential tool in challeng-
ing problems, most notably those characterized by an in-
tractable likelihood function. ABC requires only that one
can simulate pseudo-data from the assumed model, for
given draws of the parameters from the prior. Parameter
draws that produce a ‘match’ between the pseudo and ob-
served data - according to a given set of summary statistics,
a chosenmetric and a pre-specified tolerance - are retained
and used to estimate the posterior distribution, with the
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resultant estimate of the exact (but inaccessible) posterior
being conditioned on the summaries used in the matching.
Various guiding principles have been established to select
summary statistics in ABC (see, for instance, Drovandi,
Pettitt, & Lee, 2015, Fearnhead & Prangle, 2012 and Joyce
& Marjoram, 2008) and we refer the reader to reviews by
Blum,Nunes, Prangle, and Sisson (2013) andPrangle (2015)
for discussions of these different approaches.

Alongwith the growth in applications of ABC (seeMarin,
Pudlo, Robert, & Ryder, 2012, Robert, 2016, and Sisson &
Fan, 2011, for recent surveys), attention has recently been
paid to the theoretical properties of the method, includ-
ing the asymptotic behaviour of: ABC posterior distribu-
tions, point estimates derived from those distributions, and
Bayes factors that condition on summaries. Notable contri-
butions here are Creel, Gao, Hong, and Kristensen (2015),
Frazier, Martin, Robert, and Rousseau (2018), Jasra (2015),
Li and Fearnhead (2018a, 2018b), Marin, Pillai, Robert, and
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Rousseau (2014) andMartin, McCabe, Frazier, Maneesoon-
thorn, and Robert (2018), with Frazier et al. (2018) provid-
ing the full suite of asymptotic results pertaining to the ABC
posterior - namely, Bayesian (or posterior) consistency,
limiting posterior shape, and the asymptotic distribution
of the posterior mean.

This current paper stands in contrast to the vast ma-
jority of ABC studies, with their focus on parametric in-
ference and/or model choice. Our goal herein is to exploit
ABC as a means of generating probabilistic forecasts; or
for conducting what we refer to hereafter as ‘approximate
Bayesian forecasting’ (ABF). Whilst ABF has particular rel-
evance in scenarios in which the likelihood function and,
hence, the exact predictive distribution, are inaccessible,
we also give attention to cases where the exact predictive
is able to be estimated (via a Monte Carlo Markov chain
algorithm), but at a greater computational cost than that
associated with ABF. That is, in part, we explore ABF as a
computationally convenientmeans of constructing predic-
tive distributions.1

We prove that, under certain regularity conditions, ABF
produces forecasts that are asymptotically equivalent to
those obtained from exact Bayesian methods, and illus-
trate numerically the close match that can occur between
approximate and exact predictives, even when the corre-
sponding approximate and exact posteriors for the param-
eters are very distinct. We also explore the application of
ABF to state space models, in which the production of an
approximate Bayesian predictive requires integration over
both a small number of static parameters and a set of states
with dimension equal to the sample size.

In summary, the four primary questions addressed in
the paper are the following: (i) What role does the asymp-
totic behavior of the ABC posterior - in particular Bayesian
consistency - play in determining the accuracy of the ap-
proximate predictive as an estimate of the exact predic-
tive? (ii) Canwe characterize the loss incurred by using the
approximate rather than the exact predictive, using proper
scoring rules? (iii) How does ABF perform in state space
models, andwhat role does (particle) filtering play therein?
(iv) How can forecast accuracy be used to guide the choice
of summary statistics in an empirical setting?

We note that, independent of this research, Canale and
Ruggiero (2016) propose the use of ABC as a means of
generating nonparametric forecasts of certain functional
time series models with intractable likelihoods. In partic-
ular, Canale and Ruggiero use ABC sampling as a means
of generating h-step-ahead point and interval forecasts for
some underlying unknown curve of interest. The authors
apply thismethodology to the prediction of price dynamics
in the Italian natural gas market. Whilst not pursuing the
same lines of enquiry as in the current research, the Canale
and Ruggiero paper highlights the usefulness of ABC as a
forecasting tool in scenarioswhen exact Bayesian inference
- and, hence, exact Bayesian prediction - is infeasible, and
thereby provides further evidence of the practical impor-
tance of the results we provide herein.

1 Throughout the paper, we use the terms ‘forecast’ and ‘prediction’,
and their various adjectival forms and associated verb conjugations, syn-
onymously, interchanging them for linguistic variety only.

The remainder of the paper proceeds as follows. In
Section 2 we first provide a brief overview of the method
of ABC for producing estimates of an exact, but potentially
inaccessible, posterior for the unknown parameters. The
use of an ABC posterior to yield an approximate forecast
distribution is then proposed. After a brief outline of ex-
isting asymptotic results pertaining to ABC in Section 3.1,
the role played by Bayesian consistency in determining the
accuracy of ABF is formally established in Section 3.2, with
this building on earlier insights by Blackwell and Dubins
(1962) and Diaconis and Freedman (1986) regarding the
merging of predictive distributions. In Section 3.3, the con-
cept of a proper scoring rule is adopted in order to for-
malize the loss incurred when adopting the approximate
rather than the exact Bayesian predictive. The relative per-
formance of ABF is then quantified in Section 3.4 using two
simple examples: one in which an integer autoregressive
model for count time series data is adopted as the data
generating process (DGP), with a single set of summaries
used to implement ABC; and a second in which a moving
average (MA) model is the assumed DGP, and predictives
based on alternative sets of summaries are investigated.
In both examples there is little visual distinction between
the approximate and exact predictives, despite enormous
visual differences between the corresponding posteriors.
Furthermore, the visual similarity between the exact and
approximate predictives extends to forecast accuracy: us-
ing averages of various proper scores over a hold-out sam-
ple, we demonstrate that the predictive superiority of the
exact predictive, over the approximate, is minimal in both
examples. Moreover, we highlight the fact that all approx-
imate predictives can be produced in a fraction of the time
taken to produce the corresponding exact predictive.

In Section 4, we explore ABF in the context of a model
in which latent variables feature. Using a simple stochastic
volatility model for which the exact predictive is acces-
sible via Markov chain Monte Carlo (MCMC), the critical
importance (in terms of matching the exact predictive) of
augmenting ABC inference on the static parameters with
‘exact’ inference on the states, via a particle filtering step,
is made clear. An extensive empirical illustration is then
undertaken in Section 5. Approximate predictives for both
a financial return and its volatility, in a dynamic jump-
diffusion model with α-stable volatility transitions, are
produced, using different sets of summary statistics, in-
cluding those extracted from simple auxiliary models with
closed-form likelihood functions. Particular focus is given
to using out-of-sample predictive performance to choose
the ‘best’ set of summaries for driving ABC, in the case
where prediction is the primary goal of the investigation.
A discussion section concludes the paper in Section 6, and
proofs are included in the Appendix. All Matlab code used
in the production of the numerical results will be made
available at http://users.monash.edu.au/~gmartin/.

2. Approximate Bayesian computation (ABC): Inference
and forecasting

We observe a T -dimensional vector of data y = (y1, y2,
. . . , yT )′, assumed to be generated from some model with
likelihood p(y|θ ), with θ ∈ Θ ⊆ Rkθ a kθ -dimension vec-
tor of unknown parameters, and where we possess prior

http://users.monash.edu.au/%7Egmartin/
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beliefs on θ specified by p(θ ). In this section, we propose a
means of producing probabilistic forecasts for the random
variables YT+k, k = 1, 2, . . . , h, in situations where p(y|θ )
is computationally intractable or numerically difficult to
calculate. Before presenting this approach, we first give a
brief overview of ABC-based inference for the unknown
parameters θ .

2.1. ABC inference: Overview

The aim of ABC is to produce draws from an approxima-
tion to the posterior distribution,

p(θ |y) ∝ p(y|θ )p(θ ), (1)

in the setting where both p(θ ), and the assumed data gen-
erating process, p(y|θ ), can be simulated from, but where
p(y|θ ) is intractable in some sense. These draws are, in
turn, used to approximate posterior quantities of interest,
and thereby form the basis for conducting inference about
θ . The simplest (accept/reject) form of the algorithm pro-
ceeds as in Algorithm 1.

Algorithm 1 ABC accept/reject algorithm
1: Simulate θ i, i = 1, 2, ...,N , from p(θ )
2: Simulate zi = (z i1, z

i
2, ..., z

i
T )

′, i = 1, 2, ...,N , from the
likelihood, p(.|θ i)

3: Select θ i such that:

d{η(y), η(zi)} ≤ ε, (2)

where η(.) is a (vector) statistic, d{.} is a distance crite-
rion and, given N , the tolerance level ε is chosen to be
small. (The Euclidean distance is used for all numerical
illustrations in the paper.)

The algorithm thus samples θ and pseudo-data z from
the joint posterior:

pε(θ, z|η(y)) =
p(θ )p(z|θ )Iε[z]∫

Θ

∫
z p(θ )p(z|θ )Iε[z]dzdθ

,

where Iε[z] := I[d{η(y), η(z)} ≤ ε] is one if d {η(y), η(z)} ≤

ε and zero otherwise. When the vector of summary statis-
tics, η(·), is sufficient for θ and ε is small,

pε(θ |η(y)) =

∫
z
pε(θ, z|η(y))dz (3)

approximates p(θ |y)well, and draws from pε(θ |η(y)) can be
used to estimate features of that exact posterior. In practice
however, the complexity of the models to which ABC is
applied implies that a low-dimensional vector of sufficient
statistics does not exist. Hence, as ε → 0 the draws can
be used to estimate features of p(θ |η(y)) only, with the
‘proximity’ of p(θ |η(y)) to p(θ |y) depending - in a sense that
is not formally defined - on the ‘proximity’ to sufficiency of
η(y).

Unlike most existing studies on ABC, our end goal is
not the quantification of uncertainty about θ , but the con-
struction of probabilistic forecasts for future realizations
of a random variable of interest, in which pε(θ |η(y)) ex-
presses our uncertainty about θ. That is, in contrast to
exact Bayesian forecasting, in which a (marginal) predic-
tive distribution is produced by averaging the conditional

predictive with respect to the exact posterior, p(θ |y), ap-
proximate Bayesian forecasting performs this integration
step using the approximate posterior as the weighting
function. This substitution (of p(θ |y) by pε(θ |η(y))) is most
clearly motivated in cases where p(θ |y) is inaccessible, due
to an intractable likelihood function. However, the use of
pε(θ |η(y)) will also be motivated here by computational
ease and speed.

2.2. Approximate Bayesian Forecasting (ABF)

Without loss of generality, we focus at this point on
one-step-ahead forecasting in the context of a time series
model.2 Let YT+1 denote a random variable that will be
observed at time T + 1, and which is generated from
the (conditional) predictive density (or mass) function,
p(yT+1|θ, y), at some fixed value θ . The quantity of interest
is thus

p(yT+1|y) =

∫
Θ

p(yT+1|θ, y)p(θ |y)dθ, (4)

where p(θ |y) is the exact posterior defined in (1) and yT+1
denotes a value in the support of YT+1. The DGP, p(y|θ ),
is required in closed form for numerical methods such as
MCMC to be applicable to p(θ |y), in the typical case in
which the latter itself cannot be expressed in a standard
form.3 Such methods yield draws from p(θ |y) that are
then used to produce a simulation-based estimate of the
predictive density as:

p̂(yT+1|y) =
1
M

M∑
i=1

p(yT+1|θ
(i), y), (5)

where the conditional predictive, p(yT+1|θ
(i), y), is also

required to be known in closed form for the
‘Rao-Blackwellized’ estimate in (5) to be feasible. Alter-
natively, draws of yT+1 from p(yT+1|θ

(i), y) can be used to
produce a kernel density estimate of p(yT+1|y). Subject to
convergence of the MCMC chain, either computation rep-
resents an estimate of the exact predictive that is accurate
up to simulation error, and may be referred to as yielding
the exact Bayesian forecast distribution as a consequence.

The motivation for the use of ABC in this setting is
obvious: in cases where p(y|θ ) is not accessible, p(θ |y)
itself is inaccessible (via an MCMC scheme of some sort,
for example) and the integral in (4) that defines the exact
predictive cannot be estimated via those MCMC draws in
the manner described above. ABC enables approximate
Bayesian inference about θ to proceed via a simulation-
based estimate of p(θ |η(y)), for some chosen summary,
η(y). Hence, a natural way in which to approach the con-
cept of approximate Bayesian forecasting is to define the

2 Multi-step-ahead forecasting entails no additional conceptual chal-
lenges and, hence, is not treated herein.

3 Pseudo-marginal MCMC methods may be feasible when certain
components of the DGP are unavailable in closed form. For example,
particle MCMC could be applied to state space models in which the state
transitions are unavailable, but can be simulated from. However, the great
majority of MCMC algorithms would appear to exploit full knowledge of
the DGP in their construction.
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quantity

g(yT+1|y) =

∫
Θ

p(yT+1|θ, y)pε(θ |η(y))dθ, (6)

with pε(θ |η(y)) replacing p(θ |y) in (4). The conditional den-
sity function, g(yT+1|y), which is shown in the Appendix
to be a proper density function, represents an approxima-
tion of p(yT+1|y) that we refer to as the ABF density. This
density can, in turn, be estimated via the sequential use of
the ABC draws from pε(θ |η(y)) followed by draws of yT+1
conditional on the draws of θ .

Certain natural questions become immediately rele-
vant: First, what role, if any, do the properties of pε(θ |η(y))
play in determining the accuracy of g(yT+1|y) as an esti-
mate of p(yT+1|y)? Second, can we formally characterize
the anticipated loss associated with targeting g(yT+1|y)
rather than p(yT+1|y)? Third, in practical settings do
conclusions drawn regarding YT+1 from g(yT+1|y) and
p(yT+1|y) differ in any substantial way? These questions
are tackled sequentially in Sections 3.2, 3.3 and 3.4 respec-
tively, after a brief review of existing asymptotic results
pertaining to pε(θ |η(y)) in Section 3.1.

However, before addressing the above questions, we
acknowledge here that the ABC posterior pε(θ |η(y)) is one
of several posterior approximations that have been pro-
posed in the literature. Other such approximations, for
example, those produced by variational Bayes (Jaakkola &
Jordan, 2000; Tran, Nott, & Kohn, 2017), Bayesian synthetic
likelihood (Price, Drovandi, Lee, & Nott, 2018), Bayesian
empirical likelihood (Mengersen, Pudlo, & Robert, 2013), or
bootstrap methods (Zhu, Marin, & Leisen, 2016), could also
be used to construct an approximate predictive. However,
to formally characterize the accuracy of any such approxi-
mate predictive, relative to the exact predictive p(yT+1|y),
we must know a good deal about the theoretical behavior
of the posterior approximation itself. This requirement,
and the ensuing regularity of the ABC posterior, partly
motivates our focus on ABC as the inferential approach
underpinning the production of an approximate predictive.
In particular, the following section makes substantial use
of the theoretical properties of the ABC posterior in char-
acterizing the accuracy of ABF relative to exact Bayesian
forecasting.

3. Accuracy of ABF

It is well-known in the ABC literature that the posterior
pε(θ |η(y)) is sometimes a poor approximation to p(θ |y)
(Marin et al., 2012).What is unknown, however, iswhether
or not this same degree of inaccuracy will transfer to the
ABC-based predictive. To this end, we begin by charac-
terizing the difference between g(yT+1|y) and p(yT+1|y)
using the large sample behavior of pε(θ |η(y)) and p(θ |y).
In so doing, in Section 3.2 we demonstrate that if both
pε(θ |η(y)) and p(θ |y) are Bayesian consistent for the true
value θ0, then the densities g(yT+1|y) and p(yT+1|y) pro-
duce the samepredictions asymptotically; that is, g(yT+1|y)
and p(yT+1|y) ‘merge’ asymptotically (Blackwell & Dubins,
1962; Diaconis & Freedman, 1986). Using the concept of
a proper scoring rule, in Section 3.3 we quantify the loss
in forecasting accuracy incurred by using g(yT+1|y) rather

than p(yT+1|y). In Section 3.4 we then provide numerical
illustrations of g(yT+1|y) and p(yT+1|y) for particular mod-
els, and for particular choices of summary statistics in the
production of g(yT+1|y).

We first give a brief overview of certain existing results
on the asymptotic properties of pε(θ |η(y)), which inform
the theoretical results pertaining to approximate forecast-
ing.

3.1. Asymptotic properties of ABC posteriors

Webriefly summarize recent theoretical results for ABC
as they pertain to our eventual goal of demonstrating
the merging of g(yT+1|y) and p(yT+1|y). To this end, we
draw on the work of Frazier et al. (2018) but acknowl-
edge here the important contributions by Li and Fearn-
head (2018a, 2018b). As is consistent with the standard
approach to Bayesian asymptotics (Ghosh & Ramamoor-
thi, 2003; van der Vaart, 1998), we view the conditioning
values y as random and thus, by extension, g(yT+1|y) and
p(yT+1|y). However, for ease of notation,we continue to use
the lower case notation y everywhere.

Establishing the asymptotic properties of pε(θ |η(y)) re-
quires simultaneous asymptotics in the tolerance, ε, and
the sample size, T . To this end, we denote a hypothetical
T− dependent ABC tolerance by εT . Under relatively weak
sufficient conditions on the prior p(θ ) and the tail behavior
of η(y), plus an identification condition that is particular to
the probability limit of η(y), Frazier et al. (2018) prove the
following results regarding the posterior produced from
the ABC draws in Algorithm 1, as T → ∞:

1. The posterior concentrates onto θ0 (i.e. is Bayesian con-
sistent) for any εT = o(1);

2. The posterior is asymptotically normal for εT = o(ν−1
T ),

where νT is the rate at which the summaries η(y) satisfy a
central limit theorem.

In Section 3.2we show that under Bayesian consistency,
predictions generated from g(yT+1|y)will, to all intents and
purposes, be identical to those generated from p(yT+1|y).
The asymptotic normality (i.e. a Bernstein-von Mises re-
sult) in 2. is applied in Section 3.3. Note that, without
making this explicit, we assume that the tolerance under-
pinning an ABC posterior is specified in such a way that the
theoretical properties invoked hold.

3.2. Merging of approximate and exact predictives

Let (Ω,F,P) be a probability space, with P a convex
class of probability measures on (Ω,F). Define a filtration
{Ft : t ≥ 1} associated with the probability space
(Ω,F,P), and let the sequence {yt}t≥1 be adapted to {Ft}.
Define, for B ∈ F , the following predictive measures:

Py(B) =

∫
Ω

∫
Θ

p(yT+1|θ, y)dΠ[θ |y]dδyT+1 (B),

Gy(B) =

∫
Ω

∫
Θ

p(yT+1|θ, y)dΠ[θ |η(y)]dδyT+1 (B),

where δx denotes the Dirac measure. Py(·) denotes the
predictive distribution for the randomvariable YT+1, condi-
tional on y, and where parameter uncertainty - integrated
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out in the process of producing Py(·) - is described by the
exact posterior distribution, Π[·|y], with density p(θ |y)
(with respect to the Lebesgue measure). The distribution
Gy(·) is the ABF predictive and differs from Py(·) in its quan-
tification of parameter uncertainty, which is expressed via
Π[·|η(y)] instead of Π[·|y], where the former has density
pε(θ |η(y)).

The discrepancy between Gy and Py is entirely due to
the replacement ofΠ[θ |y]byΠ[θ |η(y)]. In thisway, noting
that, for any B ∈ F ,

|Gy(B) − Py(B)| ≤

∫
Ω

∫
Θ

p(yT+1|θ, y)dδyT+1 (B)

× |pε(θ |η(y)) − p(θ |y)| dθ ,

it is clear that the difference between Gy and Py is
smaller, the smaller is the discrepancy between p(θ |y) and
pε(θ |η(y)).

Under regularity conditions (see, for example, Ghosal,
Ghosh, & Samanta, 1995 or Ibragimov & Has’Minskii, 2013)
the exact posterior p(θ |y) will concentrate onto θ0 as T →

∞. As long as the relevant conditions delineated in Frazier
et al. (2018) for the Bayesian consistency of pε(θ |η(y))
are satisfied, then pε(θ |η(y)) will also concentrate onto
θ0 as T → ∞. Consequently, the discrepancy between
pε(θ |η(y)) and p(θ |y) will disappear in large samples, and
mitigate the discrepancy between g(yT+1|y) and p(yT+1|y).
The following theorem formalizes this intuition.

Theorem 1. Under Assumption 1 in the Appendix, the pre-
dictive distributions Py(·) and Gy(·) merge, in the sense that
ρTV {Py,Gy} → 0 as T → ∞ and εT → 0, with P-
probability 1, where ρTV {Py,Gy} denotes the total variation
metric: supB∈F |Py(B) − Gy(B)|.

Themerging of Py and Gy is not without precedence and
mimics early results onmerging of predictive distributions
due to Blackwell and Dubins (1962). A connection between
merging of predictive distributions and Bayesian consis-
tencywas first discussed in Diaconis and Freedman (1986),
with the authors viewing Bayesian consistency as implying
a ‘‘merging of inter-subjective opinions’’. In their setting,
Bayesian consistency implied that two separate Bayesians
with different subjective prior beliefswould ultimately end
upwith the same predictive distribution. (See also Petrone,
Rousseau, & Scricciolo, 2014, for related work).

Our situation is qualitatively different from that consid-
ered in Diaconis and Freedman (1986) in that we are not
concerned with Bayesians who have different prior beliefs,
but Bayesians who are using completely differentmeans of
assessing the posterior uncertainty about the parameters θ .
Given the nature of ABC, and the fact that under suitable
conditions posterior concentration can be proven, we have
the interesting result that, for a large enough sample, and
under Bayesian consistency of both pε(θ |η(y)) and p(θ |y),
conditioning inference about θ on η(y) rather than ymakes
no difference to the probabilistic statements made about
YT+1. In contexts where inference about θ is simply a
building block for Bayesian predictions, and where sample
sizes are sufficiently large, inference undertaken via (pos-
terior consistent) ABC is sufficient to yield predictions that
are virtually identical to those obtained by an exact (but
potentially infeasible or, at the very least computationally
challenging) method.

3.3. Proper scoring rules

The above merging result demonstrates that in large
samples the difference between p(yT+1|y) and g(yT+1|y) is
likely to be small. To formally quantify the loss in forecast
accuracy incurred by using g(yT+1|y) rather than p(yT+1|y),
we use the concept of a scoring rule. Heuristically, a scor-
ing rule rewards a forecaster for assigning a high density
ordinate (or high probability mass) to the observed value
(so-called ‘calibration’), often subject to some shape or
‘sharpness’ criterion. (See Gneiting, Balabdaoui, & Raftery,
2007 and Gneiting & Raftery, 2007 for expositions). More
specifically, we are interested in scoring rules S : P ×

Ω ↦→ R whereby if the forecaster quotes the predictive
distribution G and the value y eventuates, then the reward
(or ‘score’) is S(G, y). We then define the expected score
under the measure P of the probability forecast G, as

M(G, P) =

∫
y∈Ω

S(G, y)dP(y). (7)

A scoring rule S(·, ·) is proper if for all G, P ∈ P,

M(P, P) ≥ M(G, P),

and is strictly proper, relative to P , if M(P, P) = M(G, P)
implies G = P . That is, a proper scoring rule is onewhereby
if the forecasters best judgment is indeed P there is no
incentive to quote anything other than G = P .

Now define the true predictive distribution of the ran-
dom variable YT+1 as

Fy(B) =

∫
Ω

∫
Θ

p(yT+1|θ, y)dδθ (θ0)dδyT+1 (B).

The following result builds on Theorem 1 and presents
a theoretical relationship between the predictive density
functions, g(yT+1|y) and p(yT+1|y), in terms of the expecta-
tion of proper scoring rules with respect to Fy(·).

Theorem 2. Under Assumption 1 in the Appendix, if S(·, ·) is
a strictly proper scoring rule,

(i) |M(Py, Fy) − M(Gy, Fy)| = oP(1);
(ii) |E

[
M(Py, Fy)

]
− E

[
M(Gy, Fy)

]
| = o(1);

(iii) The absolute differences in (i) and (ii) are identically
zero if and only if η(y) is sufficient for y and εT = 0.

The result in (i) establishes an asymptotic equivalence
between the expected scores (under Fy) of the exact and
approximate predictives, where the expectation is with re-
spect to YT+1, conditional on y. Hence, the result establishes
that (under regularity) as T → ∞, there is no expected loss
in accuracy from basing predictions on an approximation.
The result in (ii) ismarginal of y and follows from (i) and the
monotonicity property of integrals. Part (iii) follows from
the factorization theorem and the structure of Py and Gy.
All results are, of course, consistentwith themerging result
demonstrated earlier, and with Py and Gy, by definition,
equivalent for any T under sufficiency of η(y).

However, if additional assumptions regarding the reg-
ularity of p(θ |y) and pε(θ |η(y)) are satisfied, a ranking be-
tween M(Py, Fy) and M(Gy, Fy), which will hold for large T
and with high probability, can be deduced. In particular, a
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ranking can be obtained if both p(θ |y) and pε(θ |η(y)) sat-
isfy a Bernstein-von Mises result (which requires invoking
Result 2 in Section 3.1 in the latter case and standard reg-
ularity in the former). For φθ,V denoting a normal density
function with mean θ and variance–covariance matrix V , a
Bernstein-vonMises result for p(θ |y) and pε(θ |η(y)) implies
that

p(yT+1|y) =

∫
Θ

p(yT+1|θ, y)φθ̂ ,I−1 (θ )dθ + oP(T−1/2) (8)

g(yT+1|y) =

∫
Θ

p(yT+1|θ, y)φθ̃ ,E−1 (θ )dθ + oP(T−1/2), (9)

where θ̂ is the maximum likelihood estimator, I is the
Fisher information matrix (evaluated at θ0), θ̃ is the ABC
posterior mean and E is the Fisher information conditional
on the statistic η(y) (evaluated at θ0). For regular models
with weakly dependent data, both I−1 and E−1 are O(T−1),
and I−1

− E−1 is negative semi-definite. Now, assuming
validity of a second-order Taylor expansion for p(yT+1|θ, y)
in a neighborhood of θ̂ , we can expand this function as

p(yT+1|θ, y) = p(yT+1|θ̂ , y) +
∂p(yT+1|θ, y)

∂θ ′

⏐⏐⏐⏐
θ=θ̂

(θ − θ̂ )

+
1
2
(θ − θ̂ )′

∂2p(yT+1|θ, y)
∂θ∂θ ′

⏐⏐⏐⏐
θ=θ∗

(θ − θ̂ ),

(10)

for some intermediate value θ∗. Substituting (10) into (8),
and recognizing that

∫
Θ
(θ−θ̂ )φθ̂ ,I−1 (θ )dθ = 0, then yields

p(yT+1|y) =

∫
Θ

p(yT+1|θ̂ , y)φθ̂ ,I−1 (θ )dθ

+
1
2
tr
{
∂2p(yT+1|θ, y)

∂θ∂θ ′

⏐⏐⏐⏐
θ=θ∗

×

∫
Θ

(θ − θ̂ )(θ − θ̂ )′φθ̂ ,I−1 (θ )dθ
}

+ oP(T−1/2)

= p(yT+1|θ̂ , y) + OP(1)O(T−1) + oP(T−1/2)

= p(yT+1|θ̂ , y) + oP(1).

Similarly, we have for g(yT+1|y) in (9):

g(yT+1|y) = p(yT+1|θ̃ , y) + oP(1).

Heuristically, for large T , under the approximate Gaus-
sianity of θ̂ and θ̃ , we can view p(yT+1|θ̂ , y) − p(yT+1|θ0, y)
and p(yT+1|θ̃ , y)− p(yT+1|θ0, y) as approximately Gaussian
with mean 0, but with the former having a smaller vari-
ance than the latter (even though these un-normalized
quantities have variances that are both collapsing to
zero as T → ∞). Therefore, on average, the error
p(yT+1|θ̂ , y) − p(yT+1|θ0, y), should be smaller than the
error p(yT+1|θ̃ , y)−p(yT+1|θ0, y), so that, for S(·, ·) a proper
scoring rule, on average,∫
Ω

S(p(yT+1|θ0, y), yT+1)p(yT+1|θ0, y)dyT+1

≥

∫
Ω

S(p(yT+1|θ̂ , y), yT+1)p(yT+1|θ0, y)dyT+1

≥

∫
Ω

S(p(yT+1|θ̃ , y), yT+1)p(yT+1|θ0, y)dyT+1. (11)

That is, using the notation defined in (7), one would expect
that, for large enough T ,

M(Py, Fy) ≥ M(Gy, Fy), (12)

and - as accords with intuition - predictive accuracy to be
greater when based on the exact predictive distribution.4

In practice of course, in a situation in which exact in-
ference is deemed to be infeasible, measurement of this
loss is also infeasible, since p(yT+1|y) is inaccessible. How-
ever, it is of interest - in experimental settings, in which
both g(yT+1|y) and p(yT+1|y) can be computed - to gauge
the extent of this discrepancy, in particular for different
choices of η(y). This then gives us some insight into what
might be expected in the more realistic scenario in which
the exact predictive cannot be computed and the ABF
density is the only option. Furthermore, even in situations
in which p(yT+1|y) can be accessed, but only via a be-
spoke, finely-tuned MCMC algorithm, a finding that the
approximate predictive produced via the simpler, more
readily automated and less computationally burdensome
ABC algorithm, is very similar to the exact, is consequential
for practitioners. We pursue such matters in the following
Section 3.4, with the specific matter of asymptotic merging
- and the role played therein by Bayesian consistency -
treated in Section 3.4.3.

3.4. Numerical illustrations

3.4.1. Example: Integer autoregressive model
We begin by illustrating the approximate forecasting

methodology for the case of a discrete random variable, in
which case the object of interest is a predictive mass func-
tion. To do so, we adopt an integer autoregressive model
of order one (INAR(1)) as the data generating process. The
INAR(1) model is given as

yt = ρ ◦ yt−1 + εt , (13)

where ◦ is the binomial thinning operator defined as

ρ ◦ yt−1 =

yt−1∑
j=0

Bj(ρ), (14)

and where B1(ρ), B2(ρ), . . . , Byt−1 (ρ) are i.i.d. Bernoulli ran-
dom variables each with

Pr(Bj(ρ) = 1) = 1 − Pr(Bj(ρ) = 0) = ρ.

In the numerical illustration we take εt to be i.i.d. Poisson
with intensity parameter λ. Note that it is with a slight
abuse of notation that, in this and later models, we use the
notation εt to denote a random error term. It will always
be clear from the context when the symbol is being used in
this way, rather than referring to the ABC tolerance.

The INAR(1) model sits within the broader class of
integer-valued ARMA (INARMA) models, which has played
a large role in the modeling and forecasting of count time

4 We reiterate that the derivation of the result in (12) is based
on asymptotic approximations of the unscaled quantities, p(yT+1|y) and
g(yT+1|y), which (in common with all asymptotic results pertaining to
unnormalized quantities) is valid for large but finite T .
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series data. See Jung and Tremayne (2006) for a review,
and Drost, van den Akker, andWerker (2009) and McCabe,
Martin, and Harris (2011) for contributions. Of particular
note is the work by Martin, Tremayne, and Jung (2014),
in which the INARMA model is estimated ‘indirectly’ via
efficient method of moments (Gallant & Tauchen, 1996),
which is similar in spirit to ABC. No investigation of fore-
casting under this ‘approximate’ inferential paradigm is
however undertaken.

Relevant also is the work of Neal and Rao (2007) in
which an MCMC scheme for the INARMA class is devised,
and from which an exact predictive could be estimated.
However, given the very simple parameterization of (13),
we evaluate the exact posterior for θ = (ρ, λ)′ numerically
using deterministic integration, and estimate the exact
predictive in (4) by taking a simple weighted average of
the ordinates of the one-step-ahead conditional predictive
associated with the model. Given the structure of (13)
this conditional predictive mass function is defined by the
convolution of the two unobserved randomvariables,ρ◦yT
and εT , as

Pr
(
YT+1 = yT+1|y, θ

)
=

min{yT+1,yT }∑
s=0

Pr
(
BρyT = s

)
Pr(εT+1 = yT+1 − s), (15)

where Pr
(
BρyT = s

)
denotes the probability that a binomial

random variable associated with yT replications (and a
probability of ‘success’, ρ, on each replication) takes a value
of s, and where Pr(εT+1 = yT+1 − s) denotes the probability
that a Poisson random variable takes a value of yT+1 − s.

We generate a sample of size T = 100 from the model
in (13) and (14), with θ0 = (ρ0, λ0)′ = (0.4, 2)′. Prior
information on θ is specified as U[0, 1] × U[0, 10].5 We
implement ABC using a nearest-neighbour version of Algo-
rithm 1. This version of ABC replaces Step-3 in Algorithm 1
with the following selection step:
3. Select all θ i associated with the α = δ/N smallest
distances d{η(zi), η(y)} for some δ.

For this experiment, the nearest-neighbour version of
ABC is implemented by retaining the simulated draws that
lead to the smallest α = 0.01 of the N = 20,000 simu-
lated draws based on a single vector of summary statistics
comprising the sample mean of y, denoted as ȳ, and the
first three sample autocovariances, γl = cov(yt , yt−l), l =

1, 2, 3: η(y) = (ȳ, γ1, γ2, γ3)′. Given the latent structure of
(14) no reduction to sufficiency occurs; hence neither this,
nor any other set of summaries will replicate the informa-
tion in y, and pε(θ |η(y)) will thus be distinct from p(θ |y). As
is evident by the plots in Panels A and B of Fig. 1, the exact
and ABC posteriors for each element of θ are indeed quite

5 In this and the following sectionswe use the simplest possible priors,
including truncated uniform priors on location parameters. We acknowl-
edge that these prior choices will have some influence on the posterior
densities produced, both exact and approximate. However, given that
the sample sizes are reasonable (and large in some cases) we do not
expect that influence to be substantial, nor for the conclusions regarding
predictive performance to qualitatively alter. In particular we emphasize
that the same priors are used to generate both the exact and approximate
posteriors in all cases.

Table 1
Log score (LS) and quadratic score (QS) associated with the approximate
predictive g(yT+1|y), and the exact predictive, p(yT+1|y), each computed
as an average over a series of (expanding window) 100 one-step-ahead
predictions. The predictive with the highest average score is in bold.

ABF Exact

LS −1.89 −1.89
QS 0.17 0.17

different one from the other. In contrast, in Panel C the
exact and approximate predictivemass functions (with the
latter estimated by taking the average of the conditional
predictives in (15) over the ABC draws of θ ) are seen to be
an extremely close match.6

To illustrate the results of Theorem 2, we construct a
series of 100 expanding window one-step-ahead predic-
tive distributions (beginning with a sample size of T =

100), and report the average (over 100 one-step-ahead
predictions) of the log score (LS) and the quadratic score
(QS) in Table 1, using the ‘observed’ value of yT+1 that is also
simulated.7 (See Gneiting et al., 2007, for details of these
particular scoring rules.) The assumptions under which
Theorem 2 holds can be demonstrated analytically in this
case, including the Bayesian consistency of pε(θ |η(y)); see
Appendix A.4.1. It is immediately obvious that, at least
according to these two scoring rules, and to two decimal
places, the predictive accuracy of g(yT+1|y) and p(yT+1|y)
is equivalent, even for this relatively small sample size.8

In addition, it is important to note that the compu-
tational time required to produce the exact predictive,
via rectangular integration over the prior grid, is just un-
der four and a half minutes, which is approximately 18
times greater than the time required to construct the
approximate predictive via ABC. Therefore, in this sim-
ple example, we see that ABF offers a substantial speed
improvement over the exact predictive, with no loss in
predictive accuracy.9

Wedo emphasize at this point that refinements of Algo-
rithm 1 based on either post-sampling corrections (Beau-
mont, Zhang, & Balding, 2002; Blum, 2010), or the insertion
of MCMC or sequential Monte Carlo steps (Beaumont, Cor-
nuet, Marin, & Robert, 2009; Marjoram, Molitor, Plagnol,
& Tavaré, 2003; Sisson, Fan, & Tanaka, 2007) may well
improve the accuracy with which the exact posteriors are

6 We note, with reference to themarginal posteriors of λ, that the ABC
posterior placesmuchmoremass over the entire prior support forλ, given
as [0, 10], than does the exact posterior; hence the verymarked difference
in their shapes.

7 In an expanding window one-step-ahead prediction scheme, the
initial sample, say from period 1 to T , is used to produce a one-step-ahead
prediction for period T + 1. At the next iteration, we use observations up
to, and including, time T + 1 to produce a prediction for period T + 2.
This expanding window procedure then iterates until some pre-specified
period, say T + K .

8 Additional simulation results, not reported for brevity, demonstrate
that the qualitative nature of this result is not sensitive to the choice of θ0 .

9 Given the independent nature of ABC sampling,we are able to exploit
parallel computing. This is done using the standard ‘parfor’ function
in MATLAB. All computations are conducted on an Intel Xeon E5-2630
2.30 GHz dual processor (each processor with 6 cores) with 16 GB RAM.
Note that all computation times quoted in the paper are ‘time elapsed’ or
‘wall-clock’ time.
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Fig. 1. Panels (A) and (B) depict the marginal posteriors (exact and ABC) for ρ and λ, respectively. The red vertical line (denoted by ‘Truth’ in the
key) represents the true value of the relevant parameter in both panels. Panel (C) plots the one-step-ahead predictive mass functions - both exact and
approximate (ABC-based). The brown shading corresponds to an overlap of exact and approximate predictive probabilities. The red shading indicates when
the approximate probabilities exceed the exact, with the grey shading indicating the reverse situation.

approximated. However, the key message - both here and
in what follows - is that a poor match between exact and
approximate posteriors does not necessarily translate into
a corresponding poor match at the predictive level; hence,
we choose to use the simplest form of the algorithm in all
illustrations.

3.4.2. Example: Moving average model
We now explore an example from the canonical class

of time series models for a continuous random vari-
able, namely the Gaussian autoregressive moving average
(ARMA) class. We simulate T = 500 observations from an
invertible moving average model of order 2 (MA(2)),

yt = εt + θ1εt−1 + θ2εt−2, (16)

where εt ∼ i.i.d.N(0, σ 2), and the true values of the
unknown parameters are given by θ10 = 0.8, θ20 = 0.6
and σ0 = 1.0.10 We specify the following priors: θ1 ∼

U(0, 0.99), θ2 ∼ U(0, 0.99) and σ ∼ U(0.1, 3). Inference
on θ = (θ1, θ2, σ )′ is conducted via ABC using the sam-
ple autocovariances as summary statistics, with η(l)(y) =

(γ0, γ1, . . . , γl)′, and γl = cov(yt , yt−l). Four alternative
sets of η(l)(y) are considered in this case, with l = 1, 2, 3, 4.
The one-step-ahead approximate predictive densities are
estimated for each set by using the selected draws, θ i,
i = 1, 2, . . . ,N, (again, via a nearest-neighbour version of
Algorithm 1) from pε(θ |η(l)(y)) to define p(yT+1|θ

i, y), from
which draws yiT+1, i = 1, 2, . . . ,N, are taken and used to
produce a kernel density estimate of g (l)(yT+1|y). We note
that themoving average dependence in (16)means that re-
duction to a sufficient set of statistics of dimension smaller
than T is not feasible. Hence, none of the sets of statistics
considered here are sufficient for θ and pε(θ |η(l)(y)) is, once
again, distinct from p(θ |y) for all l.

Panels (A)–(C) in Fig. 2 depict the marginal posteri-
ors for each of the three parameters: the four ABC pos-
teriors are given by the dotted and dashed curves of

10 Similar to the INAR example, additional simulation results in this
MA(2) example, not reported for brevity, demonstrate that the qualitative
results are not sensitive to the choice of θ0 .

various types, with the relevant summary statistic (vec-
tor) indicated in the key appearing in Panel A. The exact
marginals (the full curves) for all parameters are computed
using the sparse matrix representation of the MA(2) pro-
cess in an MCMC algorithm comprised of standard Gibbs-
Metropolis–Hastings (MH) steps (see, in particular, Chan,
2013). All five densities are computed using 500 draws
of the relevant parameter. For the ABC densities this is
achieved by retaining (approximately) the smallest 0.5% of
the distances in Algorithm 1, based on N = 111,803 total
draws.11 For the exact posterior this is achieved by running
the chain for N = 20,000 iterates (after a burn-in of 5000)
and selecting every 40th draw.

Panel (D) of Fig. 2 plots the one-step-ahead predictive
densities - both approximate and exact. As is consistent
with the previous example, the contrast between the two
sets of graphs in Fig. 2 is stark. The ABC posteriors in
Panels (A)–(C) are all very inaccurate representations of
the corresponding exact marginals, in addition to being, in
some cases, very different one from the other. In contrast,
in Panel D three of the four ABF predictives (associated
with η(1)(y), η(2)(y) and η(3)(y)) are all very similar, one
to the other, and extremely accurate as representations of
the exact predictive; indeed, the approximate predictive
generated by η(4)(y) is also relatively close to all other
densities.

We now numerically illustrate the content of Section
3.3, by performing a similar exercise to that undertaken
in the previous section: we construct a series of 500 ex-
panding window one-step-ahead predictive distributions
(beginning with a sample size of T = 500) and record
the average LS, QS and continuous rank probability score
(CRPS) for each case in Table 2. It is clear that the MCMC-
based predictive, which serves as a simulation-based esti-
mate of p(yT+1|y), generates the highest average score, as
is consistent with (12). Nevertheless, the ABF predictives
yield average scores that are nearly identical to those based
on MCMC, indeed in one case (for l = 2) equivalent to
two decimal places. That is, the extent of the loss associ-
ated with the use of insufficient summaries is absolutely

11 An explanation of this particular choice for the selected proportion
(and, hence, N) is provided in the next section.
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Fig. 2. Panels (A), (B) and (C) depict the marginal posteriors (exact and ABC) for σ , θ1 and θ2 respectively. The four approximate posteriors are based
on the sets of summaries indicated in the key included in Panel A. Panel (D) plots the one-step-ahead predictive densities - both exact and approximate
(ABC-based). The vertical line (denoted by ‘Truth’ in the key) represents the true value of the relevant parameter in Panels (A), (B) and (C).

Table 2
Log score (LS), quadratic score (QS) and continuous rank probability score
(CRPS) associated with the approximate predictive density g (l)(yT+1|y),
l = 1, 2, 3, 4, and the exact MCMC-based predictive, p(yT+1|y), each
computed as an average over a series of 500 (expanding window) one-
step-ahead predictions. The predictive with the highest average score is
in bold.

l = 1 l = 2 l = 3 l = 4 MCMC

LS −1.43 −1.42 −1.43 −1.43 −1.40
QS 0.28 0.28 0.28 0.28 0.29
CRPS −0.57 −0.56 −0.57 −0.57 −0.56

minimal. Moreover, we note that the computational time
required to produce theMCMC-based estimate of the exact
predictive for the case of T = 500 is just over 6 min, which
is approximately 115 times greater than that required to
produce any of the approximate predictives. In any real-
time exercise inwhich repeated production of such predic-
tions were required, the vast speed improvement yielded
by ABF in this example, and with such minimal loss of
accuracy, could be of enormous practical benefit.

3.4.3. Numerical evidence of merging
In this final sub-section we illustrate the matter of pre-

dictive merging and posterior consistency. To this end, we
now consider data y simulated from (16), using increasing
sample sizes: T = 500, T = 2000, T = 4000 and T = 5000.
We also now make explicit that, of the four sets of sum-
maries that we continue to use in the illustration, the three
sets, η(2)(y), η(3)(y) and η(4)(y) are such that pε(θ |η(l)(y))
is Bayesian consistent (see Appendix A.4.2 for this demon-
stration), whilst η(1)(y) can be readily shown to not satisfy
the sufficient conditions that guarantee Bayesian consis-
tency.

We document the merging across four separate mea-
sures; with all results represented as averages over 100
synthetic samples. We compute the RMSE based on the
distance between the CDF for the approximate and exact
predictives, as a numerical approximation of∫ (

dPy − dGy
)2dµ, (17)

for µ the Lebesgue measure. Similarly, we compute (nu-
merical approximations of) the total variation metric,

ρTV {Py,Gy} = sup
B∈F

|Py(B) − Gy(B)|, (18)

the Hellinger distance,

ρH{Py,Gy} =

{
1
2

∫ [√
dPy −

√
dGy

]2
dµ
}1/2

, (19)

and the overlapping measure (OVL) (see Blomstedt &
Corander, 2015) defined as,[∫

min{p(yT+1|y), g(yT+1|y)}dyT+1

]2
. (20)

Small RMSE, total variation and Hellinger distances indi-
cate closeness of the approximate and exact predictive
distributions, while large values of OVL indicate a large
degree of overlap between the two distributions. These
four measures are presented graphically in Fig. 3.

All four panels in Fig. 3 illustrate precisely the role
played by Bayesian consistency in producing a merging
of predictive distributions, in accordance with Theorem 1.
Specifically, the RMSE, total variation and Hellinger dis-
tances uniformly decrease, while the OVL measure uni-
formly increases, as T increases, for the cases of ABF
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Fig. 3. The four panels depict numerical approximations to the measures in (17)–(20). The key in the upper-left-hand panel indicates the set of summaries
that underpins the ABC-based predictive used in each sequence of computations over T .

conducted with η(l)(y) for l = 2, 3, 4 (all of which are
associated with Bayesian consistent inference). Only in the
case of ABF based on η(1)(y) (for which pε(θ |η(1)(y)) is not
Bayesian consistent) is a uniform decline for RMSE and the
total variation andHellinger distances, not in evidence, and
a uniform increase in OVL not observed.

We comment here that in order to satisfy the theoret-
ical results discussed in Section 3.1, we require that the
number of draws taken for the ABC algorithm increases
with T . This is a consequence of replacing the acceptance
step in Algorithm 1 by a nearest-neighbour selection step,
with draws of θ being retained only if they fall below a
certain left-hand-tail quantile of the simulated distances.
The theoretical results in Frazier et al. (2018) remain valid
under this more common implementation of ABC, but they
must be cast in terms of the limiting behaviour of the
acceptance probability αT = Pr [d{η(y), η(z)} ≤ εT ] . Un-
der this nearest-neighbour interpretation, Corollary 1 in
Frazier et al. (2018) demonstrates that consistency requires
αT → 0 as T → ∞, and, in particular, we require that
αT ≍ T−kθ /2, where ≍ can be understood as ‘‘equal’’ in
an order sense. Moreover, for NT denoting the number of
Monte Carlo draws used in ABC, it must also be the case
thatNT → ∞ asαT → 0. To jointly satisfy these conditions
we choose NT = 500/αT and αT = 50T−3/2. In contrast,
the number of MCMC draws used to produce the exact
predictives for each sample size remains fixed at 20,000
draws, with a burn-in of 5000 iterations. However, despite
the vast increase in the total number of Monte Carlo draws
used in ABC, as T increases, the computation gains in us-
ing the ABC algorithm to produce predictive distributions
remains marked. In accordance with the result reported
in Section 3.4.2, for T = 500 the ABF computation is ap-
proximately 115 times faster than the exact computation.

The relative computational gain factors for T = 2000 and
T = 4000 are 21 and 9, respectively, while a gain of a factor
of almost 5 is still achieved at T = 5000.12

Before concluding, we note that even though the pre-
dictive based on the ABC posterior pε(θ |η(1)(y)) does not
exhibit evidence of merging, as is clear from Panel D in
Fig. 2, for T = 500 this approximate predictive is still very
accurate as an estimate of the exact predictive. Therefore,
we conjecture that, in relatively small samples Bayesian
consistency may not be a necessary condition for ABC to
yield predictives that are close to the exact. However, the
numerical merging results demonstrate that this accuracy
would degrade as the sample size increased if the ABC
posterior were not consistent.

4. ABF in state space models

So far the focus has been on the case inwhich the vector
of unknowns, θ , is a kθ -dimensional set of parameters for
which informative summary statistics are sought for the
purpose of generating probabilistic predictions. By impli-
cation, and certainly in the case of both the INAR(1) and
MA(2) examples, the elements of θ are static in nature,
with kθ small enough for a set of summaries of manageable
dimension to be defined with relative ease.

12 The requirement that NT diverge, at a particular rate, is intimately
related to the inefficient nature of the basic accept/reject ABC approach.
In large samples, it is often useful to usemore refined sampling techniques
within ABC, as these approaches can often lead to faster estimates of the
ABC posterior than those obtained via the accept/reject approach. Thus,
at least in large samples, utilizingmore efficient ABC approaches will lead
to a decrease in ABF computing times, which will lead to an even higher
computational gain over MCMC-based approaches. See Li and Fearnhead
(2018a) for alternative sampling schemes that only requireNT → ∞ very
slowly.
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State space models, in which the set of unknowns is
augmented by a vector of random parameters that is of
dimension equal to or greater than the sample size, present
additional challenges for ABC (Creel & Kristensen, 2015;
Martin et al., 2018), in terms of producing an ABC posterior
for the static parameters, θ , that is a good match for the
exact. However, the results in the previous section high-
light that accuracy at the posterior level is not necessary
for agreement between the approximate and exact pre-
dictives. This suggests that we may be able to choose a
crude, but computationally convenient, method of gener-
ating summaries for θ in a state spacemodel, and still yield
predictions that are close to those given by exact methods.
The results below confirm this intuition, as well as making
it clear that exact posterior inference on the full vector of
states (and the extra computational complexities that such
a procedure entails) is not required for this accuracy to be
achieved.

We illustrate these points in the context of a very simple
state space model, namely a stochastic volatility model for
a financial return, yt , in which the logarithm of the random
variance,Vt , follows a simple autoregressivemodel of order
1 (AR(1)):

yt =

√
Vtεt; εt ∼ i.i.d.N(0, 1) (21)

ln Vt = θ1 ln Vt−1 + ηt; ηt ∼ i.i.d.N(0, θ2) (22)

with θ = (θ1, θ2)′. Prior specifications θ1 ∼ U(0.5, 0.99)
and θ2 ∼ U(0.05, 0.5) are employed. To generate summary
statistics for the purpose of defining pε(θ |η(y)), we begin
by adopting the following auxiliary generalized autore-
gressive conditional heteroscedastic model with Gaussian
errors (GARCH-N):

yt =

√
Vtεt; εt ∼ i.i.d.N(0, 1) (23)

Vt = β1 + β2Vt−1 + β3y2t−1. (24)

As a computationally efficient summary statistic vector for
use in ABF we use the score of the GARCH-N likelihood
function, computed using the simulated and observed data,
with both evaluated at the (quasi-) maximum likelihood
estimator of β = (β1, β2, β3)′ (see, for example, Drovandi
et al., 2015, and Martin et al., 2018).

The exact predictive, p(yT+1|y), requires integration
with respect to both the static and latent parameters, in-
cluding the value of the latent variance at time T + 1,
VT+1. Defining p(VT+1,V, θ |y) as the joint posterior for this
full set of unknowns (with V = (V1, V2, . . . , VT )′), and
recognizing the Markovian structure in the (log) variance
process, we can represent this predictive as

p(yT+1|y)

=

∫
VT+1

∫
V

∫
θ

p(yT+1|VT+1)p(VT+1,V, θ |y)dθdVdVT+1

=

∫
VT+1

∫
V

∫
θ

p(yT+1|VT+1)p(VT+1|VT , θ, y)p(V|θ, y)

× p(θ |y)dθdVdVT+1. (25)

A hybrid Gibbs-MH MCMC algorithm is applied to yield
posterior draws of θ and V. We apply the sparse matrix
sampling algorithm of Chan and Jeliazkov (2009) to sample

V, and a standard Gibbs algorithm to sample from the con-
ditional posterior of θ given the states. Conditional on the
draws of θ andVT (in particular), draws ofVT+1 and yT+1 are
produced directly from p(VT+1|VT , θ, y) and p(yT+1|VT+1)
respectively, and the draws of yT+1 used to produce an
estimate of p(yT+1|y).

Replacing p(θ |y) in (25) by pε(θ |η(y)), the approximate
predictive is then defined as

g(yT+1|y) (26)

=

∫
VT+1

∫
V

∫
θ

p(yT+1|VT+1)p(VT+1|VT , θ, y)p(V|θ, y)

× pε(θ |η(y))dθdVdVT+1.

In this case, however, draws are produced from pε(θ |η(y))
via the nearest-neighbour version of Algorithm1 (withα =

0.01 and N = 50,000), separately from the treatment of V.
That is, posterior draws of V, including VT , are not an auto-
matic output of a simulation algorithm applied to the joint
set of unknowns θ and V, as was the case in the estimation
of (25). However, the estimation of g(yT+1|y) requires only
that posterior draws of VT and θ are produced; that is,
posterior inference on the full vector V, as would require
a backward sampling step to be embedded within the
simulation algorithm, is not necessary. All that is required
is that V1:T−1 is integrated out, and this can occur via a
forward filtering step alone. The implication of this is that,
conditional on a simple i.i.d. version of Algorithm 1 being
adopted (i.e., that no MCMC modifications of ABC are em-
ployed), a simulation-based estimate of the approximate
predictive can still be produced using i.i.d. draws only.
As such, the great gains in computational speed afforded
by the use of ABC - including access to parallelization -
continue to obtain even when latent variables characterize
the true DGP.

Panels (A) and (B) of Fig. 4 depict the marginal ABC
posteriors of θ1 and θ2 alongside the MCMC-based com-
parators. The dashed curve in Panel (C) of Fig. 4 then
represents the estimate of (26), in which the particle filter
is used to integrate out the latent variances, and the full
curve represents the MCMC-based estimate of (25). As is
consistent with the numerical results recorded earlier for
the INAR(1) and MA(2) examples, the difference between
the approximate and exact posteriors is marked, whilst -
at the same time - the approximate predictive is almost
equivalent to the exact, and having been produced using
a much simpler algorithm, and in a fraction of the time.

The importance of the particle filtering step in obtaining
this (near) equivalence is highlighted by the inclusion of
a third predictive (the dot-dashed curve) in Panel (C) of
Fig. 4, which is constructed by replacing the particle fil-
tering step by a simple forward simulation of the latent
variance model in (22) - conditional on the ABC draws of
θ - such that inference on VT is itself conditioned on η(y),
rather than y. Without full posterior inference on VT , the
gains obtained by ABC inference on θ (in terms of compu-
tational speed and ease) are achieved only at the cost of
producing an inaccurate estimate of the exact predictive.
We reiterate, however, that full posterior inference on VT
(as reflected in the very accurate dashed curve in Panel (C)
of Fig. 4) requires only a particle filtering step.
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Fig. 4. Panels (A) and (B) depict the marginal posteriors (exact and ABC) for θ1 and θ2 , respectively. Panel (C) plots the one-step-ahead predictive density
functions - both exact and approximate (ABC-based). P.F. indicates the approximate predictive computed using the particle filtering step; F.S. indicates the
approximate predictive computed using a forward simulation step (for the latent variance) only. The vertical line (denoted by ‘Truth’ in the key) represents
the true value of the relevant parameter in Panels (A) and (B).

Fig. 5. Exact and approximate (ABC-based) predictives. The three ABC-based predictives are based on the auxiliary models indicated in the key. All
approximate predictives use the particle filtering step.

To further highlight the apparent second-order impor-
tance of static parameter inference on the predictive, along
with the exact and approximate predictives reproduced in
Panel (C) of Fig. 4 (namely the full and dashed curves), Fig. 5
plots two alternative approximate predictives that use dif-
ferent auxiliary models to define the summary statistics.
The GARCH-T auxiliary model employs the structure as
defined in (23) and (24), but with a Student-t error term,
εt ∼ i.i.d.t(ν), used to accommodate extra leptokurtosis
in the return. The EGARCH-T auxiliary model also employs
Student-t errors, but with skewness in the return modeled
via an asymmetric specification for the (logarithm of the)
conditional variance:

ln Vt = β0 + β1 ln Vt−1 + β2 (|εt−1| − E(|εt−1|))+ β3εt−1.

As is clear, given the inclusion of the particle filtering
step, the choice of auxiliary model (and hence summary
statistics) underpinning pε(θ |η(y)) has little impact on the
nature of the resultant predictive, with all three auxiliary
models generating approximate predictives that are ex-
tremely close to the exact.13

This robustness of prediction to the choice of summary
statistics augers well for the automated use of ABC as

13 In this example the computing times for the calculation of the exact
and approximate predictives are very similar. However, we remind the
reader that we have only implemented a naive version of the ABC algo-
rithm, which could easily be optimized to yield a faster implementation
of ABF. In contrast, our MCMC implementation uses cutting-edge sparse-
matrix calculations to minimize the execution time required to produce
the exact predictive.

a method for generating Bayesian predictions in models
where finely-tuned, specialized MCMC algorithms have
been viewed as an essential ingredient up to now. It also
suggests that Bayesian predictions that are close to exact
can be produced in models in which exact prediction is
infeasible, that is, inmodelswhere theDGP - andhence, the
exact predictive itself - is unavailable. It is precisely such
a case that we explore in the following empirical section,
with performance now gauged not in terms of the accuracy
withwhich any particular g(yT+1|y) matches p(yT+1|y), but
in terms of out-of-sample predictive accuracy.

5. Empirical illustration: Forecasting financial returns
and volatility

5.1. Background, model and computational details

The effective management of financial risk entails the
ability to plan for unexpected, and potentially large, move-
ments in asset prices. Central to this is the ability to
accurately quantify the probability distribution of the fu-
ture return on the asset, including its degree of variation,
or volatility. The stylized features of time-varying and
autocorrelated volatility, allied with non-Gaussian return
distributions, are now extensively documented in the lit-
erature (Bollerslev, Chou, & Kroner, 1992); with more re-
cent work focusing also on random ‘jump’ processes, both
in the asset price itself and its volatility (Bandi & Renò,
2016; Broadie, Chernov, & Johannes, 2007; Maneesoon-
thorn, Forbes, & Martin, 2017). Empirical regularities doc-
umented in the option pricing literature (see Garcia, Lewis,
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Pastorello, & Renault, 2011 for a review), most notably
implied volatility ‘smiles’, are also viewed as evidence that
asset prices do not adhere to the geometric Brownian mo-
tion assumption underlying the ubiquitous Black–Scholes
option price, and that the processes driving asset returns
are much more complex in practice.

Motivated by these now well-established empirical
findings, we explore here a state space specification for
financial returns on the S&P500 index, in which both
stochastic volatility and random jumps are accommodated.
To do so, we supplement a measurement equation for the
daily return, in which a dynamic jump process features,
with a second measurement equation based on bipower
variation, constructed using five-minute intraday returns
over the trading day (Barndorff-Nielsen & Shephard, 2004).
Such a model is representative of models used recently to
capture returns data in which clustering of jumps features,
in addition to the stylized autocorrelation in the diffusive
variance (Aït-Sahalia, Cacho-Diaz, & Laeven, 2015; Bandi
& Renò, 2016; Fulop, Li, & Yu, 2014; Maneesoonthorn et
al., 2017). It also reflects the recent trend of exploiting
high frequency data to construct - and use as additional
measures in state space settings - nonparametricmeasures
of return variation, including jumps therein (Koopman &
Scharth, 2012; Maneesoonthorn et al., 2017; Maneesoon-
thorn, Martin, Forbes, & Grose, 2012). To capture the possi-
bility of extreme movements in volatility, and in the spirit
of Lombardi and Calzolari (2009) and Martin et al. (2018),
we adopt an α-stable process for the volatility innovations.
Despite the lack of a closed-form transition density, the
α-stable process presents no challenges for ABC-based in-
ference and forecasting, given that such a process can still
be simulated via the algorithm of Chambers, Mallows, and
Stuck (1976).

In summary, the assumed data generating process com-
prises two measurement equations: one based on daily
logarithmic returns, rt ,

rt = exp
(
ht

2

)
εt +∆NtZt , (27)

where εt ∼ i.i.d.N(0, 1), ht denotes the latent logarith-
mic variance process,∆Nt the latent jump occurrence and
Zt the latent jump size; and a second using logarithmic
bipower variation,

ln BVt = ψ0 + ψ1ht + σBV ζt , (28)

where BVt =
π
2

( M
M−1

)∑M
i=2

⏐⏐rti ⏐⏐ ⏐⏐rti−1

⏐⏐, with rti denoting
the ith, of M equally-spaced returns observed during day
t , and ζt ∼ i.i.d.N(0, 1). As is now well-known (Barndorff-
Nielsen & Shephard, 2004), under certain conditions BVt is
a consistent, but potentially biased (for finite M), estimate
of integrated volatility over day t , with ht here being a
discretized representation of the (logarithm of the) latter.
The latent states in Eqs. (27) and (28),ht , Zt and∆Nt , evolve,
respectively, according to

ht = ω + ρht−1 + σhηt (29)

Zt ∼ N(µ, σ 2
z ) (30)

Pr(∆Nt = 1|Ft−1) = δt = d + βδt−1 + γ∆Nt−1, (31)

where ηt ∼ i.i.d.S(α,−1, 0, dt = 1). We note that
the model for the jump intensity, δt , is the conditionally
deterministic Hawkes structure adopted by Aït-Sahalia et
al. (2015), Fulop et al. (2014) and Maneesoonthorn et al.
(2017). We estimate d (in (31)) indirectly via the un-
conditional intensity implied by this particular structure,
namely, d0 = d/(1 − β − γ ).

Exact inference on the full set of static parameters,

θ = (ψ0, ψ1, σBV , ω, ρ, σh, α, d0, β, γ , µ, σz)′, (32)

is challenging, not only due to the overall complexity of the
model, but in particular as a consequence of the presence of
α-stable (log) volatility transitions. Hence, ABC is a natural
choice for inference on θ . Moreover, given the previously
presented evidence regarding the accuracy with which
ABC-based predictives match the predictive that would be
yielded by an exact method, one proceeds with some con-
fidence to build Bayesian predictives via ABC posteriors.

To measure the predictive performance of our ABF ap-
proach, we consider an out-of-sample predictive exercise,
whereby we assess the relative accuracy of approximate
predictives based on alternative choices of summaries,
η(y).14 We make two comments here. First, and as high-
lighted in the previous section, a forward particle filtering
step (conditional on draws from the ABC posterior) is re-
quired to produce the full posterior inference on the latent
state, hT , that is, in turn, required to construct g(yT+1|y)
under any choice for η(y). We adopt the bootstrap par-
ticle filter of Gordon, Salmond, and Smith (1993) for this
purpose.15 Second, when the data generating process is
correctly specified, and if the conditions for Bayesian con-
sistency and asymptotic normality of both the exact and
ABC posteriors are satisfied, then the out-of-sample accu-
racy of g(yT+1|y) is bounded above by that of p(yT+1|y),
as measured by some proper scoring rule, as shown in
Section 3.3. Hence, in choosing η(y), from a set of alterna-
tives, according to the accuracy of the associated predic-
tive, we are - in spirit - choosing an approximate predictive
that is as close as possible (in terms of predictive accuracy)
to the inaccessible exact predictive.

We consider observed data from 26 February 2010 to
7 February 2017, comprising 1750 daily observations on
both rt and BVt . We reserve the most recent 250 observa-
tions (approximately one trading year) for one-step-ahead
predictive assessments, using an expanding window ap-
proach. In the spirit of the preceding section,we implement
ABCusing the scores of alternative auxiliaryGARCHmodels
fitted to daily returns. In this case, however, we must
also conduct inference on the parameters of the additional
measurement equation, (28), and the jump processes in
(30) and (31); hence we supplement the auxiliary model
scores with additional summary statistics based on both
BVt as well as the realized jump variation measure, JVt =

14 In contrast to the previous numerical examples, where yt was uni-
variate, in this example our goal is to jointly forecast log-returns, rt , and
the logarithm of bi-power variation, ln BVt . Therefore, in what follows
yT+1 = (rT+1, ln BVT+1)′ .
15 Note that the conditionally deterministic structure in (31) means

that no additional filtering step is required in order to model the jump
intensity at time T .
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Table 3
Auxiliary model specifications for ABC posterior inference for the model in (27)–(31). The error
terms, εt , ζt and ut , in the second and third columns are specified as i.i.d. The notation σ̂t in the
third column refers to fitted volatility from the corresponding volatility equation in the auxiliary
model. The final column gives the set of supplementary summary statistics used in addition to the
scores from each auxiliary model. The total number of summary statistics used in each specifica-
tion is denoted by dη in the first column.

Auxiliary model Supplementary statistics

GARCH-N rt = σtεt , εt ∼ N(0, 1) Mean(sign(rt )
√
JVt ), Var(JVt )

dη = 11 σ 2
t = γ0 + γ1r2t−1 + γ2σ

2
t−1 Corr(JVt , JVt−1)

Skewness(ln BVt ), Kurtosis(ln BVt )
Estimated regression coefficients from:
ln BVt = κ0 + κ1 ln σ̂ 2

t + κ3ζt

GARCH-T rt = σtεt , εt ∼ t(ν) Mean(sign(rt )
√
JVt ), Var(JVt )

dη = 12 σ 2
t = γ0 + γ1r2t−1 + γ2σ

2
t−1 Corr(JVt , JVt−1)

Skewness(ln BVt ), Kurtosis(ln BVt )
Estimated regression coefficients from:
ln BVt = κ0 + κ1 ln σ̂ 2

t + κ3ζt

TARCH-T rt = σtεt , εt ∼ t(ν) Mean(sign(rt )
√
JVt ), Var(JVt )

dη = 13 σ 2
t = γ0 + γ1r2t−1 + γ2I(rt−1<0)r2t−1 Corr(JVt , JVt−1)

+γ3σ
2
t−1 Skewness(ln BVt ), Kurtosis(ln BVt )

Estimated regression coefficients from:
ln BVt = κ0 + κ1 ln σ̂ 2

t + κ3ζt

RGARCH rt = σtεt , εt ∼ N(0, 1) Mean(sign(rt )
√
JVt ), Var(JVt )

dη = 12 ln σ 2
t = γ0 + γ1 ln BVt−1 + γ2 ln σ 2

t−1 Corr(JVt , JVt−1), Kurtosis(ln BVt )
ln BVt = γ3 + γ4 ln σ 2

t−1 + γ5εt
+γ6

(
ε2t − 1

)
+ γ7ut , ut ∼ N(0, 1)

max(RVt − BVt , 0), where RVt =
∑M

i=1r
2
ti defines so-called

realized variance for day t .
We consider four auxiliary models: GARCH with

normal and Student-t errors (GARCH-N and GARCH-
T, respectively), threshold GARCH with Student-t errors
(TARCH-T), and the realized GARCH (RGARCH) model of
Hansen, Huang, and Shek (2012). Table 3 details these
four models, plus the additional summary statistics that
we employ in each case. In particular, we note that the
RGARCH model itself incorporates a component in which
ln BVt is modeled; hence, in this case we do not adopt
additional summary statistics based on this measure. We
adopt independent uniform priors for all static parame-
ters in the structural model, subject to relevant model-
based restrictions, with the lower and upper bounds for
each given in Table 4. All ABC posteriors are produced by
the nearest-neighbour version of Algorithm 1 described in
Section 3.4.1, but with αT and NT depending on the sample
size T as per Frazier et al. (2018) (see Section 3.4.3 for
additional discussion.) We note that the ability of GARCH
auxiliarymodels to yield summary statistics that guarantee
posterior concentration has been numerically verified in
similarmodels inMartin et al. (2018). However, we believe
a formal verification of Bayesian consistency in the current
context, as was done with the examples in Section 3.4, is
beyond the scope of this paper.

5.2. Empirical forecasting results

In Table 5 we report the ABC marginal posterior means
(MPM) and the 95% highest posterior density (HPD) inter-
vals for the elements of θ , based on the four choices of sum-
maries. The posterior results obtained via the first three
sets (based, in turn, on theGARCH-N, GARCH-T and TARCH-
T auxiliary models) are broadly similar, except for the

TARCH-T auxiliary model producing noticeably narrower
95% HPD intervals for ω, µ and σz than the other auxiliary
models. In contrast to the relative conformity of these three
sets of results, the RGARCH auxiliary model (augmented
by the additional summaries) produces ABC posteriors that
differ quite substantially. Most notably, and with reference
to the latent process for ht in (29), ABC based on this fourth
set of summaries produces a larger MPM for ω, a lower
MPM for ρ, and a smaller MPM for σh than do the other
instances of ABC. In addition, this version produces a larger
point estimate for the mean jump size, µ, plus a smaller
point estimate of the jump size variation, σz . These dif-
ferences imply somewhat different conclusions regarding
the process generating returns than those implied by the
other three sets of ABC posterior results. As a consequence
there would be differing degrees of concordance between
the four sets of ABCposteriors and the corresponding exact,
unattainable, posteriors. The question of interest here is the
extent to which such differences translate into substantial
differences at the predictive level, where a judgment is
made solely in terms of out-of-sample predictive accuracy,
given our lack of access to the exact predictive.

To summarize predictive performance over the out-of-
sample period, average LS, QS and CRPS values for each of
the four approximate predictives are reported in Table 6,
with the largest figure in each case indicated in bold. The
results indicate that the predictive distribution for rt gener-
ated via the TARCH-T auxiliarymodel (and additional sum-
maries) performs best according to all three score criteria.
The GARCH-N auxiliary model (and additional summaries)
generates the best-performing predictive distribution for
ln BVt according to LS andQS, butwith CRPS still suggesting
that the TARCH-T-based predictive performs the best. It is
interesting to note that the set of statistics that generates
the worst overall predictive performance (with the lowest
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Table 4
Lower and upper bounds of the uniform prior specifications used for each element of θ , as defined in (32).

Parameter ψ0 ψ1 σBV ω ρ σh α d β γ µ σz

Lower −0.50 0.50 0.001 −1 0.50 0.001 1.50 0.001 0.50 0.001 −1 0.50
Upper 0.50 1.50 1 1 0.99 0.30 2 0.30 0.99 0.20 1 3

Table 5
Marginal posterior means (MPM) and 95% highest posterior density (HPD) intervals for each of the elements of θ , as defined in (32), obtained from ABC
posterior inference using the four auxiliary models and supplementary statistics defined in Table 3.

GARCH-N GARCH-T TARCH-T RGARCH

MPM 95% HPD MPM 95% HPD MPM 95% HPD MPM 95% HPD

ψ0 −0.02 (−0.47,0.47) 0.00 (−0.49,0.46) −0.01 (−0.47,0.48) −0.01 (−0.48,0.47)
ψ1 1.26 (0.77,1.49) 1.25 (0.83,1.49) 1.20 (0.73,1.49) 0.96 (0.51,1.45)
σBV 0.45 (0.02,0.96) 0.47 (0.03,0.95) 0.48 (0.02,0.95) 0.55 (0.04,0.99)
ω −0.04 (−0.68,0.38) −0.10 (−0.34,0.20) −0.17 (−0.48,−0.01) 0.19 (−0.95,0.97)
ρ 0.94 (0.81,0.99) 0.93 (0.83,0.99) 0.92 (0.81,0.98) 0.79 (0.52,0.99)
σh 0.20 (0.08,0.29) 0.21 (0.08,0.30) 0.20 (0.06,0.30) 0.13 (0.01,0.29)
α 1.76 (1.52,1.98) 1.76 (1.52,1.99) 1.77 (1.52,1.99) 1.80 (1.52,1.99)
d0 0.11 (0.01,0.28) 0.11 (0.01,0.27) 0.10 (0.01,0.28) 0.10 (0.01,0.27)
β 0.69 (0.51,0.90) 0.69 (0.51,0.91) 0.69 (0.51,0.90) 0.69 (0.52,0.90)
γ 0.12 (0.02,0.20) 0.12 (0.02,0.20) 0.12 (0.02,0.20) 0.13 (0.03,0.20)
µ 0.07 (−0.87,0.94) 0.05 (−0.86,0.90) 0.12 (−0.81,0.88) 0.23 (−0.69,0.94)
σz 1.21 (0.52,2.57) 1.23 (0.53,2.72) 1.14 (0.53,2.49) 1.01 (0.53,2.15)

Table 6
Average predictive log score (LS), quadratic score (QS) and continuous
rank probability score (CRPS) for the one-step-ahead approximate pre-
dictive distributions of rt and ln BVt , evaluated between 11 February 2016
and 7 February 2017. The figures in bold indicate the largest average
score amongst the four sets of summaries.

GARCH-N GARCH-T TARCH-T RGARCH

LS −1.57 −1.28 −1.20 −1.95
rt QS 0.38 0.47 0.52 0.27

CRPS −1.52 −1.05 −0.99 −2.10

LS −2.73 −2.76 −2.93 −2.83
ln BVt QS 0.10 0.05 0.02 0.09

CRPS −2.04 −1.42 −1.38 −2.57

predictive scores in all but one case) is that which includes
the RGARCH auxiliary model - i.e. the set that resulted in
ABCmarginal posteriors that were distinctly different from
those obtained via the other three statistic sets.

In summary, these predictive outcomes - in which
the approximate predictive produced using the T-GARCH-
based set of summaries performs best - suggest that this
choice of summaries be the one settled upon. Repeating
the point made above, for any finite sample the predictive
performance of any approximate predictive will (under
appropriate regularity conditions) be bounded above by
that of the exact predictive; however, this difference is
likely to be minor under correct specification of the DGP.

6. Discussion

This paper explores the use of approximate Bayesian
computation (ABC) in generating probabilistic forecasts
and proposes the concept of approximate Bayesian fore-
casting (ABF). Theoretical and numerical evidence has been
presented which indicates that if the assumed data gen-
erating process (DGP) is correctly specified, very little is

lost - in terms of forecast accuracy - by conducting ap-
proximate inference (only) on the unknowns that char-
acterize the DGP. A caveat here applies to latent variable
models, in that exact inference on the conditioning latent
state(s) would appear to be important. However, even that
requires only independent particle draws, to supplement
the computationally fast and simple independent draws of
the static parameters via ABC; detracting little from the
overall conclusion that ABC represents a powerful base on
which to produce accurate Bayesian forecasts in a short
amount of time. Whilst the asymptotic results based on
merging formally exploit the property of Bayesian consis-
tency, numerical evidence suggests that lack of consistency
for the ABC posteriors does not preclude the possibility of a
close match to the exact predictive being produced in any
given finite sample. The theoretical results presented re-
garding expected scores are also borne out in the numerical
illustrations, with minor - if any - forecasting loss incurred
by moving from exact to approximate prediction, for the
sample sizes considered.

Importantly, in an empirical setting where the exact
predictive is unattainable, the idea of choosing ABC sum-
maries to produce the best performing approximate pre-
dictive is a sensible approach to adopt when predictive
accuracy is the primary goal, and when the true DGP is
of course unknown. What remains the subject of on-going
investigation by the authors, is the interplay between new
results on the impact on ABC inference of model mis-
specification (Frazier, Robert, & Rousseau, 2017) and the
performance of ABC in a forecasting setting in which mis-
specification of the DGP is explicitly acknowledged. The
outcomes of this exploration are reserved for future re-
search output.

Appendix. Proofs

Let {Ft : t ≥ 1} be a filtration associated with the prob-
ability space (Ω,F,P). The sequence {yt}t≥1 is adapted to
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the filtration {Ft}. Let P(·|θ ) denote the generative model
for y. Define

Fy = P(·|θ0, y)

to be the true conditional predictive distribution.
Throughout the remainder, let yT+1 denote a point of

support for the randomvariable YT+1. Recall the definitions

Py =

∫
Θ

P(·|θ, y)dΠ[θ |y], Gy =

∫
Θ

P(·|θ, y)dΠ[θ |η(y)].

The results of this appendix hold under the following
high-level assumptions. Lower level sufficient conditions
for these assumptions can easily be given, however, such a
goal is not germane to the discussion at hand.

Assumption 1. The following are satisfied: (1) p(y|θ ) is FT
measurable for all θ ∈ Θ and for all T ≥ 1; (2) For all
θ ∈ Θ and all T ≥ 1, 0 < p(y|θ ) < ∞; (3) There exists
a unique θ0 ∈ Θ , such that y ∼ P(·|θ0) ∈ P; (4) For any
ϵ > 0, and Aϵ := {θ ∈ Θ : ∥θ − θ0∥ > ϵ}, Π[Aϵ |y]→P0
and Π[Aϵ |η(y)]→P0, i.e., Bayesian consistency of Π[Aϵ |y]
andΠ[Aϵ |η(y)] holds.

A.1. Lemma

We begin the proof of Theorem 1 by first proving the
following Lemma.

Lemma. Gy is a conditional measure and Gy(Ω) = 1.

Proof. The result follows by verifying the required condi-
tions for a probability measure.
(1) For any B ∈ F , 1l[Y ∈ B]g(Y |y) ≥ 0 and hence

Gy(B) =

∫
Ω

1l[Y ∈ B]g(Y |y)dY ≥ 0.

(2) By definition, Gy({∅}) = 0.
(3) Let Ek = [ak, bk), k ≥ 1, be a collection of disjoint sets (in
F). By construction, for all ω ∈ Ω , 1l[Y ∈ Ek]g(Y |y(ω)) ≥ 0
and hence

Gy

(
∞⋃
k=1

Ek

)
=

∫
1l

[
Y ∈

∞⋃
k=1

Ek

]
g(Y |y)dY

=

∫ ∞∑
k=1

1l[Y ∈ Ek]g(Y |y)dY

=

∞∑
k=1

∫
1l[Y ∈ Ek]g(Y |y)dY ,

where the last line follows by Fubini’s theorem.
(4) All that remains to be shown is that Gy(Ω) = 1. By
definition

Gy(Ω) =

∫
Ω

g(Y |y)dY =

∫
Ω

∫
Θ

p(Y |θ, y)dΠ[θ |η(y)]dY .

By Fubini’s Theorem,

Gy(Ω) =

∫
Θ

(∫
Ω

p(Y , y, θ )
p(y, θ )

dY
)
dΠ[θ |η(y)]

=

∫
Θ

p(y, θ )
p(y, θ )

dΠ[θ |η(y)] = Π[Θ|η(y)] = 1 ■

A.2. Theorem 116

Proof. Define ρH to be the Hellinger metric, that is, for
absolutely continuous probability measures P and G,

ρH{P,G} =

{
1
2

∫ [√
dP −

√
dG
]2

dµ
}1/2

,

0 ≤ ρH{P,G} ≤ 1,

for µ the Lebesgue measure, and define ρTV to be the total
variation metric,

ρTV {P,G} = sup
B∈F

|P(B) − G(B)|, 0 ≤ ρTV {P,G} ≤ 2.

Recall that, according to the definition of merging in Black-
well and Dubins (1962), two predictivemeasures Py and Gy
are said to merge if

ρTV {Py,Gy} = oP(1).

Fix ϵ > 0 and define the set

Vϵ := {θ ∈ Θ : ρ2
H{Fy, P(·|y, θ )} > ϵ/4}.

By convexity of ρ2
H{Fy, ·}, and Jensen’s inequality,

ρ2
H{Fy, Py} ≤

∫
Θ

ρ2
H{Fy, P(·|y, θ )}dΠ[θ |y]

=

∫
Vϵ
ρ2
H{Fy, P(·|y, θ )}dΠ[θ |y]

+

∫
V c
ϵ

ρ2
H{Fy, P(·|y, θ )}dΠ[θ |y]

= Π[Vϵ |y] +
ϵ

4
Π[V c

ϵ |y].

By definition, θ0 ̸∈ Vϵ and therefore, by Assumption 1 Part
(4),Π[Vϵ |y] = oP(1). Hence, we can conclude:

ρ2
H{Fy, Py} ≤ oP(1) +

ϵ

4
. (33)

Likewise, a similar argument yields

ρ2
H{Fy,Gy} ≤

∫
Θ

ρ2
H{Fy, P(·|y, θ )}dΠ[θ |η(y)]

=

∫
Vϵ
ρ2
H{Fy, P(·|y, θ )}dΠ[θ |η(y)]

+

∫
V c
ϵ

ρ2
H{Fy, P(·|y, θ )}dΠ[θ |η(y)]

= Π[Vϵ |η(y)] +
ϵ

4
Π[V c

ϵ |η(y)]

= oP(1) +
ϵ

4
. (34)

Now, note that
1
2

[
ρ2
H{Fy, Py} + ρ2

H{Fy,Gy}
]

≥
1
4

[
ρH{Fy, Py} + ρH{Fy,Gy}

]2
≥

1
4

[
ρH{Py,Gy}

]2
,

where the first line follows from the Cauchy-Schwartz
inequality and the second line from the triangle inequality.

16 A previous version of the proof of this theorem contained an error.
We thank Alex Cooper for bringing this to our attention.
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Applying equations (33) and (34), we then obtain

ρ2
H{Py,Gy} ≤ ϵ + oP(1).

Recall that, for probability distributions P,G,

0 ≤ ρ2
TV {P,G} ≤ 4 · ρ2

H{P,G}.

Applying this relationship between ρ2
H and ρ2

TV , yields the
stated result. ■

A.3. Theorem 2

Proof. Part (i): Under correct model specification, for any
B ∈ FT+1

Py(B) =

∫
Ω

∫
Θ

p(Y |y, θ )dΠ[θ |y]dδY (B)

=

∫
Ω

∫
Θ

p(Y |y, θ )dδθ (θ0)dδY (B)

+

∫
Ω

∫
Θ

p(Y |y, θ ){dΠ[θ |y] − dδθ (θ0)}dδY (B)

= Fy(B) +

∫
Ω

∫
Θ

p(Y |y, θ )dδY (B)

× {dΠ[θ |y] − dδθ (θ0)}. (35)

The second term in Eq. (35),
∫
Θ

∫
Ω
p(Y |y, θ )dδY (B){dΠ[θ |y]

− dδθ (θ0)}, is a bounded and continuous function of θ
for each y. Therefore, from the posterior concentration of
Π[θ |y] to δθ0 , Assumption 1 part (4),∫
Ω

∫
Θ

p(Y |y, θ )dδY (B){dΠ[θ |y] − dδθ (θ0)} = oP(1)

and it follows that Py = Fy + oP(1). Applying this result to
M(Py, Fy) we can conclude

M(Py, Fy) =

∫
Ω

S(Py, Y )dFy(Y )

=

∫
Ω

S(Fy, Y )dFy(Y ) + oP(1).

The same derivations to the above yield that, under
Assumption 1 part (4), Gy = Fy + oP(1), and

M(Gy, Fy) =

∫
Ω

S(Gy, Y )dFy(Y )

=

∫
Ω

S(Fy, Y )dFy(Y ) + oP(1).

Therefore,

M(Py, Fy) − M(Gy, Fy) = oP(1).

Part (ii): Define the random variables, Ŷ = S(Py, YT+1) and
X̂ = S(Gy, YT+1). The result of Part (i) can then be stated as,
up to an oP(1) term, E

[
Ŷ |y
]

= E
[
X̂ |y
]
. Therefore, up to an

o(1) term,

E
[
Ŷ
]

= E
[
E
[
Ŷ |y
]]

= E
[
E
[
X̂ |y
]]

= E
[
X̂
]
.

Part (iii): For η0 = η(y), rewrite g(yT+1|y) as

g(yT+1|y) =

∫
Θ

p(yT+1, θ, y)
p(θ, y)

p(η0|θ )p(θ )∫
θ
p(η0|θ )p(θ )dθ

dθ

=

∫
Θ

p(yT+1, θ, y)
p(y|θ )p(θ )

p(η0|θ )p(θ )∫
θ
p(η0|θ )p(θ )dθ

dθ

=

∫
Θ

p(yT+1, θ, y)∫
θ
p(η0|θ )p(θ )dθ

p(η0|θ )
p(y|θ )

dθ

Likewise, p(yT+1|y) can be rewritten as p(yT+1|y)
=
∫
Θ
p(yT+1, θ, y)dθ/

∫
θ
p(y|θ )p(θ )dθ. The result follows if

and only if p(y|θ ) = p(y)p(η0|θ ). ■

A.4. Posterior consistency in the INAR(1) andMA(2) examples

Under the assumption of correct model specification,
posterior consistency in ABC can be demonstrated by veri-
fying the sufficient conditions given in Theorem1of Frazier
et al. (2018), which we restate here for ease of exposition:

[A1] There exist a continuous, injective map b : Θ → B ⊂

Rkη and a function ρT (·) satisfying: ρT (u) → 0 as T → ∞

for all u > 0, and ρT (u) monotone non-increasing in u (for
any given T ), such that, for all θ ∈ Θ ,

Pθ [d{η(z), b(θ )} > u] ≤ c(θ )ρT (u),∫
Θ

c(θ )dΠ (θ ) < +∞

where either of the following is satisfied:

(i) Polynomial deviations: There exist a positive
sequence vT → +∞ and u0, κ > 0 such that
ρT (u) = v−κ

T u−κ , for u ≤ u0.
(ii) Exponential deviations: There exists hθ (·) > 0 such

that Pθ [d{η(z), b(θ )} > u] ≤ c(θ )e−hθ (uvT ) and there
exists c, C > 0 such that∫
Θ

c(θ )e−hθ (uvT )dΠ (θ ) ≤ Ce−c(uvT )τ , for u ≤ u0.

[A2] The prior p(θ ) is absolutely continuouswith respect to
the Lebesgue measure and satisfies p(θ0) > 0.

A.4.1. INAR(1)
Recall the INAR(1) model

yt =

yt−1∑
j=0

Bj(ρ) + εt ,

where Bj(ρ) are i.i.d are Bernoulli random variables with
probability ρ, and εt is i.i.d Poisson with intensity parame-
ter λ. The summary statistics chosen for this example were
the sample mean, ȳ, and the first three sample autocovari-
ances.

The parameters are θ = (ρ, λ)′ and our prior space is
uniform over

Θ := {θ ∈ Θ : ρ ∈ [0, 1 − δ], λ ∈ [0, 10]},

for some small δ > 0. The uniform prior p(θ ) over Θ
automatically fulfills Assumption [A2] for θ0 in this space.
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For any θ ∈ Θ and z simulated from (13), it follows that

η(z) =

⎛⎜⎝ z̄
γ1
γ2
γ3

⎞⎟⎠ =

⎛⎜⎝
λ/(1 − ρ)

ρ

ρ2

ρ3

⎞⎟⎠+ oP (1).

Define b(θ ) = (λ/(1 − ρ), ρ, ρ2, ρ3)′ and note that b(θ )
is continuous. The linear allocation of ρ as the second
element of b(θ ) ensures that θ ↦→ b(θ ) is injective in
θ . From the structure of η(z), V (θ ) = E[{η(z) − b(θ )}
{η(z) − b(θ )}′] satisfies tr{V (θ )} < ∞ for all θ ∈ Θ . By
Markov’s inequality,

Pθ {∥η(z) − b(θ )∥ > u} = Pθ
{
∥η(z) − b(θ )∥2 > u2}

≤
tr{V (θ )}

u2T
.

As a result, Assumption [A1] is satisfied with ρT (u) =

1/(T 1/2u)2.

A.4.2. MA(2)
We now verify the conditions in the moving average

model of order two:

yt = et + θ1et−1 + θ2et−2 (t = 1, . . . , T ),

where {et}Tt=1 is a sequence of white noise random vari-
ableswith variance σ 2 such that, for some δ > 0,E[e4+δt ] <

∞. Our prior for θ = (σ 2, θ1, θ2)′ is uniform over the
following region,

Θ :=
{
θ ∈ Θ : 0 ≤ σ 2

≤ 3, 0 ≤ θ1 ≤ 1 − δ,

0 ≤ θ2 ≤ 1 − δ} ,

for some small δ > 0. The summary statistics for this
exercise are given by the sample autocovariances ηj(y) =

T−1∑T
t=1+jytyt−j, for j = 0, 1, . . . , l. For any θ ∈ Θ , ηj(z) =

T−1∑T
t=1+jztzt−j. Define bj(θ ) = Eθ (ztzt−j) and take b(θ )

= (b0(θ ), b1(θ ), b2(θ ))′. Each choice of the summary statis-
tics in the MA(2) example that leads to a Bayesian consis-
tent posterior has these components in common.

Firstly, note that θ ↦→ b(θ ) = (σ 2(1 + θ21 + θ22 ), (1 +

θ2)θ1, θ2)′ is continuous in θ . In addition, from the linear
allocation of θ2 in b2(θ ), it follows that θ ↦→ b(θ ) is
injective over Θ . Now, take d{η(z), b(θ )} = ∥η(z) − b(θ )∥
for simplicity. Under the moment restriction on et above,
V (θ ) = E[{η(z)−b(θ )}{η(z)−b(θ )}′] satisfies tr{V (θ )} < ∞

for all θ ∈ Θ . By Markov’s inequality,

Pθ {∥η(z) − b(θ )∥ > u} = Pθ
{
∥η(z) − b(θ )∥2 > u2}

≤
tr{V (θ )}

u2T
+ o(1/T ),

where the o(1/T ) term comes from the fact that there
are finitely many non-zero covariance terms due to the
m-dependent nature of the series. As a result, Assumption
[A1] is satisfied with ρT (u) = 1/(T 1/2u)2.

The uniform prior p(θ ) automatically fulfills Assump-
tion [A2] for θ0 in this space.
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