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Abstract

A test is derived for short-memory correlation in the conditional variance of strictly
positive, skewed data. The test is quasi-locally most powerful (QLMP) under the as-
sumption of conditionally gamma data. Analytical asymptotic relative e¢ ciency calcu-
lations show that an alternative test, based on the �rst-order autocorrelation coe¢ cient
of the squared data, has negligible relative power to detect correlation in the conditional
variance. Finite sample simulation results con�rm the poor performance of the squares-
based test for �xed alternatives, as well as demonstrating the poor performance of the
test based on the �rst-order autocorrelation coe¢ cient of the raw (levels) data. The
robustness of the QLMP test, both to misspeci�cation of the conditional distribution
and misspeci�cation of the dynamics, is also demonstrated using simulation. The test is
illustrated using �nancial trade durations data.

1 Introduction

This paper contributes to an emerging literature in which second-order dependence in positive,

highly skewed data is the focus of analysis. In the context of trade durations, a prime example

of such data, the second moment represents a particular measure of liquidity risk. Only
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recently have the dynamics of this risk been modelled separately from the dynamics in the

mean (e.g. Ghysels, Gourieroux & Jasiak, 2004), with the autocorrelation function (ACF) of

the squared data being suggested as a possible diagnostic tool. (See Bauwens et al., 2004,

for related work.) While such a practice may have some merit, this paper quanti�es the

substantial power loss that can occur as a result of failing to incorporate information on

the skewed nature of the data in the construction of a test for correlation in the conditional

variance.

In order to quantify the potential power loss associated with the squares-based statistic, we

derive a test for second-order dependence in a leading case. We consider a parameter-driven

model (Cox, 1981) for dependent positive data, where the conditional distribution is gamma

and the (positive) parameter of that distribution is a dependent lognormal sequence, driven

by a stationary autoregressive process of order one (AR(1)). The conditional variance is, in

turn, parameterized as a function of the dependent lognormal sequence. These assumptions

allow us to produce exact analytic expressions for the asymptotic relative e¢ ciency (ARE)

of the new test, in comparison with the squares-based statistic. The new test is locally most

powerful with respect to a quasi-likelihood function, which is used in order to avoid the well

known computational di¢ culties associated with a latent variable structure.

The quasi-locally most powerful (QLMP) test statistic is shown to be the sample �rst-

order autocorrelation coe¢ cient constructed from a simple transformation of the data that

is not equal to the square transformation. Both the new test and the test based on the

(�rst-order autocorrelation of the) squares are shown to be consistent against appropriate �-

mixing alternatives. This consistency result lends some legitimacy to the sort of preliminary

testing cited in the opening paragraph above, in which the square transform is used as the

default in positive data settings. However, the ARE results show that the squares-based test

has negligible asymptotic e¢ ciency relative to the new test, in empirically relevant settings.

Finite sample results further highlight the inferiority of the squares-based test, with the latter

shown to have empirical power that is several-fold less than that of the QLMP test in some

instances. Robustness of the �nite sample power results to misspeci�cation of the conditional

distribution is also demonstrated.

For completeness, the �nite sample performance of the QLMP test is also compared with
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that of the test based on the �rst-order autocorrelation coe¢ cient of the raw (levels) data. Like

the squares-based test, the latter test is shown to have negligible power to detect correlation

in the conditional variance. When the data generating process (DGP) is parameterized to

have correlation in both the conditional mean and variance, the empirical power of the QLMP

test is only marginally less than that of the levels-based test, despite the fact that the former

has been derived under the assumption of a �xed mean. The squares-based test is inferior,

overall, to both alternative tests in this case. Even when the DGP has dependence only in

the conditional mean, with the variance �xed, the QLMP test remains competitive with the

levels-based test, and is still superior to the squares-based procedure.

Although gaining some motivation from the trade durations literature (see also Engle

& Russell, 1998; Bauwens & Veradas, 2004; Strickland, Forbes & Martin, 2006; Strickland,

Martin & Forbes, 2008; Bauwens & Hautsch, 2009), in which the second moment is of inherent

interest as a risk measure, the results highlighted in the paper are relevant to any setting in

which positive, skewed data is the focus. Some contributions to this general literature include

Lawrance & Lewis (1980, 1985), Lewis, McKenzie & Hugus (1989) and Ristic (2005).

The outline of the paper is as follows. In Section 2, the QLMP test statistic is derived.

Section 3 gives details of the asymptotic theory of both the QLMP and squares-based tests

under �-mixing conditions. The ARE of the two tests is then investigated in Section 4,

with the distinct power superiority of the QLMP test highlighted. These local power results

are supplemented with �xed alternative power comparisons, via Monte Carlo simulations, in

Section 5. The new test is illustrated in Section 6 using empirical trade durations data for

IBM. Some conclusions are provided in Section 7.

2 Derivation of the Score Test

We begin with the class of models for the T -dimensional random vector y = (y1; y2; : : : ; yT )
|

with distribution given by

f(y) =

Z
:::

Z
f(yj�)f(�)d� = E� ff(yj�)g ; (1)
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where � denotes a (T �1) vector of latent variables � = (�1; �2; :::; �T )|. The following results

are well-known,

Ey (y) = E�
�
�yj�

�
;

vary (y) = E�
�
�yj�

�
+ var�

�
�yj�

�
; (2)

where �yj� and �yj� are respectively the mean vector and variance-covariance matrix of the

conditional distribution of yj�. Each �t; t = 1; 2; : : : ; T , in the present context assumed

positive, is linked to an underlying scalar latent process xt where we assume that �t = ext :

The latent process xt is, in turn, assumed to follow a stationary Gaussian AR(1) process,

(xt � �x) = � (xt�1 � �x) + �t; �t
i:i:d:s N(0; �2�); t = 1; 2; : : : ; T ; j�j < 1; (3)

where i.i.d. denotes identically and independently distributed random variables �t, t =

1; 2; : : : ; T: The (T � 1) vector x is de�ned as x = (x1; x2; :::; xT )| and �x = varx (x). We also

assume that

f(yj�) = f(y1j�1)f(y2j�2) : : : f(yT j�T ); (4)

so that dependence in y is generated solely through �. A �small ��Taylor series expansion

(denoted by t) of �t = ext can be used to show that corr(�t; �s) � corr(xt; xs) for all t 6= s: As

such, the qualitative nature of the autocorrelation in xt is transferred to �t: The null hypothesis

is that � = 0, under which the elements of � (and y) are independent. The alternative is

that � 6= 0, under which f�tg is a correlated sequence with short memory. The nature of the

parameterization of f(ytj�t) determines the dependence structure of the observed yt under the

alternative hypothesis.

Following Cox (1983) and McCabe & Leybourne (2000), we de�ne f �(y) as the second-

order Taylor series expansion of f(yj�) about �� = (��; ��; :::; ��)
| = E� (�). (See Chesher,

1984, Bera & Kim, 2002, Huber et al., 2004, and Davis & Rodriguez-Yam, 2005, for related

work). De�ning L(�jy) = f(yj�) and ` = logL, we may write

f �(y) = L(�jy)j�=��

�
1 +

1

2
tr (M��)

�
;

where �� = var� (�) and

M =

�
@`

@�

@`

@�|
+

@2`

@�@�|

�����
�=��

:
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Clearly, f �(y) is an approximation to f(y) for which the error is O
�
E�
�
k�� ��k

3�	. Indeed,
f �(y) > 0 is a valid density in its own right as it integrates to unity. Note that the second

term in the expression forM, @2`= (@�@�|)j�=�� , is a diagonal matrix with elements

r =
n
@2`=@�2t

��
�t=��

; t = 1; :::; T
o
; (5)

because of conditional independence. Also, `(�jy) =
P

t ` (�tjyt) and, without loss of general-

ity, for some functions a(�); b(�) and c(�), ` (�tjyt) may be written as

` (�tjyt) = a(yt) + b(�t) + c(yt; �t); (6)

where we allow for the possibility that a(yt) and b(�t) may be zero. The (conditional) score

is then

`0 (�tjyt) = b0(�t) + c0(yt; �t);

(where the prime denotes di¤erentiation with respect to �t) and this has (conditional) expec-

tation zero for all �t and, hence, unconditional expectation zero. Thus de�ning

u(yt) = c0 (yt; �t)j�t=�� ; (7)

we can write that

`0 (�tjyt)j�t=�� = fu (yt)� �ug = uc (yt) ; (8)

where �u = Eyt fu (yt)g and the notation uc (yt) is used to denote the mean-corrected version

of u (yt) :

The test statistic of the locally most powerful one-sided test (see, for example, Cox &

Hinkley, 1979, Sect. 4.8) of

H0 : � = 0 against H1 : � > 0;

based on the quasi-score, is given by

S =
@ log f �(y)

@�

����
�=0

:

From the properties of the lognormal distribution, it follows that @��=@�j�=0 = 0 and so

S = tr

 
M
@��
@�

����
�=0

!,�
2 + �2�trM

�
; (9)
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where �2� is the variance of �t under the null hypothesis. It is well-known that @�x=@�j�=0 /

A, where A is a tridiagonal matrix with zeros on the main diagonal and ones on the o¤-

diagonals. Using the lognormal assumption for �t, it also follows that @��=@�j�=0 / A.

Hence, apart from constants, (9) can be re-expressed as

S = u|cAuc/
�
2 + �2� (u

|
cuc+r

|i)
	
;

where uc is de�ned as a (T � 1) vector with tth element uc (yt) (as given in (8)), i is a (T � 1)

vector of 1s and r is de�ned in (5). Standardizing in the usual way, we obtain

ST = T
�1=2u|cAuc=

�
2=T + �2� (u

|
cuc+r

|i) =T
	

(10)

and, using a suitable weak law of large numbers (WLLN), the denominator in (10) converges

in probability to a constant under the null hypothesis. Convergence to the same constant also

occurs under local alternatives by LeCam�s 3rd Lemma (see van der Vart, 1998, Sect 6.2).

Thus, de�ning

Su = u
|
cAuc; (11)

and recognizing that u|cAuc = 2
PT

t=2 uc(yt)uc(yt�1), the statistic

Su;T = T
�1=2

TX
t=2

uc(yt)uc(yt�1) (12)

may be used to test H0 : � = 0, and the test based on this statistic is asymptotically equivalent

to the test based on ST in (10). Note that the scale factor of 2 that appears in the expression

for u|cAuc is cancelled when the test statistic is used in its standardized form; hence its

omission from the expression in (12). As Su;T is shown in Section 3 to be asymptotically

normal, a two-sided test of H0 against H1 : � 6= 0 is conducted by rejecting in either tail of

the normal distribution.

It is a simple matter to identify the function u (�) in (7) for any particular conditional

distribution, f(ytj�t), with the choice of parameterization of the conditional distribution de-

termining the dependence structure of yt. Given the focus of the paper, we parameterize the

conditional distribution in such a way that the conditional mean does not depend on �t, while

the conditional variance does. By (2), and by the assumption of conditional independence, it

follows that the yt are uncorrelated, but with correlation in the conditional variance. Using
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the same sort of small � argument as sketched earlier, it can be shown that the short memory

correlation in �t is transferred (approximately) to the conditional variance of �t even if the

conditional variance is a non-linear function of �t:

For the positive, highly positively skewed data that is the focus of this paper, the gamma

distribution is a suitable choice of conditional, with density

f(ytj�t) =
1

yt
� 1

�( 1
�t
)

�
1

�t

� 1
�t

� (��yt)
1
�t exp

�
�yt
�t

�
(13)

(where the dependence of f(ytj�t) on the scalar constant � < 0 is suppressed for notational

clarity). The conditional mean and variance are given respectively by Eytj�t (yt) = �1=�

and varytj�t (yt) = �t=�
2. In the textbook notation for the gamma distribution, G(�; �),

with probability density function (pdf) f(ytj�; �) =
�
���=�(�)

	
y
(��1)
t exp (�yt=�), we have

� = ��1t and � = ��t=�. We adopt the parameterization in (13) to ensure that the conditional

mean of ytj�t is not a function of �t and that correlation in �t induces correlation in varytj�t (yt)

only. Noting that �y = Eyt (yt) = E�t
�
Eytj�t (yt)

	
= E�t (�1=�) = �1=�; we see (with

reference to (6)) that

c(yt; �t) = �
1

�t
g(yt);

with

g(yt) =
yt
�y
� log

�
yt
�y

�
: (14)

Thus, u (yt) = ��2� g(yt) and the constant �
�2
� may be ignored in the construction of the test,

so we set u (yt) = g(yt) in this case. Formally, setting u (yt) equal to

d(yt) =
�
yt � �y

�2
(15)

yields a test based on the correlation coe¢ cient of the squared data, the primary comparator

in the paper.

3 Asymptotic Distribution Theory

Because of the u-transformation of the yt embodied in the statistic in (12), �-mixing is a

natural environment in which to analyze the asymptotic behaviour of Su;T . We therefore

adopt the, now standard (see McCabe & Tremayne, 1993, Sec 10.8), �-mixing assumption
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for a central limit theorem (CLT) to hold for stationary yt. Inspection of the u 2 fg; dg

transformations (with g(�) and d(�) as given respectively in (14) and (15)) shows that there

are no greater moment requirements than when u = d, as the transformation in this case

depends on y2t . Thus, the existence of moments of yt slightly larger than 8 is a su¢ cient

condition, that applies to both transformations, for the CLT to hold for the mixing product

sequence fuc (yt)uc (yt�1)g. From now on, references to mixing processes assume that su¢ cient

moment conditions hold. Note under the model (1) to (4) and (13), the moment conditions

are satis�ed, since the conditional gamma and marginal lognormal distributions have �nite

moments of all orders and, therefore, so too have the yt. (This point also applies to the

conditional Weibull distribution that underlies some of the simulation results in Section 5).

When yt is mixing,

T�1=2
TX
t=2

�
uc(yt)uc(yt�1)� Eyt;yt�1 fuc(yt)uc(yt�1)g

� d! N(0; !2); (16)

where Eyt;yt�1 denotes an expectation with respect to the joint distribution of yt and yt�1; and

!2 > 0 is the usual long run variance of the sum in (16).

Suppose that fytg is an i.i.d. sequence. It follows that fu (yt)g is also i.i.d. Hence, the

CLT implies that Su;T is asymptotically N(0; �4u), where �
2
u is the (short run) variance of

u (yt). Thus, for example, Su;T , for u 2 fg; dg, is asymptotically normal for all fytg that

are independent. A fortiori this includes the case where fytg is generated by the model (1)

to (4) under the null hypothesis that � = 0 in (3). So, for example, it follows that Sg;T

is asymptotically normal regardless of whether f (ytj�t) is speci�cally gamma or not. The

corresponding comment applies to Sd;T :

Now suppose that fytg is mixing with Eyt;yt�1 fuc(yt)uc(yt�1)g 6= 0. Consider

Su;T = T
�1=2

TX
t=2

�
uc(yt)uc(yt�1)� Eyt;yt�1 fuc(yt)uc(yt�1)g

�
+T�1=2(T�1)Eyt;yt�1 fuc(yt)uc(yt�1)g :

As the �rst term in Su;T converges in distribution by (16) and the second term diverges, Su;T

also diverges, and a two-sided test based on Su;T is therefore consistent whenever

Eyt;yt�1 fuc(yt)uc(yt�1)g 6= 0. A fortiori there is consistency against the model (1) to (4) under

the alternative when � 6= 0. This follows because fxtg in (3) is a mixing process and this

implies that f�tg is also mixing and hence, so too is fytg by conditional independence. It is
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also straightforward to show that Eyt;yt�1 fuc(yt)uc(yt�1)g 6= 0 for u 2 fg; dg. Thus, two-sided

tests based on Su;T , u 2 fg; dg are consistent against the model (1) to (4) under the alternative

hypothesis � 6= 0 in (3).

Thus far then, both tests are equally good. However, the point of the transformations is, of

course, to obtain greater power when some knowledge of an appropriate DGP is available. To

illustrate this, the power gains associated with use of Sg rather than Sd (with Su, u 2 fg; dg

as de�ned in (11)), in the case of a positive and positively skewed DGP, are quanti�ed in

the following section via ARE calculations. These theoretical power results are supplemented

with numerical power comparisons in Section 5, based on Monte Carlo experiments.

4 Asymptotic Relative E¢ ciency of Su, u 2 fd; gg

The ARE of a test based on the squares-based statistic Sd, relative to a test based on the

statistic Sg, under a sequence of local alternatives, is a measure of the (asymptotic) relative

local power of the two tests. We are interested in linking the loss of e¢ ciency of the squares-

based test with the degree of skewness in the underlying DGP. To this end, the location and

scale parameters of the underlying conditional gamma DGP are used to control the degree

of skewness. Under regularity conditions (see for example, Stuart et al., 1998, Chp. 26), the

ARE can be represented as

AREd;g = lim
T!1

8><>:
@�Sd

(�)

@�

���
�=0
= �Sd(�)j�=0

@�Sg (�)

@�

���
�=0
= �Sg(�)

��
�=0

9>=>;
2

; (17)

where �Su(�) and �Su(�); u 2 fd; gg, are means and standard deviations such that

Su � �Su(�)
�Su(�)

d! N(0; 1) (18)

in some local region fj�j < �g, which includes the alternative hypothesis. The condition in (18)

is valid in our case, as the correlation coe¢ cients that underlie our tests have an asymptotic

normal distribution under �-mixing conditions for yt, as demonstrated in (16).

To evaluate the expression in (17), we use the speci�cations of the model (1) to (4) with

conditional density as given in (13). That is, the relative performance of the Sg test, which
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is derived via the quasi-likelihood, is assessed with respect to the true model. In the fol-

lowing proposition, moments of the marginal distribution of xt, N(�x; �
2
�) , are denoted by

a subscript xt, e.g. Ext and varxt, while 	 is the derivative of the log-gamma function,

	(z) = @ log �(z)=@z, with 	
0
being the derivative of 	, the digamma function. The proof of

the proposition is given in the Appendix.

Proposition 1 Under the model de�ned by (1) to (4) and (13), the ARE of Sd to Sg is given

by

AREd;g =
�a
b

�2
;

where

a =
exp(2�x + �

2
�)�

6 exp(3�x +
9
2
�2�) + 3 exp(2�x + 2�

2
�)� exp(2�x + �2�)

�
and

b =
[1� Ext f	0 (e�xt) (e�xt)g]

2

varxt f	(e�xt) + xtg � exp(�x + 1
2
�2�) + Ext f	0(e�xt)g

:

From Proposition 1 it can be seen that AREd;g does not depend on the conditional mean

Eytj�t (yt) = �1=� ( = �y) but, rather, depends only on �x and �
2
�. The values of these

parameters can be used to characterize the nature of the conditional gamma DGP underlying

the relative power calculations. Speci�cally, setting � = fE�t (�t)g
�1 and � = �E�t (�t) =� in

G(�; �), where E�t (�t) = exp(�x+�
2
�=2), produces a representative conditional gamma DGP

with a mean of �� = �1=�, a variance of ��2 = E�t (�t) =�
2 and a standardized skewness

coe¢ cient of 2��1=2 = 2 fE�t (�t)g
1=2 : This DGP is only representative of the conditional

distribution underlying the ratio in that it is based on the substitution of E�t (�t) into �

and �, rather than the substitution of a particular value of �t: Setting, in turn, � = �1

and �2� = 1, the representative conditional distribution has a mean of one and a degree of

skewness controlled by the value of �x: As �x ! �1, the DGP approaches a symmetric

normal distribution with a mean of one.

Figure 1 is a plot of AREd;g over �x (for �
2
� = 1), whilst Figure 2 is a plot of the cor-

responding (representative) DGPs for �x = 0 and �x = �5. Clearly, the dominance of the

optimal test over the squares-based test is very pronounced for distributions at the skewed

end of the spectrum (the DGP associated with �x = 0 is plotted in Panel (a) of Figure 2),
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with the relative e¢ ciency of the squares-based test being virtually zero for distributions that

describe the positive, highly skewed data that is typical of that observed in relevant empirical

applications. (See, for example, the data analyzed in Engle & Russell (1998) and Bauwens et

al. (2004), plus that analyzed in Section 6). As the underlying DGP becomes less skewed, the

ratio increases, with the relative e¢ ciency of the squares-based test reaching approximately

70% for data that is close to symmetric (the DGP associated with �x = �5 is plotted in Panel

(b) of Figure 2). As �x ! �1 (for �xed �2�) and � ! 1 as a consequence, both tests are

equally e¢ cient according to this measure.

********** Figure 1 about here ***********

********** Figure 2 about here ***********

5 Finite sample performance of empirical tests

In practice we may estimate u (yt) for u 2 fd; gg by substituting the sample mean �y for �y to

obtain û (yt). We may also estimate �u = Eyt fu (yt)g by the sample mean of û (yt) ; denoted

by �̂u. Finally, we may estimate the mean-corrected uc (yt) by ûc (yt) = û (yt) � �̂u. When

studentised by the variance, s2u of û (yt), the statistic, for u 2 fd; gg,

�̂u = T
�1=2s�2u

TX
t=2

ûc(yt)ûc(yt�1) (19)

may be used to implement the tests in practice. It is easy to see that

T�1=2
TX
t=2

ûc(yt)ûc(yt�1) = T
�1=2

TX
t=2

uc(yt)uc(yt�1) + op(1);

so that estimating uc(yt) has no asymptotic e¤ect. In addition, under the null of independence,

s2u
p! �2u by the WLLN. Hence, by the continuous mapping theorem and the CLT we have

that �̂u
d! N(0; 1) under the null hypothesis, and so normal critical values may be used to

perform the test.

In Table 1, we report the empirical size and power of the tests based on �̂d and �̂g in (19)

under both conditional gamma and conditional Weibull distributions. The generating process

for xt is the AR(1) process in (3), with �t = ext : Given that �nancial trade durations are a
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key data type to which the test may be applied, we choose to document �nite sample power

in the direction of positive values of � only. This choice is motivated by the stylized feature

of positive correlation seen in the second moment of �nancial returns data - associated with

the �clustering�behaviour of the variance.

With reference to the conditional gamma density in (13) and the AR(1) process for xt in

(3), we impose parameter values that ensure that the generated data is qualitatively similar

to typical positive and very positively skewed data. Speci�cally, we produce samples with an

overdispersion ratio (= ratio of sample variance to sample mean) which averages 4.5 (approxi-

mately) across simulations, as matches the overdispersion ratio of the empirical high frequency

trade durations data (measured in seconds) to which the test is applied in Section 6. This

is achieved using the expressions for the unconditional moments: �y = �1=�, varyt (yt) =

E�t
�
varytj�t (yt)

	
= E�t (�t) =�

2 and E�t (�t) = exp(�x + �
2
�=2): The mean parameter �x in

(3) is set at a value that ensures that, for each value of � in (3) (and for �� = 1), the mean

of the generated �t values approximates E�t (�t) in each case. The expectation E�t (�t) is, in

turn, linked to the unconditional variance of the data as per the expression for varyt (yt), with

values assigned to E�t (�t) and � to ensure that the average value (over simulated samples) of

the sample overdispersion ratio is close to the required value of 4.5.

The conditional Weibull distribution, parameterized to ensure that the mean is �xed and

only the conditional variance is a function of �t, is calibrated in such a way that the arti�cial

data is qualitatively similar to that generated under the conditional gamma distribution, for

each value of �: Speci�cally, we generate data from a distribution with density function

f(ytj�t) = �t y�t�1t

�
�t(1)

�

��t
exp

"
-
�
yt �t(1)

�

��t#
;

with conditional mean and variance given respectively by Eytj�t (yt) = � and varytj�t (yt) =

�2 [f�t(2)=�2t (1)g � 1] ; where �t(s) = �
�
1 + s��1t

�
: In the textbook notation for the Weibull

distribution, W (�; �), with pdf f(ytj�; �) = ����y��1t exp f- (yt=�)�g, we have � = �t and

� = �=�t(1). The parameter �x in (3) is set at a value that ensures that, for each value of

� in (3) (and for �� = 1), the generated �t values yield values of yt that, for given �, have

a sample overdispersion ratio that is similar to that of the simulated (conditional) gamma

variates. Note that, for the larger values of �, the average overdispersion ratio (over simulated
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samples) is greater than 4.5, ranging between about 5 and 7.

For comparison purposes, we also report the empirical size and power of the test based

on the �rst-order sample autocorrelation coe¢ cient of the levels data; i.e. the test based on

the statistic in (19) with û (yt) = yt (denoted hereafter by �̂y). All calculations are based

on 20 000 replications of the relevant process, using samples of size 200, 500 and 2000 and a

nominal size of 5%. All powers are based on the empirical 5% critical values.

*********** Table 1 about here ***********

The results reported in Table 1 show that the empirical sizes of the QLMP test (as based

on �̂g) are very close to the nominal value of 5%. This is in contrast with the size behaviour of

the squares-based test, for which the empirical sizes are substantially less than 5% in all cases.

The results in Table 1 also demonstrate that, under a conditional gamma DGP, the �̂g test is

more powerful than the �̂d test throughout the �-parameter space, with that dominance still

evident for very large sample sizes. For example, when � = 0:7 and N = 2000, the �̂g test has

power that is more than eight times that of the squares-based �̂d test, under the conditional

gamma DGP. The power dominance of the �̂g test over the �̂d test continues to prevail even

when the data is generated from a conditional Weibull distribution rather than the conditional

gamma distribution under which �̂g has been derived.

Very similar comments can be made with regard to the relationship between the �̂g test

and the test based on �̂y; with the power performance of the �̂y test being very similar to that

of the �̂d test, throughout the � space. (Interestingly however, the �̂y test does not exhibit the

distinct undersizing of the �̂d test). The numerical results in Table 1 also illustrate the �xed-

alternative consistency properties demonstrated theoretically in Section 3, with the power of

all three tests increasing (in general) as T increases. That said, the power of both the squares-

and levels-based tests under strictly positive data is still extremely low in large (but �nite)

samples. The same reasoning as applied in Section 3 to the tests based on b�g and b�d can be
used to demonstrate the consistency of the levels-based test.

Given that the �̂g test has been derived as optimal under the assumption of a �xed mean,

it is of interest to assess the robustness of the test to violation of this assumption. As such, we

13



report results based on DGPs in which the conditional distribution (either gamma or Weibull)

has dependence in both the conditional mean and variance (Table 2) and in the conditional

mean only (Table 3) respectively. The parameterizations used in the simulation experiments

in this case are as follows: 1) Correlation in both the conditional mean and conditional

variance: gamma: G(� = �t; � = �); Weibull: W (� = �; � = �t); 2) Correlation in the

conditional mean only (conditional variance �xed): gamma: G(� = �2t ; � = �=�t); Weibull:

W (� = �t; � = �=
h
f�t(2)� �2t (1)g

1=2
i
): Once again, the parameter values are chosen so as to

produce data with an (approximate) average overdispersion ratio (across simulations) of 4.5.

Average dispersion ratios close to 4.5 are achieved in most cases; however, for the larger values

of �, the average ratio ranges between about 5 and 10, under both conditional distributions

and under both types of parameterization.

*********** Tables 2 and 3 about here ***********

In brief, when correlation appears in the conditional mean, the �̂y test now has better

power behaviour than both the �̂g and �̂d tests. However, when correlation also appears in

the conditional variance and the conditional distribution is gamma (results in the top panel

in Table 2), the gain in power of the levels-based test over the �̂g test is marginal only. Even

under misspeci�cation of the conditional distribution (results in the bottom panel in Table

2), the �̂g test is still competitive with the levels-based test, in particular for large values of

� and N: In the case where correlation enters only via the conditional mean, the �̂g test still

remains competitive with the levels-based test, including under the conditional Weibull DGP.

The squares-based �̂d is the worst performer overall in Tables 2 and 3, with some undersizing

still in evidence. Most notably, the �̂y and �̂d tests do not exhibit the appallingly low power

seen in Table 1, once correlation is allowed to enter the conditional mean (whether in tandem

with correlation in the conditional variance, or not).

6 Empirical Application to Trade Durations Data

In this section we report the results of applying the new test to trade durations for IBM

shares. In Figure 3 the empirical features of the IBM trade durations data are displayed. The
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data comprises the 6242 durations between trades on the Australian Stock Exchange on 15

January 2004, with zero durations omitted. In modelling the dependence in such durations

data using either variants of the autoregressive conditional duration model (Engle & Russell,

1998) or versions of the stochastic conditional duration model (e.g. Bauwens & Veradas,

2004; Ghysels et al., 2004; Strickland et al., 2006), the conditional distribution is typically

speci�ed as being either exponential or some generalization thereof, such as the Weibull or

gamma distribution. Certainly the empirical distribution in Panel (b) indicates that any such

distribution is a plausible choice, and that the test based on the statistic in (19), with u = g,

is an appropriate choice. The calculated value of �̂g = 2:280 is clearly signi�cant at the 1%

level, indicating the possibility of there being autocorrelation in the liquidity risk associated

with trading in the given asset; see Ghysels et al. (2004). In this case, both the levels- and

squares-based statistics are also signi�cant (�̂y = 12:68; �̂d = 7:15) giving a strong indication

that correlation in the mean is also a feature of the data. This is not surprising given that

the data has not been adjusted for any diurnal (intraday) pattern.

*********** Figure 3 about here ***********

7 Conclusions

In this paper we have derived a quasi-locally most powerful (QLMP) test for testing for corre-

lation in the conditional variance of data de�ned on the positive domain. For an analytically

tractable leading-case model, the local power comparison conducted in Section 4 highlights

the distinct bene�t of applying a statistic that is adapted to positive, highly skewed data,

with the relative power of an alternative squares-based test being shown to be negligible for

such data. The �nite sample simulation results reported in Section 5 con�rm the superior

performance of the QLMP test for �xed alternatives, relative to both the squares-based test

and the test based on the �rst-order autocorrelation of the levels of the data. This superior

performance occurs even when the data is generated under a conditional Weibull distribution,

rather than the conditional gamma distribution under which the QLMP test is derived. The

new test is also shown to be robust to misspeci�cation of the dynamics. In particular, its �nite
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sample power is very close, in many cases, to that of the levels-based test, even in the case

where the correlation a¤ects the conditional mean only and the conditional variance - whose

dynamics the QLMP test has been designed to detect - is �xed. This is in contrast with the

�nite sample power of the levels-based test, which is extremely low, even for large samples,

when the conditional variance is autocorrelated and the conditional mean is not. In summary,

all results reported in the paper highlight the gains to be had by incorporating appropriate

information about the conditional distribution in the construction of the test statistic when

testing for short-memory correlation in the conditional variance of positive, highly skewed

data.

Appendix: Proof of Proposition 1

Here we collect, for convenience, some background results used in the proof. With reference

to the gamma distribution, with density in (13), the �rst four conditional moments of yt are

de�ned as

Eytj�t (yt) = �1
�
= �y; Eytj�t

�
yt � �y

�2
= �2y�t;

Eytj�t
�
yt � �y

�3
= 2�3y�

2
t ; and Eytj�t

�
yt � �y

�4
= 3�4y

�
2�3t + �

2
t

�
: (A.1)

Also under the gamma distribution, the conditional moment generating function of log(yt) is

given by

M log(yt)j�t(s) = Eytj�t (y
s
t ) =

� f(1=�t) + sg
� f(1=�t)g

�
��
�t

��s
:

Note that this expression also gives the raw (conditional) moments of yt. The relevant condi-

tional moments of log(yt) are given by the following derivatives,

M 0
log(yt)j�t (0) = Eytj�t flog (yt)g = � log

�
��
�t

�
+	

�
��1t
�
, (A.3)

M 0
log(yt)j�t (1) = Eytj�t fyt log (yt)g = Eytj�t

�
@

@s
ys+1t

����
s=0

�
=

�
��
�t

��1
1

�
�
��1t
�� ���1t + 1

��
� log

�
��
�t

�
+	

�
��1t + 1

��
(A.4)
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and

M 00
log(yt)j�t (0) = Eytj�t

�
log2 (yt)

	
= Eytj�t

�
@2

@s2
yst

����
s=0

�
= log2

�
��
�t

�
� 2 log

�
��
�t

�
	
�
��1t
�
+	0

�
��1t
�
+	2

�
��1t
�
: (A.5)

Finally, the uncentered joint kjth moments of the lognormal �t, t = 1; 2; :::T; are given by

E�(�Tj=1�
kj
j ) = exp(k

|�x +
1

2
k|�xk); (A.6)

where k is the (T � 1) vector with jth element kj. Note, this implies that

cov (�i; �j) =
�
exp(�ji�jj�2x)� 1

	
exp(2�x + �

2
x);

where �2x = �
2
�=(1� �2).

Proposition 1 is proved via a sequence of lemmata where it is assumed that the model

(1) to (4) and (13) holds. Lemma 1 displays the form of the ARE quotient pertinent to the

statistics at hand.

Lemma 1 The ARE of Sd to Sg is

AREd;g =

264 @covfd(yt);d(yt�1)g
@�

���
�=0
=�2d;0

@covfg(yt);g(yt�1)g
@�

���
�=0
=�2g;0

375
2

; (A.7)

where �2u;0, u 2 fd; gg; is the variance of u(yt) under the null hypothesis H0 : � = 0.

Proof of Lemma 1. The statistics Su, u 2 fd; gg, have the general form

Su = fu� Ey (u)g|A fu� Ey (u)g ;

where the elements of u are given by u(yt). It is well known that

�Su(�) = tr (AEy [fu� Ey (u)g fu� Ey (u)g
|])

and hence it follows that

@�Su(�)

@�
= tr

�
A
@Ey [fu� Ey (u)g fu� Ey (u)g|]

@�

�
=

TX
t=2

@Eyt;yt�1 [fu(yt)� �ug fu(yt�1)� �ug]
@�

= (T � 1)@cov fu(y2); u(y1)g
@�

:
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The variance of Su under the null of independence is (see Anderson, 1971)

�2Su(�)
��
�=0

=
�
mu;4;0 � 3�4u;0

� TX
t=1

a2tt + 2�
4
u;0tr

�
A2
�
= 2�4u;0tr

�
A2
�
;

where mu;4;0 is the fourth centred moment of u(yt) under the null and we use the property

that att = 0 for all t, where att is the tth diagonal element of A. Inserting u 2 fd; gg in the

de�nition of the ARE completes the proof.

Lemma 2 displays the variances in (A.7) under the null hypothesis, while Lemma 3 displays

the mean shifts.

Lemma 2 Under the null hypothesis of independence (H0 : � = 0), the variances of d(yt) =�
yt � �y

�2
and g(yt) =

�
yt=�y

�
� log

�
yt=�y

�
are given by

�2d;0 = �4y
�
6E�t

�
�3t
�
+ 3E�t

�
�2t
�
� E�t (�t)

2	
= �4y

�
6 exp(3�x + 9�

2
�=2) + 3 exp(2�x + 2�

2
�)� exp(2�x + �2�)

	
(A.8)

and

�2g;0 = var�t
�
	(��1t ) + log(�t)

	
� E�t (�t) + E�t

�
	0(��1t )

	
= varxt

�
	(e�xt) + xt

	
� exp(�x + �2�=2) + Ext

�
	0(e�xt)

	
(A.9)

respectively.

Proof of Lemma 2. Using (A.1), it follows that

�2d;0 = Eyt
�
d2(yt)

	
� [Eyt fd(yt)g]

2

= E�t
h
Eytj�t

n�
yt � �y

�4oi� �E�t hEytj�t n�yt � �y�2oi�2
= E�t

�
3�4y

�
2�3t + �

2
t

�	
� �4y fE�t (�t)g

2

= �4y
�
6E�t

�
�3t
�
+ 3E�t

�
�2t
�
� fE�t (�t)g

2� : (A.10)

Now consider the corresponding function for g(yt);

�2g;0 = varyt

�
yt
�y
� log

�
yt
�y

��
= Eyt

"�
yt
�y
� log (yt)

�2#
�
�
Eyt

�
yt
�y
� log (yt)

��2
= E�t

�
Eytj�t

�
y2t
�2y
� 2 yt

�y
log (yt) + log

2 (yt)

��
�
�
E�t

�
Eytj�t

�
yt
�y
� log (yt)

���2
:
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Using (A.2) to (A.5), we obtain

�2g;0 = E�t (�t) + 1� 2��1y ��1E�t
�
log
�
����1t

�
�	

�
��1t + 1

�	
+E�t

�
	0
�
��1t
�
+	2

�
��1t
�
+ log2

�
����1t

�
� 2	

�
��1t
�
log
�
����1t

�	
�
�
E�t
�
1�	

�
��1t
�
+ log

�
����1t

�	�2
:

Simplifying, and using the fact that 	(a+ 1)�	(a) = a�1, we obtain

�2g;0 = var�t
�
	(��1t )� log(��1t )

	
� E�t (�t) + E�t

�
	0(��1t )

	
: (A.11)

Finally, substitute �t = ext in (A.10) and (A.11), and use (A.6), to produce (A.8) and (A.9)

respectively.

Lemma 3 The derivatives of the covariances of d and g are given by

@

@�
cov fd(yt)d(yt�1)g

����
�=0

= �4y
@

@�
cov (�t�t�1)

����
�=0

= �4y�
2
� exp(2�x + �

2
�) (A.12)

and

@

@�
cov fg(yt)g(yt�1)g

����
�=0

=
@

@�
cov
�
log(�t) + 	(�

�1
t ); log(�t�1) + 	(�

�1
t�1)
	����
�=0

= �2�
�
1� Ext

�
	0
�
e�xt

�
(e�xt)

	�2
; (A.13)

where d(yt) =
�
yt � �y

�2
and g(yt) =

�
yt=�y

�
� log

�
yt=�y

�
.

Proof of Lemma 3. Given conditional independence, and using the expressions in

(A.1), it follows that

cov fd(yt)d(yt�1)g = Eyt ([d(yt)� Eyt fd(yt)g] [d(yt�1)� Eyt fd(yt�1)g])

= E�t
�
Eytj�t [d(yt)� Eyt fd(yt)g]Eytj�t [d(yt�1)� Eyt fd(yt�1)g]

�
= E�t

��
�2y�t � �2yE�t (�t)

	�
�2y�t�1 � �2yE�t (�t)

	�
= �4ycov (�t�t�1) : (A.14)

In the case of g(yt) =
�
yt=�y

�
� log

�
yt=�y

�
, using Eyt

�
yt=�y

�
= E�t

�
Eytj�t

�
yt=�y

�	
=

E�t (1) = 1, we obtain

Eytj�t [g(yt)� Eyt fg(yt)g] = �Eytj�t [log(yt)� Eyt flog (yt)g] :
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Hence, using (A.3) we obtain

cov fg(yt)g(yt�1)g = E�t
�
Eytj�t [log (yt)� Eyt flog(yt)g]Eytj�t [log (yt�1)� Eyt flog(yt�1)g]

�
= cov

�
log (�t) + 	

�
��1t
�
; log (�t�1) + 	

�
��1t�1

�	
: (A.15)

Under the lognormal assumption for �t, the expressions (A.14) and (A.15) respectively become

cov fd(yt)d(yt�1)g = �4y
�
Ext;xt�1 fexp(xt�1 + xt)g � �2�

�
(A.16)

and

cov fg(yt)g(yt�1)g = Ext;xt�1 f(xt � �x) (xt�1 � �x)g+ 2Ext;xt�1
�
(xt � �x)

�
	
�
e�xt�1

�
� �	

	�
+Ext;xt�1

��
	
�
e�xt

�
� �	

	�
	
�
e�xt�1

�
� �	

	�
; (A.17)

where all expectations on the right hand side of (A.16) and (A.17) are with respect to the joint

distribution of (xt; xt�1), and �	 = Ext f	(e�xt)g is the marginal expectation of 	(e�xt). The

quantity we are interested in is the derivative of each of these expressions with respect to �;

evaluated at � = 0: Denoting the marginal and joint densities of xt and (xt; xt�1) by f (xt)

and f (xt; xt�1) respectively, we note that

@

@�
f (xt)

����
�=0

= 0

and
@

@�
f (xt; xt�1)

����
�=0

=
(xt � �x) (xt�1 � �x)

�2�
f (xt) f (xt�1) ;

where f (xt�1) = f (xt) is the Gaussian pdf with mean �x and variance �
2
�. Interchanging the

order of di¤erentiation and integration, and using Stein�s Lemma for N(�x; �
2
�) variables,

Ext fh(xt)(xt � �x)g = �2�Ext fh0(xt)g ;

we obtain

@

@�
cov fd(yt)d(yt�1)g

����
�=0

= �4y�
�2
� [Ext f(xt � �x) extg]

2

= �4y�
�2
�

�
�2�Ext (e

xt)
	2
;
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where we have used the result that @�2�=@�j�=0 = 0. Invoking (A.6), we obtain the expression

in (A.12). Using similar analysis, we produce the expression in (A.13),

@

@�
cov fg(yt)g(yt�1)g

����
�=0

= �2� + 2Ext
�
(xt � �x)	

�
e�xt

�	
+ ��2�

�
Ext
�
(xt � �x)	

�
e�xt

�	�2
= �2� + 2�

2
�Ext

�
	0
�
e�xt

�
(�e�xt)

	
+ ��2�

�
�2�Ext

�
	0
�
e�xt

�
(�e�xt)

	�2
= �2� � 2�2�Ext

�
	0
�
e�xt

�
(e�xt)

	
+ �2�

�
Ext
�
	0
�
e�xt

�
(e�xt)

	�2
= �2�

�
1� Ext

�
	0
�
e�xt

�
(e�xt)

	�2
:

Proof of Proposition 1. The proof is a straightforward combination of Lemmata 1, 2

and 3.
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Captions of all �gures:

Figure 1: The asymptotic relative e¢ ciency (ARE) of a test based on the squares-based

statistic Sd, relative to a test based on the statistic Sg: The expression for AREd;g, as given in

Proposition 1, is plotted as a function of �x (for �
2
� = 1). As per the discussion in the text after

Proposition 1, the degree of skewness in the representative conditional gamma distribution

underlying the ARE calculations is an increasing function of �x:

Figure 2: Conditional densities of yt (and associated AREd;g values) for selected values

of �x: As per the discussion in the text after Proposition 1, the degree of skewness in the rep-

resentative conditional gamma distribution underlying the ARE calculations is an increasing

function of �x:

Figure 3: Duration (measured in seconds) between trades on IBM shares on the Aus-

tralian Stock Exchange: January 15, 2004.
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Figure 1: The asymptotic relative e¢ ciency (ARE) of a test based on the squares-based
statistic Sd, relative to a test based on the statistic Sg: The expression for AREd;g, as given in
Proposition 1, is plotted as a function of �x (for �

2
� = 1). As per the discussion in the text after

Proposition 1, the degree of skewness in the representative conditional gamma distribution
underlying the ARE calculations is an increasing function of �x:
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Figure 2: Conditional densities of yt (and associated AREd;g values) for selected values of
�x: As per the discussion in the text after Proposition 1, the degree of skewness in the rep-
resentative conditional gamma distribution underlying the ARE calculations is an increasing
function of �x:
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Table 1:

Finite sample sizes and powers of tests of H0 : � = 0 against H1 : � > 0 under strictly positive
conditional distributions. Correlation occurs in the conditional variance; the conditional

mean is �xed. Sizes and powers are reported for tests based on three di¤erent versions of the
statistic �̂u in (19). The statistic �̂g corresponds to �̂u with u(yt) as de�ned in (14); �̂d
corresponds to �̂u with u(yt) as de�ned in (15); and �̂y corresponds to �̂u with u(yt) = yt.

Empirical Size and Power

Gamma f(ytj�t)

N = 200 N = 500 N = 2000

�̂g �̂d �̂y �̂g �̂d �̂y �̂g �̂d �̂y
� =
0:0 0.050 0.032 0.047 0.051 0.032 0.051 0.054 0.031 0.053
0:1 0.085 0.051 0.051 0.113 0.058 0.054 0.187 0.060 0.051
0:3 0.216 0.062 0.056 0.363 0.068 0.060 0.764 0.077 0.066
0:5 0.434 0.073 0.066 0.703 0.083 0.075 0.980 0.098 0.082
0:7 0.683 0.089 0.086 0.908 0.103 0.091 1.000 0.122 0.103

Weibull f(ytj�t)

N = 200 N = 500 N = 2000

�̂g �̂d �̂y �̂g �̂d �̂y �̂g �̂d �̂y
� =
0:0 0.045 0.027 0.047 0.046 0.027 0.050 0.054 0.038 0.058
0:1 0.097 0.055 0.054 0.128 0.058 0.055 0.242 0.061 0.057
0:3 0.276 0.065 0.063 0.472 0.073 0.066 0.920 0.085 0.069
0:5 0.536 0.073 0.072 0.837 0.087 0.074 1.000 0.112 0.078
0:7 0.734 0.079 0.081 0.969 0.105 0.084 1.000 0.139 0.083

27



Table 2:

Finite sample sizes and powers of tests of H0 : � = 0 against H1 : � > 0 under strictly positive
conditional distributions. Correlation occurs in both the conditional variance and the

conditional mean. Sizes and powers are reported for tests based on three di¤erent versions of
the statistic �̂u in (19). The statistic �̂g corresponds to �̂u with u(yt) as de�ned in (14); �̂d
corresponds to �̂u with u(yt) as de�ned in (15); and �̂y corresponds to �̂u with u(yt) = yt.

Empirical Size and Power

Gamma f(ytj�t)

N = 200 N = 500 N = 2000

�̂g �̂d �̂y �̂g �̂d �̂y �̂g �̂d �̂y
� =
0:0 0.049 0.042 0.052 0.054 0.044 0.055 0.056 0.047 0.055
0:1 0.090 0.066 0.087 0.114 0.072 0.118 0.215 0.091 0.237
0:3 0.255 0.122 0.243 0.417 0.158 0.438 0.867 0.277 0.910
0:5 0.534 0.225 0.535 0.816 0.343 0.852 1.000 0.652 1.000
0:7 0.820 0.419 0.835 0.988 0.642 0.991 1.000 0.916 1.000

Weibull f(ytj�t)

N = 200 N = 500 N = 2000

�̂g �̂d �̂y �̂g �̂d �̂y �̂g �̂d �̂y
� =
0:0 0.047 0.034 0.051 0.049 0.036 0.054 0.055 0.040 0.055
0:1 0.061 0.083 0.147 0.068 0.094 0.236 0.087 0.122 0.600
0:3 0.143 0.195 0.563 0.225 0.260 0.891 0.493 0.485 1.000
0:5 0.401 0.379 0.921 0.680 0.557 0.999 0.991 0.920 1.000
0:7 0.788 0.630 0.995 0.980 0.864 1.000 1.000 1.000 1.000
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Table 3:

Finite sample sizes and powers of tests of H0 : � = 0 against H1 : � > 0 under strictly positive
conditional distributions. Correlation occurs in the conditional mean; the conditional

variance is �xed. Sizes and powers are reported for tests based on three di¤erent versions of
the statistic �̂u in (19). The statistic �̂g corresponds to �̂u with u(yt) as de�ned in (14); �̂d
corresponds to �̂u with u(yt) as de�ned in (15); and �̂y corresponds to �̂u with u(yt) = yt.

Empirical Size and Power

Gamma f(ytj�t)

N = 200 N = 500 N = 2000

�̂g �̂d �̂y �̂g �̂d �̂y �̂g �̂d �̂y
� =
0:0 0.054 0.041 0.047 0.059 0.041 0.049 0.066 0.039 0.052
0:1 0.089 0.074 0.130 0.114 0.078 0.192 0.216 0.092 0.439
0:3 0.235 0.157 0.457 0.410 0.207 0.760 0.887 0.359 0.997
0:5 0.481 0.321 0.815 0.800 0.478 0.982 1.000 0.761 1.000
0:7 0.680 0.552 0.953 0.955 0.763 0.996 1.000 0.939 1.000

Weibull f(ytj�t)

N = 200 N = 500 N = 2000

�̂g �̂d �̂y �̂g �̂d �̂y �̂g �̂d �̂y
� =
0:0 0.047 0.037 0.048 0.046 0.038 0.049 0.050 0.041 0.051
0:1 0.074 0.087 0.171 0.093 0.097 0.300 0.156 0.134 0.727
0:3 0.207 0.220 0.683 0.370 0.315 0.955 0.826 0.605 1.000
0:5 0.523 0.454 0.961 0.858 0.683 1.000 1.000 0.981 1.000
0:7 0.837 0.720 0.993 0.994 0.935 1.000 1.000 1.000 1.000
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Figure 3: Duration (measured in seconds) between trades on IBM shares on the Australian
Stock Exchange: January 15, 2004.
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