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Abstract

We conduct an extensive evaluation of price jump tests based on high-frequency financial
data. After providing a concise review of multiple alternative tests, we document the size and
power of all tests in a range of empirically relevant scenarios. Particular focus is given to the
robustness of test performance to the presence of jumps in volatility and microstructure noise,
and to the impact of sampling frequency. The paper concludes by providing guidelines for
empirical researchers about which test to choose in any given setting.
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1 Introduction

Extreme movements (or ‘jumps’) in asset prices play an important role in the tail behaviour of

return distributions, with the perceived risk (and, hence, risk premium) associated with this ex-

treme behaviour differing from that associated with small and regular movements (see, Bates, 1996,

and Duffie et al., 2000, for early illustrations of this point, and Todorov and Tauchen, 2011, Ma-

neesoonthorn et al., 2012, and Bandi and Renò, 2016, for more recent expositions). Indeed, the

modelling of jumps, in both the price itself and its volatility, has been given particular attention

in the option pricing literature, where the additional risk factors implied by random jumps have

helped explain certain stylized patterns in option-implied volatility (Merton, 1976; Bates, 2000;

Duffie et al., Eraker, 2004; Todorov, 2010; Maneesoonthorn et al.; Bandi and Renò). Evidence of

price jump clustering in spot returns - whereby price and/or volatility jumps occur in consecutive

time periods - has also been uncovered, with various approaches having been adopted to model this

dynamic behaviour, including the use of simultaneous price and volatility jumps over time (Chan
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and Maheu, 2002; Eraker et al., 2003; Maheu and McCurdy, 2004; Fulop et al., 2014; Aı̈t-Sahalia

et al., 2015; Bandi and Renò; Maneesoonthorn et al., 2017).

Coincident with the trend towards more sophisticated models for asset prices, the use of high-

frequency intraday data to construct nonparametric measures of asset price variation - including the

jump component thereof - has become wide-spread. Multiple alternative methods are now available

to practitioners, both for testing for jumps and for measuring price variation in the presence of

jumps, with some empirical analyses exploiting such measures in addition to, or as a replacement

of, measurements based on end-of-day prices. (See Koopman and Scharth, 2013, Christensen et al.,

2014, and Maneesoonthorn et al., 2017, for recent examples, including references to earlier work.)

This short paper provides the results of an investigation into the relative accuracy of the many

high-frequency price jump tests that are now on offer. Particular attention is given to the robustness

of the tests to the presence of jumps in volatility, and to the effect of microstructure noise. The

impact of sampling frequency on test performance is also documented. In addition to enabling key

insights to be drawn, the current study also provides a template for future studies regarding jump

tests that may be of interest.

We begin, in Section 2, by providing a very brief review of price jump tests that have been

proposed to date. These methods are grouped into five categories: 1) those based on the difference

between a measure of total (squared) variation and a jump-robust measure of integrated variation

(Barndorff-Nielsen and Shephard, 2004, 2006; Huang and Tauchen, 2005; Corsi et al., 2010; Ander-

sen et al., 2012); 2) those that exploit measures of higher-order variation (Aı̈t-Sahalia and Jacod,

2009; Podolskij and Ziggel, 2010); 3) those based on returns, rather than measures of variation

(Andersen et al., 2007; Lee and Mykland, 2008); 4) those that exploit a variance swap (Jiang and

Oomen, 2008); and 5) those that are expressly designed to mitigate the impact of microstructure

noise (Aı̈t-Sahalia et al., 2012; Lee and Mykland, 2012). Section 3 makes note of the various tuning

components that influence the price jump tests; with the performance of these tests documented

in Section 4. Guidelines for practitioners are provided in Section 5.

2 Review of price jump tests

Defining pt = ln (Pt) as the natural log of the asset price, Pt at time t > 0, we begin by assuming

the following jump diffusion process for pt,

dpt = µtdt+
√
VtdW

p
t + dJpt , (1)

where W p
t is the Brownian motion, and dJpt = Zpt dN

p
t , with Zpt denoting the random price jump

size and dNp
t the increment of a discrete count process, with P (dNp

t = 1) = δpdt and P (dNp
t =

0) = (1− δp) dt.
The aim of a price jump test is to detect the presence of the discontinuous component, dJpt ,

and to conclude whether or not dNp
t is non-zero over a particular period. The availability of

high-frequency data has enabled measures of variation - incorporating both the continuous and
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discontinuous components of (1) - to be constructed over a specified interval of time, e.g. one

day, with the statistical properties of such measures established using in-fill asymptotics. The

relevant distributional results are then utilized in the construction of a price jump test, where

the null hypothesis is usually that the asset price is continuous over the particular interval under

investigation. All tests investigated in this paper entertain the same null hypothesis of a continuous

price path, with the alternative hypothesis being that the price path contains jumps and, hence, is

discontinuous.

This section reviews available tests based on the concepts of, respectively, squared variation

(Section 2.1), higher-order power variation (Section 2.2), standardized daily returns (Section 2.3),

and variance swaps (Section 2.4), as well as tests that are designed to be robust to microstructure

noise (Section 2.5). The detail of eleven specific test statistics (and limiting distributions) are

summarized in Tables 1 and 2. The role of certain tuning parameters, including those appearing

in the test descriptions in Tables 1 and 2, is discussed in Section 3.

2.1 Squared variation

The early literature on price jump testing exploits various measures of the squared variation of the

asset price process. In the context of a continuous-time price process, as defined in (1), the object

of interest is the difference between total quadratic variation over a discrete time period (typically a

trading day), QVt−1,t =
∫ t
t−1 Vsds+

∑Np
t

t−1<s≤t (Zps )
2
, and variation from the continuous component

alone, quantified by the integrated variance, Vt−1,t =
∫ t
t−1 Vsds. By definition, the difference between

these two quantities defines the contribution to price variation of the discontinuous jumps, J 2
t−1,t =∑Np

t
t−1<s≤t (Zps )

2
, and price jump test statistics can thus be constructed from the difference between

various measures of QVt−1,t and Vt−1,t. In Panel A of Table 1, we provide details of the test

proposed by Barndorff-Nielsen and Shephard (2004, 2006) (also exploited by Huang and Tauchen,

2005), plus an alternative test proposed by Corsi et al. (2010) and two tests suggested by Andersen

et al. (2012) (referenced hereafter as BNS, CPR and MINRV and MEDRV, respectively). In all

cases, the test statistic is constructed using the difference between realized volatility, RVt =
M∑
i=1

r2
ti ,

where rti = pti − pti−1 denotes the ith of M equally-spaced returns observed during day t, and a

chosen measure of integrated variance. All tests are one-sided upper-tailed tests by construction.

2.2 Higher-order P-power variation

A second class of price jump test exploits the behaviour of higher-order P-power variation, and

estimators thereof. Following Barndorff-Nielson and Shephard (2004), let an estimator of the P-

power variation of pt be defined as B̂ (P,∆M )t =
M∑
i=1
|rti |

P , where ∆M = 1/M denotes the common

length of the time intervals between consecutive returns, and P > 0. The limiting behaviour of this

estimator, for different values of P, sheds light on the different components of the variation in pt.

In the case of P = 2, B̂ (P,∆M )t
p−→ QVt−1,t as M → ∞, as is consistent with the distributional
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result that RVt
p−→ QVt−1,t, as M →∞. For 0 < P < 2,

∆
1−P/2
M

mP
B̂ (P,∆M )t

p−→ A (P)t as M →∞, (2)

where A (P)t =

∫ t

t−1

∣∣∣V 1/2
s

∣∣∣P ds denotes the P-power integrated variation, mP = E
(
|U |P

)
=

π−1/22P/2Γ
(P+1

2

)
and U denotes a standard normal random variable. In contrast, for P > 2, the

increments from the jump component dominate, and the estimator converges in probability to the

P-power jump variation, B (P)t =
∑

t−1<s≤t
|dJs|P . If the jump component in (1) is not present and

pt is continuous as a consequence, then the limiting result in (2) holds for any P > 0.

These limiting results can be used in a variety of ways to detect jumps. Specifically, Aı̈t-Sahalia

and Jacod (2009) (ASJ, hereafter) compare B̂ (P,∆M )t constructed over two different sampling

intervals, while Podolskij and Ziggel (2010) (PZ, hereafter) rely on the limiting distribution of a

modified version of B̂ (P,∆M )t. Both tests are one-sided, with the ASJ test being lower-tailed,

while the PZ test is upper-tailed. These two approaches are outlined in Panel B of Table 1.

2.3 Standardized returns

Rather than construct price jump test statistics from various measures of variation, an alternative

is to consider the behaviour of (appropriately standardized) returns themselves. In brief, based on

the assumption of Brownian motion for the asset price, the return computed over a chosen interval

length and scaled by the square root of a consistent estimator of the corresponding integrated

variance, should be asymptotically standard normal if price jumps are absent. Two tests that exploit

this property are proposed by Andersen et al. (2007) and Lee and Mykland (2008), referenced as

ABD and LM, hereafter. ABD conduct multiple two-tailed tests on standardized returns observed

over the trading day, while LM propose an upper-tailed test based on the maximum absolute

standardized return. Details regarding the form of these two test statistics and their limiting

distribution under the null hypothesis of no jumps are given in Panel A of Table 2.

2.4 Variance swaps

Variance swaps are instruments made up of financial assets and/or derivatives and are used as tools

to hedge against volatility risk. The payoff of a variance swap can be replicated by taking a short

position in the so-called “log contract” and a long position in the underlying asset, with the long

position being continuously re-balanced (see Neuberger, 1994). The payoff of such a replicating

strategy, computed as the accumulated difference between proportional returns and continuously

compounded logarithmic returns, equates to half of the integrated variance when there is no price

jump. When a jump is present, the replication error is completely determined by the realized jump,

including the sign of such a jump. Jiang and Oomen (2008), JO hereafter, exploit this relation in

their two-tailed test construction, with the test details given in Panel B of Table 2.
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2.5 Treatment for microstructure noise

Finally, we investigate the performance of two tests that are specifically designed to be robust to the

presence of microstructure noise. Lee and Mykland (2012), LM12 hereafter, provide an alternative

to the LM test whereby the test statistic is computed from prices averaged over a small window.

Aı̈t-Sahalia et al. (2012) propose an alternative test to ASJ (denoted here by ASJL) that is based

on locally smoothed prices. Similar to their corresponding predecessors, the LM12 test, based on

extreme value theory, is an upper-tailed test, while the ASJL is a lower-tailed test. Details of these

two alternative tests are provided in Panel C of Table 2.

3 Tuning parameter choice

As is clear from the outline of the test procedures in Section 2, all require a decision, of one form or

another, to be made regarding the mechanism used to distinguish a continuous increment (
√
VtdW

p
t )

from a discontinuous increment (dJpt ) in (1). Such ‘tuning’ decisions will patently influence the

outcome of any test, the values of the jump measures that are derived from preliminary application

of the test and, hence, any inferential results based on those measures. In this section, we discuss

the impact of alternative choices for the significance level and certain other tuning values.

3.1 Significance level

All tests are, of course, subject to the selection of a significance level, which determines the value

beyond which the null hypothesis of ‘no jump’ is rejected. Although certain authors suggest the

use of certain (typically small) significance levels (e.g. Tauchen and Zhou, 2011; ABD), there does

not appear to be widespread consensus in the literature regarding this choice. It is important

to recognize that use of a higher level of significance will automatically lead to the identification

of a greater number of apparent ‘jumps’, including those having a relatively small magnitude,

according to the usual trade-off between the size of a test and its power in a neighbourhood of

the null hypothesis of no jump. Thus, if the desired focus is to detect (and subsequently measure)

jumps with reasonably large magnitude only, then a small significance level should be selected. In

Section 4 we conduct all size and power assessments based on two significance levels: 5% and 1%.

3.2 Threshold value

The higher-order P-power variation-based PZ, ASJ and ASJL tests, along with the CPR test, also

entail the choice of certain threshold values that determine the particular jump-free variations that

are accumulated. That is, these threshold values determine whether an individual return belongs

to the diffusive component or to the jump component in the calculation of P-power variation. The

thresholds for these tests are selected as a multiple (cϑ) of the local volatility estimate (See Panel A,

Table 1). For example, CPR suggest truncating returns at three times the local volatility measure.

The choice of this multiplier is guided by the properties of a normal distribution, since if a jump
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is indeed absent, then the return (assumed to be normally distributed by approximation of the

diffusive process) should cross the threshold only about 0.3% of the time. Naturally, a smaller

multiplier will correspond to a larger proportion of returns being considered as part of the jump

contribution. The PZ and ASJ tests prescribe truncations that involve the choice of the truncation

root, $ (see Panel B, Table 1). In both cases, a larger value of $ corresponds to a smaller level of

the actual truncation point, again implying that a larger number of returns are considered as part

of the jump contribution. PZ recommend $ = 0.4, while ASJ recommend the use of $ = 0.48,

recommendations that we adopt for our study of the performance of these tests, presented in Section

4.

3.3 Value of P

The P-power variation-based tests are also subject to the choice of P itself, noting that, at least

asymptotically, the jump contribution will dominate for values of P > 2. However, with limited

intra-day sampling available, a larger value of P will tend to accentuate jumps with relatively large

magnitude and thereby diminish the role in the test outcome of relatively small jumps, for any

given choice of significance level. In Section 4 we report results for the PZ test based on P = 2 and

P = 4 (PZ2 and PZ4 respectively), to gauge the effect of this tuning parameter. We also report

results for the ASJ and ASJL tests based on the author-recommended choice of P = 4.

3.4 Sampling interval

The sampling interval over which intraday returns are computed also plays an important role in the

performance of jump tests. A consensus seems to have developed in the literature that estimates

of QVt−1,t and Vt−1,t are optimally computed over the five-minute interval, due to the mitigation

of microstructure noise when sampling at that (relatively low) frequency (see Bandi and Russell,

2008). Whether such optimality carries over to the performance of the corresponding price jump

test is still questionable. It is worth noting that the choice of the sampling interval will impact

each of the ASJ and ASJL tests in two ways - first through the choice of ∆M , and secondly, via

the tuning choice k, which determines the central location of the tests under the null hypothesis.

We conduct both tests using k = 2, a choice that is recommended by the authors. We document

test performance over four alternative sampling frequencies, in order to provide some insight into

the influence of the choice of sampling frequency.

4 Assessment of test performance

4.1 Experimental design

We assess the finite sample size and power of each test in empirically relevant scenarios. In contrast

to the earlier assessment of test performance by Dumitru and Urga (2012), our simulation exercise

is used to shed particular light on the robustness of (an expanded set of) price jump tests to the
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presence of a discontinuous volatility process. This is something that has not, to our knowledge,

been documented elsewhere, for any of the tests discussed, and which is relevant to recent empirical

work, in which both (possibly dynamic) price and volatility jumps are modelled (see Fulop et al.,

2014 and Maneesoonthorn et al., 2017, for examples).

We generate data from the process in (1), in conjunction with the following explicitly defined

jump diffusion process for Vt,

dVt = κ (Vt − θ) + σv
√
VtdW

v
t + dJvt . (3)

The Brownian increment dW v
t is assumed to be correlated with dW p

t (in (1)) with corr (dW v
t , dW

p
t ) =

ρ, but is assumed to be uncorrelated with the increment in the volatility jump process, denoted

by dJvt . The data are generated using parameter values: µt = 0, κ = 5, θ = 0.42, σv = 0.5 and

ρ = −0.5 (adhering to the theoretical restriction 2κθ > σ2
v), and with the diffusive variance process

initialized at θ.1

A very fine Euler discretization is employed to simulate high-frequency observations, with 21600

observations created per trading day, equivalent to generating price observations every one second

over a six-hour trading period. The price jump test statistics are then constructed using four

different sampling frequencies: five seconds, 30 seconds, one minute and five minutes. We then

compute, over 1000 independent Monte Carlo replications, the proportion of times that a test

detects a price jump, under several different scenarios. First, we set dJpt = 0 for all t, and assess

the size of the tests, both in the absence (dJvt = 0) and in the presence (dJvt 6= 0) of volatility

jumps. When a volatility jump is present, only one jump occurs and its arrival time is random.

The size of the volatility jump increment is assumed to be either ‘moderate’, dJvt = 3θ, or ‘large’,

dJvt = 10θ. Secondly, we assess the power of the tests in the case where a single price jump arrives

randomly over the day, and where the price jump size is either ‘moderate’, dJpt = 3
√
θ, or ‘large’,

dJpt = 10
√
θ. Power is also assessed in both the absence and the presence of volatility jumps.2

Finally, we assess the size and power of all tests in the presence of microstructure noise, under

both independent and identically distributed (i.i.d.) Gaussian and Student-t noise assumptions,

as well as when the microstructure noise follows a Gaussian autocorrelated process (Aı̈t-Sahalia

and Mancini, 2008). Test performance in the absence and presence of microstructure noise is

documented in Section 4.2 and Section 4.3 respectively.

1This DGP and its parameter settings are also used in the simulation exercise of Aı̈t-Sahalia and Jacod (2009),
and broadly reflect empirical results recorded in the literature. See Eraker et al. (2003) and Fulop et al. (2014) for
examples.

2The size of the price jump is expressed as a proportion of the square root of the long run variance (θ), to fit
with the scale of dpt. The size of the volatility jump, on the other hand, is expressed as a proportion of the long run
variance itelf.
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4.2 Test performance in the absence of microstructure noise

4.2.1 Empirical size

In Table 3, we report empirical size, based on nominal sizes of 5% and 1%, with the following

summary relevant to the results for both significance levels.

Two of the four tests based on measures of squared variation, MINRV and MEDRV, have an

empirical size that is closest to the nominal value, for all sampling frequencies, and in the presence

of volatility jumps. In contrast, the CPR test is uniformly oversized, and the BNS test oversized

in the presence of large volatility jumps, in particular.

The tests based on P-power variation, standardized returns and variance swaps (PZ2, PZ4, ASJ,

ABD, LM and JO) have reasonable size performance in the absence of volatility jumps, although

ASJ and LM are quite undersized, in particular for the lower sampling frequencies (one and five

minutes). In the presence of volatility jumps, the PZ and ABD tests are very (at times, grossly)

over-sized, whilst the ASJ and LM tests remain somewhat under-sized3. Of this set, the JO test is

the most robust to the presence of volatility jumps, and to the choice of sampling frequency; but

is still not as accurately sized as MINRV and MEDRV.

In the absence of microstructure noise, the tests designed to accommodate such noise (LM12 and

ASJL) perform well at the highest sampling frequency of five seconds, and under no volatility jump;

but neither test is uniformly robust to either the sampling frequency or the presence of volatility

jumps. It should be noted that these tests require a smoothing (averaging) process over sub-blocks

throughout the day, so the effective sample size decreases rapidly as the sampling frequency is

reduced.4

As a general rule, across all tests, the proportion of incorrect detections of a price jump increases

with size of the volatility jump, highlighting the confounding influence of this feature of the DGP.

4.2.2 Empirical power

Table 4 reports the power of each test conducted at the 5% nominal size level.5 As is to be expected,

all tests exhibit greater power when the price jump size is larger. However, for any given price jump

size, the level of power still varies, across test, sampling frequency and volatility jump size. It is

interesting to note that for all tests, and for all designs, power is greatest when the test is conducted

at the highest frequency.

Except for the LM12 and ASJL tests, power uniformly decreases as the volatility jump size

gets larger, when the test is conducted at the highest frequency of five seconds. As the sampling

3Our detection of a decreasing test size at lower frequencies is in line with sizes reported in ASJ’s Table 1,
notwithstanding the fact that the lowest frequency they report corresponds to 30 seconds.

4In both Lee and Mykland (2012) and Aı̈t-Sahalia et al. (2012), test performance is assessed at extremely high
frequency, with the lowest frequency recorded being three seconds for the LM12 test and five seconds for ASJL.
Furthermore, Aı̈t-Sahalia et al. only assess their test over three consecutive trading days, as opposed to a single
trading day as is typically done in an empirically relevant context, and as we have done here.

5Findings at the 1% significance level were qualitatively similar and, hence, are not reported.
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interval becomes longer however, a variety of patterns are observed, in particular when the price

jump is only moderate.

Whilst the power of the ASJ test is always highest at the highest frequency (as tallies with the

qualitative finding in Dumitru and Urga, 2012) it ranks lowest amongst all tests, overall, with a

power that does not exceed 50% over all designs considered.6 At the other end of the spectrum,

the PZ2, PZ4 and ABD tests tend to have the highest power overall, in particular at the higher

frequencies, and are the most robust to the size of the volatility jump.

The (relatively) well-sized MINRV and MEDRV tests also have high power in the presence or

otherwise of volatility jumps, as long as the price jump is large and the sampling frequency is high

(five seconds). This statement needs to be qualified somewhat for the lower sampling frequencies.

In particular, when the volatility jump is also large a sampling interval beyond 30 seconds leads to

quite a reduction in power for these two tests, as indeed is a feature for all tests.

The tests designed to cater for microstructure noise (LM12 and ASJL) have high power in its

absence only when the sampling frequency is very high (five seconds), the price jump to be detected

is large, and the (confounding) volatility jump is not.

4.3 Test performance in the presence of microstructure noise

The presence of microstructure noise is known to hamper the quality of measures constructed from

high-frequency data, including any subsequent price jump tests conducted based on these measures

(see Hansen and Lunde, 2006, and Bandi and Russell, 2008, amongst others). In Table 5, the

empirical size and power of the tests conducted at a nominal level of 5%, is recorded, under the

three assumptions of microstructure noise described in Section 4.17. Power is assessed for the case

where price jump size is large (dJpt = 10
√
θ) and volatility jumps are absent.

As a general observation, the presence of microstructure noise impacts negatively on the em-

pirical size of the tests that are not expressly designed to cater for noise, and that impact varies

according to the form of noise. For instance, the Student-t noise leads to the most inaccurate

empirical sizes overall, including the least robustness of size to sampling frequency. Once again, the

size of the MEDRV and MINRV tests tend to be the most robust to sampling frequency, although

under the Student-t and (Gaussian) autocorrelated noise the tests are extremely undersized when

computed using five second data.

Microstructure noise of all forms has arguably less impact on power than it does on size. Other

than ASJ, all tests not designed to be robust to noise retain high power under Gaussian noise, in

6ASJ entertain two different null hypotheses: one where the price path is continuous under the null, and one
where the null accommodates a discontinuous price path. In the latter case, the ability of their test to detect a price
jump is measured by empirical size (only), and this is what they report. However, a key assumption underlying the
distribution of the test statistic under this null hypothesis is that there are no common price and volatility jumps.
We view this as a very restrictive assumption, particularly given the noted interest and empirical evidence found in
support of this situation. Hence our use of the null hypothesis of a continuous process, and our documentation of
empirical power under scenarios that allow for volatility jumps, including those that occur contemporaneously with
a price jump.

7Results produced for the 1% nominal level are available but are not recorded here.
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particular for the higher frequencies (five and 30 seconds), remembering that this assessment is

now under large price jumps and zero volatility jumps.

Not surprisingly, the tests that are designed to accommodate microstructure noise are relatively

robust to the type of noise assumed, at the highest frequency of five seconds, with the appropriate

size and high power. However, the LM12 test is severely oversized, and the AJL test lacks power,

when conducted at a lower frequency, mimicking their performance in the no microstructure noise

case.

5 Guidelines for Practitioners

To conclude, we offer practitioners the following guidelines:

1. The ASJ is the least powerful test overall, over the variety of designs considered, as well

as being consistently undersized. This confirms (albeit in slightly different scenarios) the

findings of Dumitru and Urga (2012). Our finding holds both in the absence and presence of

microstructure noise.

2. If microstructure noise alone is thought to be present, the two tests designed to cater for

that feature - LM12 and ASJL - based on very high-frequency (five second) data, are the

best choice. Importantly, these tests continue to perform well when microstructure is absent,

but only when the sampling frequency remains very high, the price jump size is large and

volatility jumps are absent.

3. If the data generating process is thought to feature volatility jumps, we advocate for the

use of one of the two squared-variation tests, MINRV or MEDRV. To balance size and power

performance, we also advise computation of the selected test statistic at a moderate frequency

of 30 seconds.

While these guidelines flow from the settings covered in the experiments summarised in the

paper, it is prudent to remind the reader that good (or poor) test performance under the available

settings does not guarantee similarly good (or poor) performance under alternative simulation

designs. Nevertheless, the approach used here, including the justifications used to determine the

guidelines, may serve as a template for investigating the performance of price jump tests, and

consequent price variation measures, under alternative DGPs and/or volatility jump size settings.
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Table 1: The jump tests outlined in Section 2.1 (squared variation) and Section 2.2 (higher-order
power variation). All test statistics reported have a N(0, 1) limiting distribution under the null
hypothesis of no jump.

Test Test Statistic

Panel A: Tests based on squared variation

BNS

TBNS,t =
1− BVt

RVt√((
π
2

)2
+ π − 5

)
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(
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BV 2
t
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M − 1

)
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∣∣rti−1

∣∣ ,
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4/3
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M − 2
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Panel B: Tests based on P-power variation
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where ηi is a symmetric IID random variable

with E (ηi) = 1, V ar (ηi) <∞ and E
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> 0 for some d > 0; and P ≥2.
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Under H0 of continuous price path
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Here, M(P, k) and mP are constants defined by expectations of absolute power of standard normal variables.
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Table 2: The jump tests outlined in Section 2.3 (standardized daily returns), Section 2.4 (variance
swaps) and Section 2.5 (microstructure noise). The limiting distribution for each test statistic
under the null hypothesis of no price jump given in column 3 below.

Test Test Statistics Limiting Dist.

Panel A: Tests based on standardized returns

ABD TABD,ti =
rti√

M−1BVt
. The significance level needs to be adjusted for multiple testing. N(0,1)

LM

TLM,t=
(max(T̃LM,ti)−CM)

SM
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|rti |√
V̂ti

,

CM = (2 logM)1/2

0.8 − log π+log(logM)

1.6(2 log π)1/2 ,

SM = 1

0.6(2 log π)1/2 and V̂ti denotes the local variance estimate

Gumbel

Panel B: Test based on variance swap
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TJO,t = BVt
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√
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, where SwVt = 2

∑M
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with Rti = arithmatic returns

and Ω̂SwV = 3.05 M3

M−3

M∑
i=1

3∏
k=0

∣∣rti−k

∣∣3/2 N(0,1)

Panel C: Tests that account for microstructure noise

LM12
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|χ(tj)|−An
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2 logb n

kM c
)1/2 − log π+log(logb n
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2 logb n

kM c
)1/2

, χ (tj) =
√

M
Vn

(
p̂tj+kM − p̂tj
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,

and p̂tj is the average log price over a block size M ,
with the average price computed using every kth observations.
Vn is computed using Podolskij & Vetter (2009)

Gumbel

ASJL

Test statistic as in ASJ, but with the power variation computed
from smoothed log prices. The estimator of the asymptotic variance
of the test statistic is modified accordingly.
Code to conduct the test is available at https://sites.duke.edu/jiali/research/.

N(0,1)
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Table 3: The empirical size of price jump tests constructed at the five second, 30 second, one
minute and five minute sampling frequencies. The tests are conducted under three DGPs. DGP1
assumes volatility jumps are absent (labelled as ‘dJvt = 0’); DGP2 assumes that a volatility jump
is present and is of moderate size (labelled as ‘dJvt = 3θ’); DGP3 assumes a large volatility jump is
present (labelled as ‘dJvt = 10θ’). Nominal sizes of 5% and 1% are shown in columns 3-6 and 7-10,
respectively. Microstructure noise is absent.

Nominal Size = 5% Nominal Size = 1%
5 sec 30sec 1min 5min 5 sec 30sec 1min 5min

BNS 0.051 0.052 0.042 0.055 0.008 0.009 0.010 0.020
CPR 0.086 0.133 0.165 0.464 0.016 0.045 0.059 0.241
MINRV 0.051 0.046 0.048 0.044 0.006 0.005 0.005 0.010
MEDRV 0.054 0.041 0.057 0.060 0.010 0.008 0.005 0.014

DGP1 PZ2 0.047 0.057 0.070 0.092 0.009 0.018 0.028 0.051
no VJ PZ4 0.046 0.051 0.058 0.078 0.014 0.015 0.026 0.046
(dJvt = 0) ASJ 0.018 0.011 0.004 0.000 0.002 0.000 0.000 0.000

ABD 0.086 0.058 0.053 0.063 0.020 0.012 0.011 0.020
LM 0.032 0.009 0.007 0.005 0.003 0.001 0.002 0.000
JO 0.054 0.049 0.068 0.079 0.007 0.011 0.016 0.025
LM12 0.037 0.124 0.209 0.521 0.011 0.055 0.103 0.386
ASJL 0.055 0.057 0.011 0.093 0.018 0.009 0.002 0.091

BNS 0.078 0.078 0.066 0.066 0.021 0.030 0.018 0.022
CPR 0.104 0.127 0.155 0.275 0.033 0.045 0.048 0.105
MINRV 0.050 0.057 0.049 0.049 0.014 0.021 0.007 0.010
MEDRV 0.054 0.056 0.044 0.061 0.011 0.017 0.010 0.021

DGP2 PZ2 0.216 0.268 0.271 0.179 0.185 0.230 0.237 0.152
moderate VJ PZ4 0.214 0.260 0.268 0.180 0.189 0.229 0.233 0.150
(dJvt = 3θ) ASJ 0.022 0.004 0.004 0.000 0.001 0.000 0.000 0.000

ABD 0.827 0.532 0.409 0.194 0.568 0.259 0.212 0.083
LM 0.023 0.009 0.009 0.011 0.003 0.000 0.000 0.001
JO 0.053 0.068 0.078 0.110 0.011 0.017 0.021 0.045
LM12 0.205 0.287 0.372 0.579 0.079 0.156 0.224 0.438
ASJL 0.113 0.088 0.035 0.118 0.041 0.030 0.007 0.111

BNS 0.121 0.119 0.115 0.101 0.040 0.060 0.045 0.048
CPR 0.140 0.153 0.157 0.192 0.053 0.079 0.065 0.093
MINRV 0.048 0.072 0.054 0.068 0.016 0.023 0.012 0.023
MEDRV 0.056 0.063 0.050 0.084 0.012 0.018 0.017 0.029

DGP3 PZ2 0.800 0.723 0.636 0.421 0.794 0.713 0.624 0.400
large VJ PZ4 0.802 0.718 0.635 0.424 0.794 0.711 0.619 0.399
(dJvt = 10θ) ASJ 0.018 0.002 0.004 0.000 0.000 0.000 0.000 0.000

ABD 0.996 0.922 0.818 0.477 0.975 0.765 0.585 0.272
LM 0.031 0.033 0.030 0.042 0.005 0.008 0.006 0.016
JO 0.059 0.070 0.087 0.140 0.016 0.018 0.031 0.066
LM12 0.544 0.535 0.595 0.703 0.324 0.379 0.433 0.581
ASJL 0.220 0.172 0.083 0.165 0.130 0.077 0.024 0.155
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Table 4: The empirical power of price jump tests constructed at the five second, 30 second, one
minute and five minute sampling frequencies. The tests are conducted under two scenarios for the
price jump size: moderate (left panel, with dJpt = 3

√
θ) and large (right panel, with dJpt = 10

√
θ),

and under three DGPs for the volatility jump process. DGP1 assumes volatility jumps are absent
(labelled as ‘dJvt = 0’); DGP2 assumes that a volatility jump is present and is of moderate size
(labelled as ‘dJvt = 3θ’); DGP3 assumes a large volatility jump is present (labelled as ‘dJvt = 10θ’).
All tests are conducted using a nominal size of 5%. Microstructure noise is absent.

Moderate Price Jump Large Price Jump

(dJpt = 3
√
θ) (dJpt = 10

√
θ)

5 sec 30sec 1min 5min 5 sec 30sec 1min 5min

BNS 0.793 0.201 0.120 0.068 1.000 1.000 0.998 0.573
CPR 0.881 0.384 0.311 0.479 1.000 1.000 1.000 0.862
MINRV 0.540 0.149 0.101 0.050 1.000 1.000 0.992 0.490
MEDRV 0.776 0.219 0.124 0.064 1.000 1.000 1.000 0.705

DGP1 PZ2 1.000 0.813 0.375 0.098 1.000 1.000 1.000 0.961
no VJ PZ4 1.000 0.811 0.370 0.091 1.000 1.000 1.000 0.960
(dJvt = 0) ASJ 0.492 0.191 0.050 0.000 0.492 0.487 0.484 0.017

ABD 1.000 0.907 0.486 0.079 1.000 1.000 1.000 0.968
LM 0.646 0.073 0.019 0.002 1.000 0.936 0.730 0.108
JO 0.999 0.334 0.178 0.104 1.000 1.000 1.000 0.818
LM12 0.626 0.244 0.245 0.508 1.000 0.960 0.931 0.675
AJL 0.130 0.059 0.014 0.083 0.998 0.813 0.511 0.112

BNS 0.474 0.158 0.099 0.087 1.000 0.995 0.928 0.363
CPR 0.579 0.254 0.190 0.294 1.000 0.999 0.965 0.605
MINRV 0.284 0.111 0.066 0.061 1.000 0.976 0.826 0.277
MEDRV 0.418 0.130 0.077 0.064 1.000 0.997 0.941 0.415

DGP2 PZ2 1.000 0.598 0.338 0.204 1.000 1.000 1.000 0.806
moderate VJ PZ4 1.000 0.591 0.335 0.189 1.000 1.000 1.000 0.800
(dJvt = 3θ) ASJ 0.475 0.027 0.006 0.000 0.492 0.471 0.389 0.003

ABD 1.000 0.808 0.515 0.214 1.000 1.000 1.000 0.841
LM 0.457 0.052 0.013 0.006 0.995 0.785 0.547 0.073
JO 0.818 0.138 0.118 0.121 1.000 1.000 0.989 0.524
LM12 0.316 0.302 0.369 0.566 0.998 0.859 0.801 0.639
AJL 0.152 0.092 0.033 0.120 0.980 0.539 0.259 0.122

BNS 0.283 0.160 0.117 0.119 1.000 0.881 0.666 0.237
CPR 0.322 0.211 0.165 0.214 1.000 0.905 0.745 0.368
MINRV 0.137 0.088 0.051 0.080 0.996 0.589 0.371 0.162
MEDRV 0.173 0.098 0.064 0.081 1.000 0.787 0.530 0.198

DGP3 PZ2 0.995 0.739 0.653 0.416 1.000 1.000 0.997 0.609
large VJ PZ4 0.995 0.742 0.652 0.415 1.000 1.000 0.997 0.607
(dJvt = 10θ) ASJ 0.118 0.002 0.000 0.000 0.492 0.318 0.101 0.000

ABD 1.000 0.940 0.823 0.465 1.000 1.000 0.999 0.664
LM 0.376 0.085 0.041 0.042 0.940 0.625 0.449 0.094
JO 0.180 0.087 0.096 0.157 1.000 0.923 0.640 0.236
LM12 0.541 0.496 0.588 0.696 0.971 0.742 0.718 0.682
ASJL 0.240 0.160 0.079 0.164 0.779 0.278 0.128 0.160
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Table 5: The empirical size and power of price jump tests constructed at the five second, 30 second,
one minute and five minute sampling frequencies, in the presence of microstructure noise. The tests
are conducted under DGP1, but with three different types of microstructure noise: Gaussian noise;
Student-t noise and autocorrelated noise. Each test is conducted using a nominal size of 5%, with
the power assessment conducted using a large price jump size dJpt = 10

√
θ. Volatility jumps are

absent.

Size Power
5 sec 30sec 1min 5min 5 sec 30sec 1min 5min

BNS 0.000 0.040 0.048 0.060 0.999 1.000 0.997 0.533
CPR 0.000 0.109 0.181 0.443 0.999 1.000 0.999 0.847
MINRV 0.054 0.056 0.064 0.068 0.869 0.999 0.975 0.440
MEDRV 0.054 0.056 0.064 0.068 1.000 1.000 0.996 0.649

DGP1 PZ2 0.059 0.057 0.059 0.072 1.000 1.000 1.000 0.950
Gaussian noise PZ4 0.054 0.056 0.064 0.068 1.000 1.000 1.000 0.950

ASJ 0.019 0.013 0.002 0.000 0.529 0.501 0.517 0.020
ABD 0.062 0.082 0.074 0.052 1.000 1.000 1.000 0.967
LM 0.025 0.006 0.007 0.001 0.990 0.875 0.683 0.118
JO 0.006 0.039 0.042 0.072 1.000 1.000 1.000 0.809
LM12 0.043 0.155 0.216 0.511 1.000 0.965 0.921 0.671
AJL 0.053 0.046 0.014 0.082 0.999 0.818 0.507 0.105

BNS 0.117 0.050 0.046 0.065 0.999 0.999 0.991 0.548
CPR 0.410 0.192 0.210 0.488 0.999 1.000 0.997 0.846
MINRV 0.000 0.022 0.031 0.044 0.353 0.910 0.926 0.434
MEDRV 0.000 0.036 0.044 0.054 0.610 0.952 0.964 0.639

DGP1 PZ2 0.997 0.374 0.172 0.088 1.000 1.000 1.000 0.935
Student-t noise PZ4 0.997 0.370 0.183 0.079 1.000 1.000 1.000 0.935

ASJ 0.000 0.006 0.005 0.000 0.157 0.394 0.460 0.016
ABD 1.000 0.463 0.198 0.070 1.000 1.000 1.000 0.948
LM 0.722 0.063 0.018 0.002 0.996 0.893 0.680 0.114
JO 0.208 0.074 0.056 0.084 0.997 0.996 0.997 0.798
LM12 0.051 0.148 0.221 0.512 1.000 0.955 0.925 0.722
AJL 0.063 0.054 0.018 0.101 0.998 0.798 0.488 0.110

BNS 0.000 0.050 0.063 0.058 1.000 1.000 0.994 0.560
CPR 0.000 0.133 0.189 0.468 1.000 1.000 0.998 0.827
MINRV 0.000 0.047 0.044 0.041 1.000 1.000 0.985 0.459
MEDRV 0.000 0.056 0.048 0.051 1.000 1.000 1.000 0.619

DGP1 PZ2 0.062 0.062 0.068 0.082 1.000 1.000 1.000 0.939
Gaussian PZ4 0.053 0.058 0.063 0.077 1.000 1.000 1.000 0.937
Autocorrelated noise ASJ 0.023 0.015 0.004 0.000 0.517 0.486 0.475 0.014

ABD 0.039 0.047 0.056 0.060 1.000 1.000 1.000 0.956
LM 0.020 0.009 0.007 0.000 0.999 0.894 0.710 0.115
JO 0.013 0.040 0.048 0.086 1.000 1.000 1.000 0.797
LM12 0.030 0.164 0.216 0.536 1.000 0.958 0.925 0.736
ASJL 0.070 0.058 0.015 0.095 0.997 0.822 0.488 0.118
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