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Abstract—Nearest neighbour search is a core process in many
data mining algorithms. Finding reliable closest matches of a
query in a high dimensional space is still a challenging task.
This is because the effectiveness of many dissimilarity measures,
that are based on a geometric model, such as `p-norm, decreases
as the number of dimensions increases.

In this paper, we examine how the data distribution can
be exploited to measure dissimilarity between two instances
and propose a new data dependent dissimilarity measure called
‘mp-dissimilarity’. Rather than relying on geometric distance,
it measures the dissimilarity between two instances in each
dimension as a probability mass in a region that encloses the
two instances. It deems two instances in a sparse region to be
more similar than two instances in a dense region, though these
two pairs of instances may have the same geometric distance.

Our empirical results show that the proposed dissimilarity
measure indeed provides a reliable nearest neighbour search
in high dimensional spaces, particularly in sparse data. mp-
dissimilarity produced better task specific performance than
`p-norm and cosine distance in classification and information
retrieval tasks.

Index Terms—distance measure, `p-norm, mp-dissimilarity

I. INTRODUCTION

In order to make a prediction for a given query, many
data mining algorithms search for the k closest matches or
nearest neighbours (NNs) of the query in a database, and
make a prediction based on those kNNs. They use a similarity
or dissimilarity measure to find kNNs. Minkwoski distance
(aka `p-norm) [1] is a widely used dissimilarity measure.
Even though it performs well in many applications, its ef-
fectiveness degrades as the number of dimensions increases.
In high dimensional space, data distribution becomes sparse
which makes the concept of distance meaningless - “curse of
dimensionality”. All pairs of points are almost equidistant for a
wide range of data distributions and distance measures [2, 3]
resulting in unreliable closest match that leads to erroneous
predictions.

The performance of distance measure depends on the data
distribution and task at hand. A distance measure that performs
well in one distribution or task may perform poorly in others.
A huge variation in performance can be observed when a dis-
tance measure is used in different data distributions and tasks.
We hypothesize that this variation is because the distance

measure computes the dissimilarity between two instances
solely based on the geometric positions. The data distribution
(i.e., the relative position of the two instances with respect to
the rest of the data) is not taken into consideration.

Many psychologists have expressed their concerns on the
geometric model of dissimilarity measure [4, 5]. They have
argued that the judged dissimilarity between two instances is
influenced by the context of measurements and other instances
in proximity. Krumhansl [5] has suggested a distance-density
model of dissimilarity measure, arguing that two instances
in a relatively dense region would be less similar than two
instances of equal distance but located in a less dense region.
For example, two white persons will be judged as more similar
when compared in Africa (where there are less white and more
black people) than in America (where there are many white
people.)

In this paper, we propose a new dissimilarity measure called
‘mp-dissimilarity’ in which data distribution is the
primary factor in measuring dissimilarity between instances.
Rather than using a spatial distance in each dimension, mp-
dissimilarity evaluates the dissimilarity between two instances
in terms of probability mass in a region covering the two
instances in each dimension. The final dissimilarity between
the two instances is estimated as a power mean of dissimilar-
ities in each dimension as in `p-norm. The intuition behind
the proposed dissimilarity measure is that two instances are
likely to be more dissimilar if there are more instances in
between and around them in many dimensions. Under the
proposed data dependent dissimilarity measure, two instances
in a dense region of the distribution are more dissimilar than
two instances having the same geometric distance in a sparse
region, as prescribed by psychologists.

This paper makes the following contributions:

1) Propose a new data dependent dissimilarity measure
called mp-dissimilarity.

2) Provide its theoretical basis and interpretation.
3) Compare the performance of mp-dissimilarity against

`p-norm and cosine distance in moderate to high di-
mensional data sets from text and music domains in
classification and information retrieval tasks.



The rest of the paper is organised as follows. Two widely
used geometric distance measures `p-norm and cosine distance
are discussed in Section II. The proposed data dependent
dissimilarity measure, mp-dissimilarity, is discussed in Section
III. Empirical results are provided in Section IV followed by
conclusions and future work in the last section. From now
on we refer mp-dissimilarity and `p-norm by mp and `p,
respectively.

II. MEASURES BASED ON GEOMETRIC MODELS

A wide range of geometric (proximity based) dissimilarity
measures are used in the literature which are discussed in [1] .
In this section, we discuss the two most widely used measures:
`p-norm and cosine distance.

A. `p-norm distance

The distance between two d-dimensional vectors x and y
based on `p-norm is defined as follows [1]:

`p(x,y) = ‖x− y‖p =

(
d∑
i=1

abs(xi − yi)p
) 1

p

(1)

where p > 0, ‖ · ‖p is the p order norm of a vector, ai is the
ith component of a vector a and abs(·) is the absolute value.
The limit condition is defined as follows:

`∞(x,y) = ‖x− y‖∞ = max
i

abs(xi − yi) (2)

Manhattan distance (`1), Euclidean distance (`2) and Cheby-
sev distance (`∞) are widely used `p-norm based distance
functions. Euclidean distance is a popular choice of distance
function as it intuitively corresponds to the distance defined
in the real three-dimensional world.

B. Cosine distance

In many high dimensional problems, data have the same
value (0 or any other constant) in many dimensions, creating
‘sparseness’. For example, only a few terms in a dictionary
appear in each document in a corpus. Many entries of a vector
representing a document are zero. `p-norm is not a good choice
of distance measure in such problems. The direction of vectors
is more important than their lengths. The angular distance
measure (aka cosine distance) [1] is more sensible choice to
measure dissimilarity between two documents.

The cosine distance between two vectors x and y is defined
as follows [1]:

dcos(x,y) = 1− x · y
‖x‖2 × ‖y‖2

= 1−
∑d
i=1 xi × yi√∑d

i=1 x
2
i ×

√∑d
i=1 y

2
i

(3)

Cosine distance has been shown to perform well in many
text mining problems such as text categorization, text cluster-
ing and text retrieval tasks.

III. DATA DEPENDENT MEASURE

In order to measure dissimilarity between x and y, instead
of using (xi−yi) in Eqn. 1, we propose to consider the relative
positions of x and y with respect to the rest of the data
distribution in each dimension. The dissimilarity between x
and y in dimension i can be estimated as the probability data
mass in a region Ri(x,y) that encloses x and y. If there
are many instances in Ri(x,y), x and y are likely to be
more dissimilar in dimension i. Using the same power mean
formulation as in `p-norm, the data dependent dissimilarity
measure based on probability mass can be defined as:

mp(x,y) =

(
d∑
i=1

(
|Ri(x,y)|

n

)p) 1
p

(4)

where |Ri(x,y)| is the data mass in region Ri(x,y),
Ri(x,y) = [min(xi, yi)− δ,max(xi, yi) + δ], δ ≥ 0 and n
is the number of data instances.

An example of Ri(x,y) is shown in Figure 1. We use δ =
σi

2 (σi is the standard deviation of data in dimension i) in this
paper.

Fig. 1: Ri(x,y)

We call the proposed dissimilarity measure mp(x,y)
‘mp-dissimilarity’. This measure captures the essence
of the distance-density model proposed by Krumhausl [5]
which prescribes that two instances in a sparse region are
more similar than two instances in a dense region. Although
mp employs the same power mean formulation as `p, the core
calculation is based on mass rather than distance. It signifies
the degree of dissimilarity: the higher the measure, the more
dissimilar the two instances are; just like `p.

The formulation of mp(x,y) (Eqn. 4) has a probabilistic
interpretation. The simplest form of data dependent dissim-
ilarity measure is to define a region R(x,y) ∈ Rd that
encloses x and y and estimate the probability of a randomly
selected point z from the distribution of data, φ(x), falling
in R(x,y). Let R(x,y) be centered at h = 〈h1, h2, · · · , hd〉,
hi =

xi+yi
2 and has length of Ri(x,y) on dimension i. We

use the shorthand R and Ri to represent R(x,y) and Ri(x,y),
respectively. Assuming that the dimensions are independent,
it can be approximated as:

P (z ∈ R|φ(x)) ≈
d∏
i=1

Pi(z ∈ R|φ(x)) (5)

where Pi(z ∈ R|φ(x)) is the probability of z falling in R in
dimension i.

The approximation using Eqn. 5 is sensitive to outliers.
P (z ∈ R|φ(x)) becomes small (or zero) even if only one
Pi(z ∈ R|φ(x)) is small (or zero). An approximation which



is tolerant to outliers can be estimated by replacing the product
with a summation [6].

Lemma 1. (Minka [6]) In an outlier model having data
distribution φ(x),

d∏
i=1

Pi (x|φ(x)) ∝
d∑
i=1

Pi (x|φ(x))

Proof. Let us consider a data generation process in which in
order to sample x, a coin with probability of turning head
(1 − ε) is flipped. If the coin turns head, x is drawn from
φ(x) where the probability of sampling x is P (x|φ(x)) else
it is drawn from a uniform distribution 1/A (A is the area
under the domain of x). This model considers outliers as:

P ′i (x|φ(x)) = ε/A+ (1− ε)Pi (x|φ(x)) (6)

Using Eqn. 5,

P ′ (x|φ(x)) ≈
d∏
i=1

P ′i (x|φ(x))

≈
d∏
i=1

(ε/A+ (1− ε)Pi (x|φ(x)))
(7)

A Taylor series expansion in (1− ε) leads to:

(ε/A)d + (ε/A)d−1(1− ε)
d∑
i=1

Pi (x|φ(x)) +O
(
(1− ε)2

)
In the extreme case where there are many outliers, i.e. ε is

close to 1, only the first two terms matter. The first term is a
constant and hence, Lemma 1 follows.

In addition to the above approximation given by Minka [6],
we propose that the chance of a point being drawn from the
outlier model can be further reduced by sampling from φ(x)p,
yielding the probability of sampling x as P (x|φ(x))p, where
P (·)p is the probability of a random event occurring in p
successive trials.

Lemma 2. In the outlier model of φ(x), a more generalised
outlier tolerant approximation can be achieved as:

d∏
i=1

Pi (x|φ(x)) ∝
d∑
i=1

Pi (x|φ(x))p

Proof. This follows from the proof of Lemma 1 by simply
drawing x from φ(x)p when head turns up in the coin toss.

Using Lemma 2, Eqn. 5 can be expressed as follows:

P (z ∈ R|φ(x)) ∝
d∑
i=1

Pi(z ∈ R|φ(x))p (8)

As a result of Eqn. 8 and ignoring the constant which is just
a scaling factor of the dissimilarity, mp(x,y) can be estimated
as follows:

mp(x,y) =

(
d∑
i=1

Pi (z ∈ R|φ(x))p
) 1

p

(9)

where the outer power of 1
p is just a rescaling of P (z ∈

R|φ(x)).
It is important to note the two assumptions made in the

above derivation of mp, i.e., dimension independence and
outlier model. The assumption of dimension independence has
been applied in data mining, e.g., Naive Bayes classifier. It has
been shown that this assumption does not affect the classifi-
cation accuracy in many scenarios even if the assumption is
violated.

With the assumption of the outlier model, mp produces
many small Pi (z ∈ R(x,y)|φ(x)) if x and y are similar.
In other words, instances which are similar are assumed to
have small |Ri| in many dimensions. It is not an unrealistic
assumption in high dimensional problems.

In practice, Pi (z ∈ R|φ(x)) can be estimated as:

Pi (z ∈ R|φ(x)) =
|Ri|
n

(10)

Hence, Eqn. 9 and Eqn. 10 lead to mp-dissimilarity defined
in Eqn. 4. The role of parameter p is similar to that in `p,
i.e., p controls the influence of a dimension by scaling up the
degree of dissimilarity.

Figure 2 shows the contours of dissimilarity measured from
an instance at (0.5,0.5) based on m2 (mp with p = 2) in three
different data distributions (uniform, normal and bimodal).
In contrast, `p and cosine distance would produce the same
contour in all three distributions. Under uniform distribution
and infinite samples, mp will yield the same result as `p
because the data mass in Ri will be proportional to xi − yi.
This is depicted in the first contour plot in Figure 2 where it
approaches the contour plot of `2.

Complexity:

Computationally, mp is more expensive than `p as it requires
a range search in each dimension. One dimensional range
search can be done in O(log n) using binary search trees.
Hence, the dissimilarity of a pair of instances can be computed
in O(d log n) against O(d) of `p. In sparse data, the unique
values in each dimension will be a lot less than n. Hence, the
average case run time will be a lot less than O(d log n). Also,
it requires O(dn) time and O(d log n) space to build and store
d binary search trees, respectively.

IV. EMPIRICAL EVALUATIONS

This section presents the results of the experiments con-
ducted to evaluate the performance of mp against `p and cosine
distance in kNN classification and information retrieval.

Eleven data sets from different domains with different sizes
(1000 ≤ n ≤ 9100), number of dimensions (188 ≤ d ≤
10000) and number of classes (2 ≤ c ≤ 52) were used.



Fig. 2: Contour plots of dissimilarity based on m2-dissimilarity to the instance at (0.5,0.5) in three different data distributions:
uniform, normal and bimodal.

All the attributes in the data sets are numeric. Out of 11
data sets used, six are from text mining domain, two from
music classification and retrieval domain, 2 from character
recognition and the last one is a synthetic data set from UCI
machine learning repository [7]. Text data were represented
by TFIDF [8] weighted ‘bag of words’ vectors. Other data
sets (non-text) were normalised to the range of [0,1]. The
properties and references of the data sets are provided in Table
I.

We discuss the experimental set-ups and results in classi-
fication and information retrieval tasks in the following two
subsections.

TABLE I: Characteristics of data sets

Name [Ref] n d c Domain
Amazon [7] 1500 10000 50 text

CNAE [7] 1080 856 9 text
Reuter [7] 5000 9288 50 text

R8 [9] 7674 3497 8 text
R52 [9] 9100 7369 52 text

Webkb [9] 4199 1818 4 text
HBA [10] 1500 188 15 music

GTZAN [11] 1000 230 10 music
Gisette [7] 7000 5000 2 digit recognition
Mfeat [7] 2000 649 10 digit recognition

Madelon [7] 2600 500 2 artificial data

A. kNN classification

In the kNN classification context, in order to predict a
class label for a test instance x, its k nearest neighbours
were searched in the training set based on a dissimilarity
measure and the most frequent label of the kNN instances
was predicted.

All classification experiments were conducted using a
10-fold cross validation. We used four settings of p
(2.0, 1.0, 0.5, 0.1) in `p and mp and two settings of k (k = 1
and k = 10) for all classifiers. The average accuracy (%) over
a 10-fold cross validation is reported. The accuracies of two
algorithms are considered to be significantly different if their
confidence intervals (based on ± one standard error) do not
overlap.

The best average classification accuracy over a 10-fold cross
validation achieved by mp, `p and cosine distance in all 11

Fig. 3: The best classification accuracies of `p, mp and cosine
distance in kNN classifier. A red dot on the top signifies
that the best performer had significantly better classification
accuracy than the other two contenders.

data sets is presented in Figure 3. A red dot on the top of the
bar indicates that the best performer had significantly better
classification accuracy than the other two contenders.

As shown in Figure 3, mp produced better classification
accuracies than `p and cosine distance in eight data sets
and similar results in the other three data sets. The result
is statistically significant in five data sets (CNAE, R8, R52,
Webkb and HBA) and not significantly worst in any data set.

It is interesting to note that mp produced significantly
better classification accuracy than `p in all six text (sparse)
data sets; and better than cosine distance in four out of six.
This is because mp assigns (i) the maximum dissimilarity
(of a dimension) if the majority of instances have the same
value which is often the case in sparse text data where
term frequencies are zeros in many dimensions; and (ii) the
minimum dissimilarity if the value has the least number of
training instances in the local neighbourhood.

In terms of p, mp produced better results with p = 2 in



(a) Reuter (b) CNAE (c) HBA

(d) Amazon (e) R8 (f) Gtzan

Fig. 4: Precision at top 10 retrieved results (P@10).

eight out of 11 data sets used with the exceptions of Amazon
(p = 0.5), CNAE (p = 0.1) and Madelon (p = 0.1). The result
with `p, was mixed: p = 0.1 produced better classification
result in four data sets, p = 2 was better in four, p = 1 was
better in two and 0.5 was better in one data set.

Generally, we observed that p = 2 is a reasonable setting
in mp, but we can not say anything about setting p in `p as
the accuracy varies significantly with p.

B. Information retrieval

In information retrieval, given a query q, the relevance
of a database instance x, Rel(x|q), was measured using
dissimilarity measure f as:

Rel(x|q) = −f(x,q) (11)

In a relevance feedback process [12], a user examines
the current retrieval result and provides some ‘relevant’ and
‘irrelevant’ examples to the retrieval system. Let Q = P ∪N
be a set of feedback instances to the query q where P and
N are the sets of positive and negative feedback, respectively.
Note that P includes q. In a relevance feedback round, the
relevance score was estimated as follows:

Rel(x|Q) = 1

|P|
∑

y+∈P

Rel(x|y+)− γ 1

|N |
∑

y−∈N

Rel(x|y−)

(12)
where 0 ≤ γ ≤ 1 is a trade-off parameter for the relative
contribution of positive and negative feedback.

We used text and music information retrieval data sets
(Reuter, CNAE, HBA, Amazon, R8 and Gtzan) with more
than five classes in information retrieval. R52 was not used in
information retrieval as the class distribution is heavily skewed
and many classes have a few instances, which are not enough
for query and feedback.

Initially five queries were chosen randomly from each class.
For each query, instances from the same class were regarded
as relevant and those from the other classes were irrelevant.
At each round of feedback, two relevant (instances from
the same class) and two irrelevant (instances from the other
classes) instances were provided. Five rounds of feedback were
conducted for each query. An instance was not used in ranking
if it was used as a feedback instance in current or previous
feedback rounds. The feedback process was repeated five times
with different relevant and irrelevant feedback. This process
was repeated 10 times with different queries from each class.
The average precision at top 10 (P@10) returned results was
reported.

We used the same four settings of p (2.0, 1.0, 0.5, 0.1) and
two settings of γ (0,1). Note that when γ = 0, no negative
feedback was needed. The best result achieved at the end of
the fifth round of feedback is shown in Figure 4. mp had
produced either better than or similar results to `p and cosine
distance in five data sets. The only exception is in R8 where
cosine distance was better than mp.

It is interesting to note that mp produced better results with
γ = 0. Its performance degraded in all cases when negative



feedback were given. This is because mp considers the proba-
bility of two instances being different and assigns dissimilarity
score according to the distribution of other instances already.
Hence, deducting the average relevance score w.r.t irrelevant
feedback affects the relevance score of an instance w.r.t q. An
instance relevant to a negative feedback may not be equally
irrelevant to the query.

On the other hand, `p-norm significantly improved its
performance when negative feedback were given. The per-
formance was improved drastically even in the first round of
feedback in the sparse text data sets (Reuter, CNAE, Amazon
and R8) whereas this was not the case in the non-sparse music
data sets (HBA and Gtzan). In text data, instances are similar
in many dimensions with zero values. Initially, in the query
round, many irrelevant instances get a high relevance score
as `p assigns zero distance in many dimensions because of
zero frequency. They also have high similarity with negative
feedback. Hence, deducting the average relevance w.r.t nega-
tive feedback compensates well for the high relevance score
given in the first place to irrelevant instances. With negative
feedback, `p produced competitive retrieval results with mp

and cosine distance in the Amazon and Reuter data sets. In
the other four data sets, `p was significantly worse than mp.

Cosine distance produced significantly worst results in the
music data sets. In text retrieval, it produced better result than
mp in subsequent feedback rounds in R8 but was worse than
mp in CNAE. In Amazon and Reuter, they produced similar
retrieval results. Note that, cosine distance also produced better
results with γ = 1, i.e., with negative feedback. mp produced
significantly better retrieval performance than `p and cosine
distance in the music (non-sparse) data sets (HBA and Gtzan).

Again, p = 2 was better in all six data sets for mp in
information retrieval. For `p-norm, p = 1 or 2 achieved the
best retrieval results.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a new dissimilarity measure
called ‘mp-dissimilarity’ that mainly utilises data distribution
in its dissimilarity calculations. It estimates the dissimilarity
between two instances in each dimension as a probability of
data mass that falls in a region enclosing the two instances.
The final dissimilarity between the two instances is estimated
as the power mean of all single dimensional dissimilarities
as in the case of `p. The fundamental difference between the
formulations of mp and `p is the replacement of the geometric
difference with the probability mass.

Our empirical evaluations in classification and information
retrieval suggest that mp provides more meaningful closest
neighbours than those provided by `p and cosine distance
in high dimensional space, especially in text data sets where
sparsity is a dominant data characteristic.

The potential avenue for future work includes investigating
an efficient implementation of mp-dissimilarity, its strengths
and limitations along with theoretical analysis and applying
mp to tasks such as clustering, anomaly detection and kernel
learning.
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