
School of Physics and Astronomy

ASP4100

ASP4100 Introduction to honours computing

Introduction to modern Fortran (incl. Makefiles)

1 Introduction to programming

1.1 What is a programming language?

Computers speak binary. Each chipset (e.g. Intel x86 or the ARM A5 processor in your

smartphone) has it’s own set of low-level instructions known as “assembly language” that

translates to the raw binary instructions. Assembly language is very low level: “push

onto stack, move to this memory address, pop number off the stack, etc.”.

A programming language is a human-readable language that you can use to specify your

human intent (i.e. “solve this equation”, “add these numbers and print the answer”).

The compiler translates this into raw assembler code and ultimately into an executable

binary file. Thus all programming languages roughly do the same thing - the difference

is just how easy it is to specify what you want to do in a given language.

In Unix-speak a program is just a “text file” that you create with any standard text editor

such as vi, emacs or gedit. The compiler converts your text into a binary file that it can

execute. You then run the program. Scripting languages such as Python and Perl

differ from more traditional compiled languages because these two steps are combined

into one, that is the program is compiled ‘on-the-fly’ when you run it.

1.2 Hello world

With any language, you should always start with the simplest possible program, or:

“Make it work before you make it complicated”

To type and run a basic program in Fortran, create a text file with the extension .f90.

For example type gedit hello.f90 & and enter contents as follows:

program hello

print*,’hello world’

end program hello

1

We will use the Gnu Fortran compiler, gfortran (since it is free), so the relevant command

is as follows (having made sure you’ve saved the file to disk):

$ gfortran -o bob hello.f90

Assuming this did not throw up any errors, this creates an executable file with the name

bob, that you can run from the unix shell:

$./bob

hello world

It is instructive to see what the assembler code actually looks like. You can do this by

typing:

gfortran -S hello.f90

This creates a text file called hello.s containing the assembler code. The contents of

this file shows how unreadable assembler language really is and hence why programming

languages exist:

$ more hello.s

.cstring

LC0:

.ascii "hello.f90\0"

.const

LC1:

.ascii " hello world"

.text

_MAIN__:

LFB0:

pushq %rbp

LCFI0:

movq %rsp, %rbp

LCFI1:

subq $480, %rsp

leaq LC0(%rip), %rax

movq %rax, -472(%rbp)

movl $3, -464(%rbp)

movl $128, -480(%rbp)

movl $6, -476(%rbp)

leaq -480(%rbp), %rax

2

2 Introduction to modern Fortran

Fortran (For -mula Trans-lation is a language written to solve mathematical equations.

The modern language (Fortran), defined via standards set in 1990, 2003 and 2008, is

backwards-compatible with the old language (referred to as FORTRAN, standardised in

1977) meaning that it can be used to run old codes as well, but certain features have been

declared obsolete. Most criticisms of Fortran refer to problems in FORTRAN that were

fixed more than 25 years ago.

2.1 Why use modern Fortran instead of F77?

Here is why. Type the following into a file called test.f. Note that in the old FOR-

TRAN language each instruction needed to start in the 6th column and cannot exceed 72

characters in length — this was to fit on the punchcards they used in the 1960s:

program badfort

do 30 i=1.20

print*,i

30 continue

end

Compile and run this:

gfortran -o test test.f

First, notice that the compiler compiled this with no warnings or errors. But what is the

output? Does the program do what you expect?

The above example has an obvious bug in it. But the compiler was not able to detect

the bug because the program is written sloppily. Most of your time programming will

be spent debugging. So anything in a language that can help you find problems more

easily will save you a lot of time and pain. The big one in Fortran is the implicit none

statement. Type this program in modern syntax, but with the same bug, into a file called

test.f90 (no special line spacing is required if the file extension is .f90 instead of .f):

program badfort

implicit none

do i=1.20

print*,i

3

enddo

end program badfort

Compiling this, the compiler will immediately tell you what is wrong with it:

$ gfortran -o test test.f90

test.f90:4.10:

do i=1.20

1

Error: Syntax error in iterator at (1)

test.f90:6.4:

enddo

1

Error: Expecting END PROGRAM statement at (1)

test.f90:5.12:

print*,i

1

Error: Symbol ’i’ at (1) has no IMPLICIT type

This means you can fix the problems before you go launching your satellite. The line and

column numbers are given in the error messages so you can pinpoint the problematic lines

of code.

A longer explanation here — F77 allowed any variable to be assumed to be real or integer

depending on the first letter. Specifically variables starting with letters a–h or o–z are

assumed to be real (floating point) while variables starting with l–n are assumed integers.

Thus in our example above the compiler assumed we had set a new variable called “do 30

i” and set it’s value to 1.2. We then print i, which is a different variable that has not

been set and so assumes a random value from memory, which is what was printed. Thus

the famous joke:

“God is real unless declared integer”

Hence, always declare implicit none at the top of your code. With gfortran you can also

enforce this even if you forgot to type it by adding the flag -fimplicit-none, i.e.:

$ gfortran -fimplicit-none -o test test.f90

4

2.2 A simple program

Let’s perform a simple mathematical calculation in Fortran (e.g. in a file called maths.f90):

program maths

implicit none

real :: r, area

real, parameter :: pi = 4.*atan(1.)

r = 2.0

area = pi*r**2

print*,’ pi is ’,pi

print*,’ the area of a circle of radius ’,r,’ is ’,area

end program maths

Compile and run this and confirm the output is as follows:

$ gfortran -o maths maths.f90

$./maths

pi is 3.14159274

the area of a circle of radius 2.00000000 is 12.5663710

2.3 Organising your code

Before we go into detail about how to do specific things, we must learn how to organise

a code. The guiding principle is the following:

Never repeat code.

You will be tempted. What’s a little cut-and-paste between friends? Cut-and-paste equals

death to good programming. Instead, you need to organise your code so that it is broken

up into small, re-usable pieces.

Let’s take the example above, and put the area calculation into a function. The modern

way to do this is to put it in a module. To do this, create a new file called area.f90

where the area function is defined. Let’s also add some comments to the code:

! A module containing functions to compute the area of a circle

! Written by Daniel Price, 2015

module geometry

implicit none

5

real, parameter :: pi = 4.*atan(1.)

public :: area, pi

private

contains

!

! A function to calculate the area of a circle of given radius

!

real function area(r)

real, intent(in) :: r

area = pi*r**2

end function area

end module geometry

The main purpose of comments is for your future self. It is very easy to forget the thought

process you had when you wrote the program, so use comments to record this information.

At bare minimum, state the purpose of the module, subroutine, function or program in

the comments. Making this a habit will save you pain later.

Let’s re-write the main program (in maths.f90) to use the module:

program maths

use geometry, only:area,pi

implicit none

real :: r

r = 2.0

print*,’ pi is ’,pi

print*,’ the area of a circle of radius ’,r,’ is ’,area(r)

end program maths

To compile this we need to tell the compiler about the different files and also compile

them in the order that they are needed

$ gfortran -o maths area.f90 maths.f90

$./maths

Does your program give the same output as before? By putting functionality into modules

in this way we can construct a software project as large as we like, and maximise the re-

use of code. It also enables us to debug and test the functions in the module separately

from the main code (in software parlance this is known as unit testing) which is a huge

help in keeping the program bug-free.

6

You can see some other important things in the programs we just typed:

• We declared implicit none in both the main program and at the top of the module

(it is unnecessary in the function, the global declaration at the top of the module

already ensures this is the case)

• In the module we explicitly denoted which parts are public (that is, available for use

in other parts of the program) and which are private (available only to functions

inside the module).

• In the function we declared the radius variable as intent(in) which tells the com-

piler that this variable is expected to have a value on input and should not be

changed by the function.

• In the program, we explicitly stated which bits of the module we wanted using

only:area,pi rather than importing everything in the module.

Use these for same reason as the “do 30 i” example above — the more information you

can give the compiler about what you are trying to do, the easier it is for the compiler to

report an error and the less time you will waste debugging your code.

2.4 Compiler flags

Another time saver is to turn on compiler warnings. The syntax is different with different

compilers, but with gfortran this is achieved by adding the -Wall flag:

$ gfortran -Wall -o maths area.f90 maths.f90

To use the maximum possible level of warnings and the strictest adherence to the latest

standards, we would use:

$ gfortran -Wall -Wextra -pedantic -std=f2008 -o maths area.f90 maths.f90

Finally, when writing simulation code we want it to run fast. Achieve this by turning on

optimisation flags :

$ gfortran -O3 -o maths area.f90 maths.f90

Note that the flag is the letter O followed by a 3 (for optimisation level 3), not zero.

7

3 Using Makefiles to compile your code

We only used two files in the example above, but it quickly becomes laborious to remember

the various files that go together to make a program and the combination of compiler flags

you last used. Also with larger codes, is is inefficient to recompile the whole code even

though only one file has changed. To do this we must compile each file separately into

an object file (.o) and then link the object files together to create the binary executable.

We do this using the -c flag as follows:

$ gfortran -o area.o -c area.f90

$ gfortran -o maths.o -c maths.f90

$ gfortran -o maths maths.o area.o

Doing this by hand is laborious, but we can automate it using a Makefile. The make

program is actually a programming language in itself — one designed to make compiling

codes easy.

3.1 Hello world in Gnu Make

To use make, simply create a file in the working directory with the name Makefile (that

is, make a makefile), with contents as follows:

VAR=hello

default:

<tab> echo ${VAR}

Here we have just set a string variable called VAR and set its value to ‘hello’. <tab> means

press the tab key. Tab is treated very different to spaces in Makefiles, so this is important.

You should already be familiar with the unix echo command and what it does. Typing

make on the command line will run this:

$ make

echo ’hello’

hello

The key elements of Makefiles are targets and dependencies.

3.2 Targets

To understand targets edit your Makefile to have two different targets, ‘merry’ and ‘fun’:

8

VAR=hello

VAR2=world

merry:

<tab> @echo ${VAR}

fun:

<tab> @echo ${VAR2}

(The @ stops the Makefile from printing the shell command to the screen before it executes

it). You can now execute each of these targets separately:

$ make

hello

$ make merry

hello

$ make fun

world

Hopefully this makes targets clear — by convention the first target in the file is also the

default (i.e. the one executed when you just type make).

3.3 Dependencies

Dependencies are specified on the right hand side of the colon. Let’s modify the above ex-

ample so that the ‘fun’ target depends on the ‘merry’ target by amending the appropriate

line to read:

fun: merry

<tab> @echo ${VAR2}

Now type ‘make fun’ and ‘make merry’ as previously. Do you understand the output? In

particular the ‘merry’ target should give:

$ make fun

hello

world

3.4 Variables in Makefiles

Variables are fairly straightforward in the examples above. You can override variable

setting(s) on the command line:

9

$ make VAR=goodbye fun

goodbye

world

There are also some special predefined variables — $@ refers to the name of the target

(the text to the left of the colon), while $< refers to the dependencies (everything to the

right of the colon). Try the following example:

fun: merry

<tab> @echo ${VAR2} is $@ and $<

What is the output?

We can also define new variables from existing variables, with various string replacement

options, e.g.

VAR=hello

VAR2=world

VAR3=${VAR2:world=planet}

hay: merry

<tab> @echo ${VAR3}

and you should find:

$ make hay

hello

planet

3.5 Using a Makefile to compile your code

From the above you should be able to see how to use a Makefile to compile your code.

Since this is what make is designed for there are standard names for the appropriate

variables to use. A very simple Makefile for compiling our Fortran program would be:

FC=gfortran

FFLAGS=-O3 -Wall -Wextra

SRC=area.f90 maths.f90

OBJ=${SRC:.f90=.o}

%.o: %.f90

<tab> $(FC) $(FFLAGS) -o $@ -c $<

10

maths: $(OBJ)

<tab> $(FC) $(FFLAGS) -o $@ $(OBJ)

clean:

<tab> rm *.o *.mod maths

A couple of things:

• The first target is a special ‘wildcard’ rule telling Make how to compile any file

ending in .o from the corresponding .f90 file. This specifies that a file called fred.o

would depend on the corresponding fred.f90 and if the .o does not already exist

should be created using the rule specified on the line below.

• We added a clean target which cleans up the ‘dog poo’ generated by the interme-

diate step of creating the .o files. So we can just type make clean to clean up these

temporary files.

• Notice the use of the special variables $@ and $<.

Now compiling your code should be as simple as typing ‘make’:

$ make

gfortran -O3 -Wall -Wextra -o area.o -c area.f90

gfortran -O3 -Wall -Wextra -o maths.o -c maths.f90

gfortran -O3 -Wall -Wextra -o maths area.o maths.o

$./maths

Even better, if nothing has changed then typing make again does nothing:

$ make

make: ‘maths’ is up to date.

but if we make a change to just one file then make knows to only recompile that one file

and redo the link step:

$ touch maths.f90

$ make

gfortran -O3 -Wall -Wextra -o maths.o -c maths.f90

gfortran -O3 -Wall -Wextra -o maths area.o maths.o

You should see, however, that this is dangerous if we apply it to the area.f90 module.

That is, if area.f90 changes then we should also recompile maths.f90 as well, since

our program calls functions in that module. How should we ensure this happens? By

specifying the dependency in our Makefile!

11

...

maths.o: geometry.mod

Specifying all of the dependencies is hard to do for bigger codes, and only relevant if the in-

terface to the routine changes, I often don’t bother and instead just make sure the files are

complied in the correct order (i.e. SRC=area.f90 maths.f90 not SRC=maths.f90 area.f90).

Then I just type make clean if I know that I have changed the way a routine is called.

3.5.1 (Advanced) Generating Fortran dependencies automatically

With gfortran there is a way of generating the information needed in the Makefile auto-

matically using the -M flag. To do this, add another target as follows:

DEPFLAGS=-M -cpp

deps:

<tab> @$(FC) $(DEPFLAGS) $(SRC)

and you should find

$ make deps

area.o geometry.mod: area.f90

maths.o: maths.f90 geometry.mod

Even better, we can put the output of this command into a file make.deps that we

include in our Makefile automatically using an include line. We can even generate this

file automatically by making make.deps depend on deps. The whole thing looks like:

#-- optional stuff for specifying dependencies automatically

DEPFLAGS=-M -cpp

deps: $(SRC)

<tab> @$(FC) $(DEPFLAGS) $(SRC) > make.deps

make.deps: deps

include make.deps

4 Key Fortran concepts

4.1 Floating point precision in Fortran

The basic types of variables in Fortran are integer, logical, real and character.

Declaration of these takes an optional kind parameter. So for example to specify an

12

8-byte real instead of a 4-byte real one would use:

real(kind=8) :: x

or just

real(8) :: x

Technically, using the kind parameter to specify the number of bytes is compiler depen-

dent, but it is very widespread. The correct way is to let Fortran define the kind according

to the desired precision of the calculation using selected_real_kind. To do this, let’s

create another file called precision.f90 with contents as follows:

! module to define precision of real variables

module prec

implicit none

integer, parameter :: dp = selected_real_kind(P=10,R=30)

integer, parameter :: sp = selected_real_kind(P=5,R=15)

integer, parameter :: dp_alt = kind(0.d0)

public :: dp,sp,print_kind_info

private

contains

! routine to print information about the kinds being used

subroutine print_kind_info()

real(sp) :: pi_single

real(dp) :: pi_double

print*,’ double precision is kind=’,dp

print*,’ single precision is kind=’,sp

print*,’ kind of a double precision number is ’,dp_alt

pi_single = 4.0_sp*atan(1.0_sp)

pi_double = 4.0_dp*atan(1.0_dp)

print*,’ pi in single precision is ’,pi_single

print*,’ pi in double precision is ’,pi_double

! see what happens if we accidentally mix precisions

pi_double = pi_single

print*,’ pi converted from single is = ’,pi_double

end subroutine print_kind_info

end module prec

13

Then add this file to the line in the Makefile:

SRC=precision.f90 area.f90 maths.f90

and edit the main program to call this subroutine and also print the kind of a default

real. That is:

program maths

use geometry, only:area,pi

use prec, only:print_kind_info

implicit none

real :: r

call print_kind_info()

print*,’ radius is of kind ’,kind(r)

...

end program maths

Compiling and running this, you should find:

$./maths

double precision is kind= 8

single precision is kind= 4

pi in single precision is 3.14159274

pi in double precision is 3.1415926535897931

pi converted from single is = 3.1415927410125732

radius is of kind 4

...

Notice the precision loss in converting from double to single precision.

Exercise 4.1.1: Rewrite the area function so that it works in double precision instead

of single precision. To do this, redefine all the real variables to be real(dp), with dp

imported from our prec module as above.

4.2 Arrays and array operations

4.2.1 One dimensional arrays and array operations

Arrays are very powerful in Fortran, and this is one of the key advantages over other lan-

guages such as C and C++. Defining an array just means giving one or more dimensions

to a variable. For example a vector of 3 numbers can be defined using:

14

real :: x(3)

Let’s create an example module for array operations, in a file called arrays.f90:

module arrays

implicit none

contains

subroutine array_examples()

use prec, only:sp

real(sp) :: x(3),y(3)

! set each element individually

x(1) = 1.0

x(2) = 2.0

x(3) = 3.0

print*,’ x = ’,x

! set whole array equal to 1

x = 1.

print*,’ x = ’,x

! set array parts in one line

x = (/1.0, 2.0, 3.0/)

print*,’ x = ’,x

! set y=x

y = x

print*,’ y = ’,y

! array operations

print*,’sum=’,sum(y)

print*,’maxval=’,maxval(y)

print*,’minval=’,minval(y)

print*,’maxloc=’,maxloc(y)

print*,’minloc=’,minloc(y)

! magnitude

print*,’ |x| = ’,sqrt(dot_product(x,x))

print*,’ |x| = ’,norm2(x)

end subroutine array_examples

end module arrays

15

As previously, use your module from the main code:

program maths

use arrays, only:array_examples

implicit none

call array_examples()

end program maths

4.2.2 Multi dimensional arrays

Multi-dimensional arrays are similar. For a 3× 3 matrix just define:

real :: x(3,3)

Again, you can add, subtract and multiply arrays just as if they were scalars.

5 Logic and loops: if/then/else and select case

Here is a simple example of how to construct and use logical statements:

program ifanimal

implicit none

logical :: isacow,isadog,hastwohorns

integer, parameter :: nhorns = 2

isacow = .true.

isadog = .false.

if (isacow) then ! check if our animal is a cow

write(*,’’(a)’’,advance=’no’) my animal is a cow...’

if (nhorns==2) write(*,*) ’ ...with two horns’

elseif (isadog) then

print*,’ my animal is a dog. Woof.’

else

print ‘‘(a)’’,’my animal is not a cow’

hastwohorns = (nhorns==2)

if (hastwohorns) print ‘‘(a)’’,’ but it has two horns’

endif

end program ifanimal

16

6 Writing to and reading from files

Writing to/reading from files is just a matter of using the open,close,write and read

statements.

program io

implicit none

character(len=20) :: filename

real :: x, y

filename=’results.out’

x = 1.

y = 2.

! write to ascii file

open(unit=1,file=filename,status=’replace’,form=’formatted’)

write(1,*) x, y

close(1)

! reset vars

x = 0.

y = 0.

! read from ascii file

open(unit=2,file=filename,status=’old’)

read(2,*) x,y

close(2)

! print vars

print*,’ x = ’,x,’ y = ’,y

end program io

7 Exercises

The actual mechanics of programming in Fortran is just a matter of learning the syntax.

The best way is to try to implement practical examples. Here are a few simple exercises.

1. Implement a subroutine to return the n real solutions to a quadratic equation, i.e.

ax2 + bx+ c = 0, (1)

17

using the exact solution, i.e.

x =
−b±

√
b2 − 4ac

2a
. (2)

Check that the solution returned by your routine is correct by evaluating (1) in your

program.

2. Write a subroutine that sets up two one dimensional arrays for position (x) and

velocity (vx). Set the position in equally spaced increments between 0 and 1, and

velocity array equal to:

vx = sin(2πx) (3)

Write the position and velocity arrays to a file and use gnuplot or similar to plot

the arrays.

3. Write a simple program that asks for your name and birth year and prints back

your name and age. Google for the date_and_time intrinsic routine. Rewrite this

program to use the prompting module (given in the examples on the moodle page)

instead of using read.

4. Write a program that takes a command line argument and prints it. Use the intrinsic

get_command_argument routine and the associated get_number_arguments

18

	Introduction to programming
	What is a programming language?
	Hello world

	Introduction to modern Fortran
	Why use modern Fortran instead of F77?
	A simple program
	Organising your code
	Compiler flags

	Using Makefiles to compile your code
	Hello world in Gnu Make
	Targets
	Dependencies
	Variables in Makefiles
	Using a Makefile to compile your code
	(Advanced) Generating Fortran dependencies automatically

	Key Fortran concepts
	Floating point precision in Fortran
	Arrays and array operations
	One dimensional arrays and array operations
	Multi dimensional arrays

	Logic and loops: if/then/else and select case
	Writing to and reading from files
	Exercises

