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Key revision points

1. Angular momentum increases with radius in a Keplerian flow

2. Conservation of angular momentum leads to the formation of accretion discs

3. We can derive a simple diffusion equation describing the evolution of discs from

the conservation of mass and angular momentum

2 Protoplanetary discs

Planet formation is a topic being revolutionised by recent observations from the ALMA

telescope (Fig 1). It is a hugely exciting time in the field. We will try to cover the basics

in ASP2062 to understand what we are now seeing with our own eyes.

2.1 The angular momentum problem

Conservation of angular momentum means that it is actually very difficult to accrete

material onto stars. In general, material will start to orbit the star at a given radius R.

The orbital speed is given from Newton’s law of motion F = ma, considering the force

due to gravity and the acceleration due to uniform circular motion according to

−GMm

R2
r̂ = −

mv2
φ

R
r̂, (1)

giving the orbital speed as

vφ = ±
√
GM

R
, (2)

or, equivalently, the angular speed

Ω(R) ≡ vφ
R

=

√
GM

R3
. (3)
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Figure 1: The accretion disc around the young star HL Tau, imaged at mm-wavelengths
in Oct 2014 by the ALMA telescope. This is the first ever high resolution image of an
accretion disc in astrophysics.

This is known as Keplerian rotation. Consider the specific angular momentum L, given

by

L = Rvφ = R2Ω(R) =
√
GMR. (4)

We see that angular momentum increases with radius, so material must lose angular

momentum to land on the star. However, angular momentum is conserved in the universe,

so cannot be truly lost but only transported onto (given to) different material. Nature

achieves this by forming a rotating disc of material known as an accretion disc.

Angular velocity and angular momentum
How does the radial dependence of angular velocity compare to that of the specific

angular momentum? One of the unusual features of Keplerian flow is that angular

momentum increases with radius but angular velocity decreases. Thus material on

wider orbits moves at a slower speed but carries more angular momentum.

2.2 Accretion discs

Our derivation of the accretion disc equations follows the famous review article by Pringle

(1981). It is also covered in the textbooks by Frank et al. (2002) and Armitage (2010).

Since discs are essentially two dimensional, it is useful to discuss disc physics in terms

of two dimensional quantities. We define the surface density of material in the disc at a

2



given annulus as

Σ(R, φ, t) =

∫ ∞
−∞

ρ(R, φ, z, t)dz, (5)

where R ≡
√
x2 + y2 is the radius in cylindrical coordinates. A good way to think about

surface density vs. density is that [ρ] = g/cm3 while [Σ] = g/cm2.

2.2.1 Mass and angular momentum

Consider an annulus of material in a disc between a radius R and R + ∆R. We have:

Mass of annulus = surface density× area = 2πR∆RΣ, (6)

Angular momentum of annulus = ML = 2πR∆RΣR2Ω, (7)

where we used the specific angular momentum (4).

2.2.2 Conservation of mass

The rate of change of mass is equal to the net flow of material in and out from neighbouring

annuli, i.e.

∂

∂t
(2πR∆RΣ) = 2πRΣ(R, t)vR(R, t)− 2π(R+ ∆R)Σ(R+ ∆R, t)vR(R+ ∆R, t),(8)

where vR is the radial component of velocity and we assume an axisymmetric disc such

that Σ does not depend on φ, i.e. Σ = Σ(R, t). We can turn this into a differential

equation by expanding vR(R + ∆R) and Σ(R + ∆R) in a Taylor series about R, i.e.

vR(R + ∆R, t) = vR(R, t) + ∆R
∂vR
∂R

(R, t) +O
(
∆R2

)
, (9)

Σ(R + ∆R, t) = Σ(R, t) + ∆R
∂Σ

∂R
(R, t) +O

(
∆R2

)
. (10)

We assume that ∆R is small, neglecting terms of order ∆R2 to give the term in (8) as

Σ(R + ∆R, t)vR(R + ∆R, t) = vRΣ(R) + ∆R

[
Σ
∂vR
∂R

+ vR
∂Σ

∂R

]
+O(∆R2), (11)

= vRΣ + ∆R
∂

∂R
(ΣvR) . (12)

From (8) we then have

R
∂Σ

∂t
= −vRΣ−R ∂

∂R
(ΣvR) , (13)
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giving our final differential equation for mass conservation in the form

∂Σ

∂t
+

1

R

∂

∂R
(RΣvR) = 0. (14)

2.2.3 Conservation of angular momentum

Following the same procedure for the conservation of angular momentum between annuli,

we end up with a differential equation of the form

R
∂

∂t

(
ΣR2Ω

)
+

∂

∂R

(
RΣvRR

2Ω
)

=
1

2π

∂G

∂R
, (15)

where G(R, t) is the torque of an outer annulus acting on a neighbouring inner one at

radius R. The physical interpretation of the terms in (15) is that the rate of change of

angular momentum (first term) is determined by the change in surface density due to

radial flow (2nd term) and by the difference in torque applied by stresses at the inner and

outer edge (right hand side; ∂G/∂R).

If we suppose that neighbouring annuli exert “friction” on each other, the torque G is

G = 2πR︸︷︷︸
circumference

× νΣR
dΩ

dR︸ ︷︷ ︸
viscous force per unit length

× R︸︷︷︸
lever arm

, (16)

where ν is the viscosity coefficient, with dimensions of area per unit time. Then (15)

becomes

∂

∂t

(
ΣR2Ω

)
+

1

R

∂

∂R

(
RΣvRR

2Ω
)

=
1

R

∂

∂R

(
νR3Σ

dΩ

dR

)
. (17)

Now here’s the magic: We can combine (17) and (14) into a single equation for the time

evolution of Σ by eliminating vR. We can write (17) as

R2Ω

[
∂Σ

∂t
+

1

R

∂

∂R
(RΣvR)

]
+ ΣvR

∂

∂R

(
R2Ω

)
= RHS, (18)

from which we can eliminate the first term using (8), giving

vR =
∂
∂R

(
νR3ΣdΩ

dR

)
RΣ ∂

∂R
(R2Ω)

. (19)
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If the disc is Keplerian then dΩ/dR = −3
2
(GM)1/2R−5/2 and ∂/∂R(R2Ω) = 1

2
(GM)1/2R−1/2

and we have

vR =
−3

ΣR1/2

∂

∂R

(
νΣR1/2

)
. (20)

Finally, substituting this in (8) we have

∂Σ

∂t
=

3

R

∂

∂R

[
R1/2 ∂

∂R

(
νΣR1/2

)]
. (21)

We will unpack the physics of this equation — by solving it — in the next lecture.

References

Armitage, P. J.: 2010, Astrophysics of Planet Formation. Cambridge University Press.

Frank, J., A. King, and D. J. Raine: 2002, Accretion Power in Astrophysics: Third

Edition. Cambridge University Press.

Pringle, J. E.: 1981, ‘Accretion discs in astrophysics’. ARA&A 19, 137–162.

5


	Protoplanetary discs
	The angular momentum problem
	Accretion discs
	Mass and angular momentum
	Conservation of mass
	Conservation of angular momentum



