

Star formation

Dr Daniel Price
Lecture 7: Star formation intro

What kind of stars are in this galaxy?

Blackbody spectrum (c.f. Lecture 2)

http://hyperphysics.phy-astr.gsu.edu

- All substances at some temperature emit thermal radiation in the form of a continuous distribution of wavelengths

Planck
Function:

$$
B_{\nu}(T)=\frac{2 h \nu^{3}}{c^{2}}\left[\exp \left(\frac{h \nu}{k T}\right)-1\right]^{-1}
$$

Wien's displacement law

- Peak of blackbody spectrum can be related to temperature of body

$$
\begin{gathered}
\lambda_{\max } T=b \\
b=\text { const }=2.9 \times 10^{6} \mathrm{~nm} \mathrm{~K}
\end{gathered}
$$

What is the effective temperature of the Sun?
Hint: yellow = 580nm

$$
\begin{aligned}
& \lambda_{\text {max }} T=b \\
& b=\text { const }=2.9 \times 10^{6} \mathrm{~nm} \mathrm{~K}
\end{aligned}
$$

Temperature of the Sun (roughly)

Luminosity $=$ surface area \times flux

$L=4 \pi R^{2} \sigma T^{4} \quad$ for a spherical blackbody
$\sigma=$ Stefan-Boltzmann constant $=5.67 \times 10^{-5} \mathrm{erg} \mathrm{cm}^{-2} \mathrm{~K}^{-4} \mathrm{~s}^{-1}$

Stellar spectral types (Harvard spectral classification)

Type	Apparent colour	Temperature	Mass (Msun)	Radius (Rsun)
O	blue	$>30,000 \mathrm{~K}$	>16	>6.6
B	blue white	$10,000-30,000 \mathrm{~K}$	$2-16$	$1.8-6.6$
A	white	$7,500 \mathrm{~K}-10,000 \mathrm{~K}$	$1.4-2$	$1.4-1.8$
F	yellow-white	$6,000-7,500 \mathrm{~K}$	$1.04-1.4$	$1.15-1.4$
G	yellow	$5,200-6,000 \mathrm{~K}$	$0.8-1.04$	$0.96-1.15$
K	orange	$3,700-5,200 \mathrm{~K}$	$0.45-0.8$	$0.7-0.96$
M	red	$2,400-3,700 \mathrm{~K}$	$0.08-0.45$	<0.7
L	red brown	$1,300-2,400 \mathrm{~K}$	$0.005-0.08$	$0.08-0.15$
T	brown	$500-1,300 \mathrm{~K}$	$0.001-0.07$	$0.08-0.14$
Y	dark brown	$<500 \mathrm{~K}$	$0.0005-0.02$	$0.08-0.14$

Lifetime of the Sun
$\square 10 \mathrm{Myr}$
10 Gyr

- 100 Myr
$\square 100$ Gyr

Luminosity-mass relation

Lifetime of a 10 solar mass star

- Assume available energy proportional to mass
- Luminosity = Energy consumption rate $=\mathrm{dE} / \mathrm{dt}$
- Lifetime $\mathrm{t}=\mathrm{E} /(\mathrm{dE} / \mathrm{dt})$
- Work out the relative lifetime compared to the Sun

Lifetime of a 10 solar mass (B-type) star

Orbital period of the Sun around the Milky Way

23 Myr
23,000 yr
230 Myr
2.3 Gyr

So where do the blue stars come from?

So where do the blue stars come from?

From merging with another galaxy
\square They were born close to where they are
The magical sky fairy sprinkled them there

Spiral Galaxy M83

Hubble Space Telescope • WFC3/UVIS

Ground: MPG/ESO $2.2 \mathrm{~m} / \mathrm{WFI}$
NASA, ESA, R. O'Connell (University of Virginia), the WFC3 Science Oversight Committee, and ESO

STScl-PRC09-29

The Milky Way

"dark clouds" where light is blocked by interstellar dust

Interstellar dust

- consists mostly of Silicon, Carbon ("household fluff" produced by stars)
- sublimates (ie. melts) at $T>1000 K$
- at what wavelength do we expect blackbody emission?

Recall:
$\lambda_{\max } T=b$

$b=$ const $=2.9 \times 10^{6} \mathrm{~nm} \mathrm{~K}$

At what wavelength do you predict emission from dust?

The Milky Way in Infrared

Orion

Gould's belt

described by Benjamin Gould in 1879 as a collection of bright and massive stars that formed a ring in a projection on the sky

"Most star formation within 0.5 kpc lies in Gould's Belt, a ring around the sky containing star-forming molecular clouds centred on a point 200 pc from the Sun and tilted at 20 degrees to the Galactic Plane"

Extinction mapping

Ophiuchus

Evans et al. (2008)

(Nearby) Molecular clouds: in numbers

			Table 1 Facts about Clouds			Evans et al. (2008)		
Cloud	Solid angle $\left(\mathrm{deg}^{2}\right)$	Distance (pc)	$\begin{aligned} & \hline \hline \text { Area } \\ & \left(\mathrm{pc}^{2}\right) \\ & \hline \end{aligned}$	$\begin{array}{r} \Delta v \\ \left(\mathrm{~km} \mathrm{~s}^{-1}\right) \end{array}$	$\begin{aligned} & \hline \text { Mass }^{\mathrm{a}} \\ & \left(\mathrm{M}_{\odot}\right) \\ & \hline \end{aligned}$	$\begin{gathered} \langle n\rangle^{\mathrm{b}} \\ \left(\mathrm{~cm}^{-3}\right) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \text { (cross) } \\ (\mathrm{Myr}) \\ \hline \end{gathered}$	Refs
Cha II	1.038	178 ± 18	10.0 ± 2.0	1.2	426 ± 86	345	3.7	1, 2
Lupus	3.101	$150 \pm 20^{\text {c }}$	28.4 ± 6.5	1.2	816 ± 188	381	$4.7{ }^{\text {d }}$	3, 4
Perseus	3.864	250 ± 50	73.6 ± 29.4	1.54 ± 0.11	4814 ± 1925	196	7.8	5,6
Serpens	0.850	260 ± 10	17.5 ± 1.4	2.16 ± 0.01	2016 ± 155	707	2.7	7,6
Ophiuchus	6.604	125 ± 25	31.4 ± 12.6	0.94 ± 0.11	$2182 \pm 873^{\text {e }}$	318	8.4	8, 6
Total	15.457	\cdots	160.9 ± 51.9	\cdots	10254 ± 3228	389	\cdots	

- mostly consist of molecular hydrogen, but also other molecules e.g. carbon monoxide, ammonia, NH_{3}, methanol, water.
- size ~ 0.1pc - 100pc (0.3ly - 300ly)
- density $\sim 10^{3}-10^{4}$ particles $/ \mathrm{cm}^{3} \sim 10^{-21}-10^{-20} \mathrm{~g} / \mathrm{cm}^{3}$
- size + density implies mass ~ 10 to 10^{6} Msun
- temperature ~ 10K
- lifetime? (1 million - 10 million yrs)
- formation?

Orion Nebula

Taurus Molecular Cloud

T-Tauri and surrounds (optical) credit: NOAO

Taurus molecular cloud in ${ }^{12} \mathrm{CO}$ emission
Goldsmith, Heyer, Narayanan, Snell, Li \& Brunt (2008)

Fig. 14.- Locations of young stars in Taurus superimposed on map of the H_{2} column density. The stellar positions are from Kenyon (2007). The diamonds indicate diffuse or extended sources (of which there are 44 in the region mapped), the squares indicate Class I or younger stars (18), and the asterisks indicate T-Tauri stars (168). It is evident that the diffuse and younger sources are almost without exception coincident with regions of relatively large column density, while the older stars show a much larger probability of being found in regions of lower column density.

Hertzsprung-Russell diagram (for Taurus MC)

Why do young stars lie above the main sequence?
\square They are hotter than main sequence stars
They are bigger than main sequence stars
\square They are cooler than main sequence stars
\square They are smaller than main sequence stars

T-Tauri stars

Why is there a "bump" on top of the blackbody curve?

Molecular cloud appearance and structure is strongly dependent on mass of stars formed

Taurus

most massive star ~ 1 Msun

Ophiuchus

Orion

```
most massive star ~ 3 Msun
```

