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Dust + Gas: A simple example of a 
two-fluid mixture

n Two fluids coupled by a drag term
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Figure 5. As in Fig. 4 but using only the double-hump cubic kernel with
a range of drag coefficients K = 0.01, 0.1, 1, 10 and 100 (top to bottom,
solid/black lines), compared with the exact solution in each case given by
the long-dashed/red lines.

can be improved – at considerable cost – by increasing the ratio of
smoothing length to particle spacing (i.e. the neighbour number).
By comparison, use of the double-hump cubic spline kernel gives
errors !0.1 per cent (solid/black line) with no additional overhead
in terms of cost.

4.2.3 DUSTYBOX: effect of drag coefficient and dust-to-gas ratio

Fig. 5 is identical to Fig. 4 but for a range of drag coefficients
K = 0.01, 0.1, 1, 10 and 100, compared to the exact solution in
each case given by a solid/black line. Irrespective of the value of
K, both gas and dust velocities relax to the barycentric velocity
(vg = vd = 0.5) in a few stopping times ts = (ρ̂gρ̂d)/[K(ρ̂g + ρ̂d)].
Using the double-hump cubic, an accuracy between 0.1 and 1 per
cent is achieved in all cases (long dashed/red lines).

Fig. 6 is similar, but varying the dust-to-gas ratio using ρ̂d/ρ̂d =
0.01, 0.1, 1, 10 and 100 (achieved by varying ρ̂d with ρ̂g = 1) and
using K = 1. This changes both the drag stopping time and the
barycentric velocity towards which the system relaxes. Here again,
an accuracy between 0.1 and 1 per cent is achieved in all cases.

4.3 DUSTYWAVE: sound waves in a dust–gas mixture

The exact solution for linear waves propagating in a dust–gas mix-
ture (DUSTYWAVE) has been presented by Laibe & Price (2011a).
We have performed a series of tests involving the propagation of a
sound wave along the x-axis in both one and three dimensions in a
periodic box, adopting the set-up described in table 2 of Laibe &
Price (2011a). The DUSTYWAVE problem is more complex than the
DUSTYBOX problem as the motion of the mixture is driven by both
the drag and the gas pressure.

Specifically, Laibe & Price (2011a) derive the dispersion relation

ω3 + iK
(

1
ρ̂g

+ 1
ρ̂d

)
ω2 − k2c2

s ω − iK
k2c2

s

ρ̂d
= 0, (97)

Figure 6. As in Figs 4 and 5 but varying the dust-to-gas ratio ρ̂d/ρ̂d =
0.01, 0.1, 1, 10 and 100 (top to bottom, solid/black lines) and a fixed drag
coefficient K = 1 using the double-hump cubic kernel. Exact solutions for
each case are given by the long-dashed/red lines.

for solutions in the form ei(kx−ωt). At high drag, equation (97)
can be expanded in a Taylor series, which to first order
gives

ω = ±kc̃s − i
ρ̂gρ̂d

K(ρ̂g + ρ̂d)
k2c2

s

(
1 − A2

2

)
, (98)

where the effective sound speed is defined according to

c̃s ≡ csA = cs

(
1 + ρ̂d

ρ̂g

)−1/2

. (99)

The first term of equation (98) gives the propagation of the cen-
tre of mass of the mixture at the effective sound speed c̃s. The
second term corresponds to a corrective dissipative term since
A ∈ [0, 1].

4.3.1 DUSTYWAVE: set-up

The equilibrium state is characterized by the two phases at rest
where the gas sound speed and both gas and dust densities are set
to unity in code units. In one dimension, this is achieved by placing
equally spaced particles in the periodic domain x ∈ [0, 1]. For the
3D simulations, the tests are run in a periodic box x, y, z ∈ [0, 1]
with gas particles set up on a regular cubic lattice and dust particles
set up on a cubic lattice shifted by half of the lattice step in each
directions. As previously, no artificial viscosity is applied. We set
the relative amplitude of the perturbation to 10−4 in both velocity
and density in order to remain in the linear acoustic regime for which
the solution in Laibe & Price (2011a) is derived (we have verified
that running the same simulations setting the relative amplitudes to
10−8 gives the same results). The density perturbation is applied
to the particles as described in appendix B of Price & Monaghan
(2004). We adopt an isothermal equation of state P = c2

s ρ with
cs = 1.
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Two fluid dust+gas in SPH
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Two problems
with two fluids



1) Overdamping problem

Red=analytic solution for dust/gas waves derived by 
Laibe & Price (2011) MNRAS 418, 1491

No drag=no damping 
SPH=exact

Intermediate drag = 
strong damping in 
both SPH + exact

High drag =
no damping

but SPH strongly 
damped



Overdamping problem: Resolution Criterion

n Require infinite timesteps AND infinite resolution 
in the obvious limit of perfect coupling!

�t ! 0

�x ! 0

Temporal: �t < t
stop

(K ! 1)

t
stop

! 0 implies

(can be fixed with implicit 
timestepping methods)

(much more difficult to fix)

Laibe & Price, 2012, MNRAS 420, 2345
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2) Dust trapping problem
10th international SPHERIC workshop Parma, Italy, June, 16-18 2015
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Fig. 1. Linear waves in a dust-gas mixture (the ‘DUSTYWAVE’ problem),
showing the SPH two fluid solution with 2×100 particles (black circles=gas;
open circles=dust) after 5.5 periods, compared to the analytic solution for the
gas (solid red line) and dust (dashed red line). At low and intermediate drag
the solution is accurate, but at strong drag the numerical solution because the
short lengthscale separating the two fluids is not resolved.

In recent work [2], [3] we made a number of key im-
provements to the discretisation of this set of equation in
SPH. We found a factor of 10 improvement in accuracy at
no additional cost by employing a double-hump shaped kernel
(Daj in equations 9 and 10), to compute the drag terms instead
of the usual bell shaped kernel (Waj). We also presented
an improved implicit integration method and generalised the
earlier methods of [1], [4] to spatially variable smoothing
lengths.

D. Two problems with two fluids

1) Overdamping: The first problem we found with devel-
oping algorithms for dust/gas mixtures was that there were
few simple test problems which could be used to benchmark
the numerical solution. This led one of us (GL) to derive the
complete analytic solution for linear waves in the mixture,
which we published in [5]. We found this immensely useful
and enlightening, and indeed it revealed a rather fundamental
limitation to the two fluid formulation. Figure 1 shows a
typical SPH two-fluid solution after 5 1

2
wave periods, solving

Equations (7)–(12) for a one dimensional linear-wave in an
equal mixture of dust and gas while varying the drag parameter
K , in each case compared to the analytic solution in both the
gas (solid red line) and dust (dashed red line).

The behaviour of the analytic solution is intuitive — when
the drag is small the solution corresponds to an undamped
sound wave propagating in the gas. At very strong drag the
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Fig. 2. Gas (left) and dust (right) column density in a two-fluid simulation
of material orbiting in a protoplanetary disc. Once the dust smoothing length
becomes smaller than the typical gas smoothing length (solid red circle shows
a 2h for a representative gas particle) the dust particles become artificial
‘trapped’ in high density rings, due to the lack of mutual repulsion between
SPH dust particles.

solution also corresponds to an undamped soundwave, with
the only effect being a change to the effective sound speed
because of the weight of the dust being carried along by the
gas. Importantly it is only at intermediate drag (stopping times
comparable to the wave period) that the solution should be
strongly damped.

The SPH solution, by contrast, shows a strongly damped
solution at high drag. The reason is that to accurately capture
the physics when the drag is strong, one must resolve the
(very) short lengthscale separating the two fluids. Indeed, we
show in [2] that using a very large number of particles (up
to 10,000 in 1D) does reproduce the analytic solution, but
the resolution requirement is prohibitive (corresponding to
h ! tscs, where cs is the sound speed). The effect of under-
resolving this length scale is to mimic the effect of a much
larger separation length, giving a solution closer to that of
an intermediate drag which is highly dissipative. This spatial

resolution requirement is in addition to the usual stability
constraint on the timestep ∆t < ts from the drag terms. In
other words, the two fluid method requires an infinite number

of particles and an infinite number of timesteps to correctly
resolve the limit of a perfectly coupled mixture.

2) Artificial trapping of dust particles: Because they do
not feel any mutual repulsion, dust particles can also become
artificially ‘trapped’ in high density regions. We found this
to occur whenever the dust collects on a scale smaller than
the local smoothing length of gas particles. An example is
shown in Figure 2, showing the dust particles in the centre
of a protoplanetary disc simulation forming artificial ‘rings’
once the dust smoothing length is smaller than the typical
gas resolution (shown by the red circle). This problem could
be only partially mitigated by using the maximum smoothing
length of the two fluids in the drag terms (Equations 9 and
10) — the simulation shown in Figure 2 does this but we still
found particle trapping to occur.

Both of these issues motivated us to develop an alternative
approach that correctly captures the limit of strong drag/short
stopping time, which is the subject of the present contribution.

• Dust particles feel no pressure, can become 
`trapped’ if they fall below the resolution length of 
the gas, forming artificial structures



ONE FLUID TO RULE 
THEM ALL

LAIBE & PRICE (2014A,B,C)



TWO BECOME ONE

n Two fluids coupled by a drag termOne mixture with a differential velocity

A phoenix from the ashes

Laibe & Price (2014) MNRAS 

No approximations!
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SPH one fluid method

ONE set of particles representing the mixture

10th international SPHERIC workshop Parma, Italy, June, 16-18 2015

These particles represent neither gas nor dust, but rather the
‘mixture’. The dust fraction ϵ and likewise the differential
velocity ∆v are now intrinsic properties of the mixture that
are advected along with the particles. The evolution of u
is modified to express the fact that the particles are no
longer simply gas particles. One must also ensure that the
conservation laws are satisfied — in particular that the mass
of each phase is separately conserved, just as it would be with
the two fluid approach.

Nevertheless it is reasonably straightforward to write down
the SPH discretisation in a way that does satisfy the con-
servation properties. The resulting equations, ignoring for the
moment artificial dissipation terms, are given by [7]
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The full set of equations including the modifications to artifi-
cial viscosity necessary for shock capturing are given in [7].

D. Tests of the general one fluid method

Figure 3 shows the solution obtained on the DUSTYWAVE

problem by solving Equations 26–30 instead of 7–12. One
can see immediately that there is no overdamping of the fluid
when the drag is strong. Furthermore, the analytic solution is
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Fig. 4. Solution to a dust-gas shock problem with strong drag, showing the
solution with the one fluid method (black points) compared to the analytic
solution in the limit where the stopping time is small (red line).

now correctly reproduced in all cases, including the limits of
both strong and weak drag (i.e. for both ts → ∞ and ts → 0).
It is intuitive why this should be the case, since the resolution
problem with the two fluid method referred to in Section I-D1
was related to the need to resolve the physical separation
length between gas and dust particles. In the one fluid method
there is no physical ‘separation’ of the ‘gas’ particles from the
‘dust’ particles — every particle carries information about both
phases. (Very!) careful inspection of Figure 3 would reveal
this, since to visualise the gas and dust ‘particles’ we have
simply made two copies of the same set of mixture particles,
one with the gas properties reconstructed using (15) and (17)
and one with the dust properties reconstructed using (16) and
(18).

A further confirmation that the one fluid method solves the
resolution issue is shown in Figure 4, showing the propagation
of a shock in the mixture when the drag is strong. The solution
in this case should be identical to a hydrodynamic shock but
with the shock propagating at the modified sound speed due
to the weight of the dust. It can be seen that the one fluid
method gives results in excellent agreement with the analytic
solution (red line), whereas in [2] we found that around 10,000
particles in one dimension were needed to produce the correct
solution with the two fluid method.

It is also intuitively obvious that the one fluid approach also
solves the dust trapping problem — there is no separate set
of ‘dust’ particles, so they cannot become trapped below the
resolution of the gas. Instead, the resolution of both phases
is now tied to the density of the mixture rather than being
separate for each phase. Thus by definition the gas and the dust
components are resolved with the same resolution (smoothing)
length.



Tests of one fluid method
Laibe & Price (2014b)
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The diffusion 
approximation for dust

Laibe & Price (2014)
Price & Laibe (2015) MNRAS  451, 5332
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Diffusion approximation: tests
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Fig. 8. Fall of a layer of dust in a stratified atmosphere, comparing results with the diffusion method (left) to the two fluid approach (right).
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Fig. 7. SPH simulation of the DUSTYWAVE problem using the diffusion
approximation, compared to the analytic solutions given by the red solid and
dashed lines (c.f. Figures 1 and 3). The diffusion approximation assumes
that the stopping time is short compared to the timestep and is therefore
only applicable when the drag is strong. However, it requires only explicit
timestepping to correctly capture the limit of small grains.

the dust is the ‘fall of a layer of dust’ problem introduced by
Monaghan [4]. The setup is a box with a vertical gravitational
force, with the gas density stratified to balance the vertical
gravity and periodic boundaries in the horizontal direction.
We use a constant drag coefficient K = 10, an isothermal
equation of state P = c2sρg with cs = 10 and a gas density
ρg = 1 at y = 0. We set the density stratification, and in
the one fluid method the dust location, by slightly altering the
particle mass. The dust is initially confined in 0.6 < y < 0.8
with ρd = 0.1 in the layer and 0 elsewhere.

Figure 8 compares the results using the diffusion approx-
imation (left) to the results obtained with the standard two
fluid method (right). The one fluid method benefits from the
regularisation of the mixture particles by the gas pressure,
whereas discreteness effects are visible in the two fluid method
because the dust particles have no self-interaction. Neverthe-
less, comparable solutions are obtained with both methods.

5) Settling of dust in a protoplanetary disc: Our final test
problem is drawn from our intended application, namely the
settling and migration of dust in discs around young stars
during the planet formation process. We consider a vertical
section of disc at a particular radius, with the gas pressure
in hydrostatic equilibrium with the vertical component of the
gravity from the central star. We perform the test at 50 AU
with mm-sized dust grains using an Epstein drag prescription
(for full details see [11]). The stopping time for grains of this
size is a few percent of the orbital timescale, meaning that the
terminal velocity approximation is valid. However the problem
is still (just) tractable with the two fluid method enabling us
to compare all three approaches.

Figure 9 compares the numerical results with the diffusion
method (top) with the general one fluid method (centre) and
the two fluid method (bottom). The left panel shows the gas
density while the right panel shows the dust density after 20
orbits. Settling of dust to the midplane is expected to occur
on a timescale of ∼ 102 orbits. The dust density is better
resolved with the two fluid method because the resolution in
the dust follows the dust mass (in contrast to being tied to
the total mass in the one fluid case) but it is also more noisy
because there is no pressure force to regularise the dust particle
distribution. Nevertheless the results demonstrate that the basic
physics can be captured with any of the three approaches we
have discussed in the paper.

The solution with the diffusion method is ∼50 times faster
to compute, since it requires only explicit timestepping.

Two fluidDiffusion method

“Fall of a layer of dust” from Monaghan (1997), JCP

Explicit timestepping!



Settling of grains in a 
protoplanetary disc



Some issues
• Epsilon can go negative. Solution: if (eps < 0) eps = 0.

• Found problem with harmonic mean:

• Weird discretisation in du/dt - is it correct?
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APPENDIX A: PROOF THAT EQUATION 46 IS A DISCRETE FORM OF EQUATION 4

Here, we prove that the expression obtained for the second term in Eq. 46 by enforcing the conservation of energy, namely

1

2(1 − ϵa)ρa

∑

b

mb

ρb

(ua − ub)(Da + Db)(Pa − Pb)
Fab

|rab|
, (A1)

is indeed a discrete form of the corresponding term in Eq. 4, i.e.

−
ϵts

ρg

∇P · ∇u. (A2)

We proceed, following Price (2012), by identifying −2Fab/|rab| as equivalent to the second derivative of a (new) kernel function, i.e.

∇2Yab ≡
−2Fab

|rab|
. (A3)

It may be shown straightforwardly that this new kernel Yab indeed satisfies the normalisation conditions appropriate to the kernel second

derivative (see Price 2012 for more details). We can then take the Laplacian of the standard SPH summation interpolant with this kernel, i.e.

Aa ≃
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ρb

Yab, (A4)

to give
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ρb
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By writing (A1) in the form

−
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4ρa
g
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we can then use (A5) to translate the various terms. Expanding (A6) we have
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Translating each of the terms in turn using (A5) gives

−
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[

PuD∇21 − PD∇2u + Pu∇2D − P∇2(uD) − uD∇2P + D∇2(Pu) − u∇2(PD) + ∇2(PuD)
]

. (A8)

Expanding the ∇2(ab) terms using the vector identity

∇2(ab) = a∇2b + 2(∇a · ∇b) + b∇2a, (A9)

and expanding the last term using

∇2(PuD) = uD∇2P + PD∇2u + Pu∇2D + 2u(∇P · ∇D) + 2D(∇P · ∇u) + 2P(∇D · ∇u), (A10)

we find, upon simplification that (A8) reduces to simply

−
1

4ρg

[4D(∇P · ∇u)] . (A11)

Hence, (A6) and so (A1) is a discrete form of

−
D

ρg

(∇P · ∇u) = −
ϵts

ρg

∇P · ∇u. (A12)

QED.

APPENDIX B: ENFORCING POSITIVITY OF THE DUST FRACTION

While the usual SPH density summation enforces positivity of the total density, in the one fluid approach there is no constraint on the

positivity of the dust fraction, being simply evolved via a differential equation. We found during our testing of the algorithm (Section 4.4)

that this can occur in practice, even though we conserve the total dust mass. An simple example is where ϵ is non-zero on only a fraction

of the particles and zero on others, implying an infinite gradient in ϵ at the discontinuity surface, which as the dust front evolves can lead

to negative ϵ on the particles that initially had zero. It should be noted that however that those errors are small and kernel dependant (i.e. of

order 10−5 with a quintic kernel). We discuss other possible solutions in Section 4.4, but here present one such solution, which is to evolve

the quantity

s =
√
ρϵ, (B1)

instead of ϵ. We can enforce the same conservation of dust mass but with a guaranteed positivity of the dust fraction since

ϵa = s2
a/ρa. (B2)
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Summary

• New general method for dusty gas with SPH

• Small grains/strong drag = usual SPH equations + 
evolution equation for dust fraction

• Widely applicable

Refs: 
                  Two fluid: Laibe & Price (2012a,b) MNRAS

                     One fluid: Laibe & Price (2014a,b,c) MNRAS
Diffusion method: Price & Laibe (2015) MNRAS


