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SPH starts here...

What is the 
density?
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From density to hydrodynamics

What this gives us: Advantages of SPH

• An exact solution to the continuity equation

• Resolution follows mass, natural compatibility with N-body codes

• ZERO dissipation

• Advection done perfectly

• EXACT conservation of mass, momentum, angular momentum, 
energy and entropy

• A guaranteed minimum energy state



Zero dissipation

Propagation of a circularly polarised Alfven wave

Zero dissipation - Example I.



Zero dissipation - II. Advection of a current loop

1000 crossings (Rosswog & Price 2007)

first 25 crossings

In the following section, we present additional tests of these CT algorithms where wave modes other than
the contact mode play an important role in the solution. We note in passing that the source terms described
in Section 3.1 are absolutely essential to obtain the results presented here. If they had been omitted, the field
loop disintegrates in oscillations before completing a fraction of an orbital period.

3.3.2. Circularly polarized Alfvén wave
In a recent paper Tóth [32] described a test problem involving the evolution of traveling and standing

circularly polarized Alfvén waves in a periodic domain. This test problem is interesting from the point
of view that the initial conditions are nonlinear solutions to the equations of ideal MHD. Unfortunately,

Fig. 2. Gray-scale images of the magnetic pressure ðB2
x þ B2

yÞ at t = 0.19 for an advected field loop ðv0 ¼
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5

p
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Fig. 3. Gray-scale images of the magnetic pressure ðB2
x þ B2

yÞ at t = 2 for an advected field loop ðv0 ¼
ffiffiffi
5

p
Þ using the Ea
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(top right) and Ec
z (bottom) CT algorithm.
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the current density is initially singular. A more quantitative measure of the magnetic field dissipation rate is
given by the time evolution of the volume average of B2 as shown in Fig. 7. We find that the measured val-
ues (denoted by symbols) is well described by a power law (solid line) of the form B2 = A(1 ! (t/s)a) with
A = 3.463 · 10!8, s = 10.614 · 103 and a = 0.2914.

Another important indicator of the properties of the integration algorithm is the geometry of the mag-
netic field lines. Note that since the CT method evolves the interface magnetic flux (preserving $ Æ B = 0)
one may readily integrate to find the z-component of the magnetic vector potential. The magnetic field lines
presented in Fig. 8 are obtained by contouring Az. The same values of Az are used for the contours in both
the t = 0 and the t = 2 images. By t = 2 the inner most field line has dissipated. It is quite pleasing, however,
to note that the CTU + CT algorithm preserves the circular shape of the magnetic field lines, even at this
low resolution.

5.2. Circularly polarized Alfvén wave

The test problem involving the propagation of circularly polarized Alfvén waves at an oblique angle to
the grid was described in Section 3.3.2. In this subsection, we present a resolution study for both standing
and traveling Alfvén waves. The initial conditions are equivalent to those used in Section 3.3.2 only with
N = {4,8,16,32}.

As a diagnostic of the solution accuracy, we plot the in-plane component of the magnetic field, B2, per-
pendicular to the wave propagation direction, x1, in Fig. 9. These plots are constructed using the cell center
components of the magnetic field and each grid cell is included in the plots. Hence, the lack of scatter dem-
onstrates that the solutions retain their planar symmetry quite well. Fig. 9 includes the solutions at time
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Fig. 7. Plot of the volume averaged magnetic energy density B2 as a function of time. The solid line is a power law curve fit to the data
points denoted by the symbols.

Fig. 8. Magnetic field lines at t = 0 (left) and t = 2 (right) using the CTU + CT integration algorithm.

530 T.A. Gardiner, J.M. Stone / Journal of Computational Physics 205 (2005) 509–539

(Gardiner & Stone 2005)

SPH grid
2 crossings (Gardiner & Stone 2005)

Zero dissipation...



Zero dissipation... so we have to add some

Must treat EVERY discontinuity

Viscosity
+

Conductivity



But must treat discontinuities properly...

This issue has NOTHING to do with the 
Kelvin-Helmholtz instability

Viscosity only

Price (2008, J. Comp. Phys.)
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ABSTRACT

We have carried out a comparison study of hydrodynamical codes by investigating their per-
formance in modelling interacting multiphase fluids. The two commonly used techniques of
grid and smoothed particle hydrodynamics (SPH) show striking differences in their ability to
model processes that are fundamentally important across many areas of astrophysics. Whilst
Eulerian grid based methods are able to resolve and treat important dynamical instabilities,
such as Kelvin–Helmholtz or Rayleigh–Taylor, these processes are poorly or not at all resolved
by existing SPH techniques. We show that the reason for this is that SPH, at least in its standard
implementation, introduces spurious pressure forces on particles in regions where there are
steep density gradients. This results in a boundary gap of the size of an SPH smoothing kernel
radius over which interactions are severely damped.

Key words: hydrodynamics – instabilities – turbulence – methods: numerical – ISM: clouds
– galaxies: evolution – galaxies: formation – galaxies: general.

1 I N T RO D U C T I O N

The ability to numerically model interacting fluids is essential to
many areas of astrophysics and other disciplines. From the formation
of a star and its protoplanetary disc to galaxies moving through the
intracluster medium (ICM), dynamical instabilities such as Kelvin–
Helmholtz (KH) and Rayleigh–Taylor (RT) play a fundamental role
in astrophysical structure formation. Most popular hydrodynami-
cal methods can be divided into two classes: techniques following
the gas using Eulerian grids (e.g. Laney 1998; Leveque 1998) and
those which follow the Lagrangian motions of gas particles such as
‘smoothed particle hydrodynamics’ (SPH; Monaghan 1992). Grid-
based techniques solve the fluid dynamical equations by calculating

!E-mail: agertz@physik.unizh.ch

the flux of information through adjacent cell boundaries, while SPH
techniques calculate the gas properties on each particle by averag-
ing over its nearest neighbours. Because of the extensive use, and
sometimes discrepant results of these techniques, it is interesting to
carry out code comparison studies on well-defined problems that
test their ability to follow the basic gas physics they are designed
to simulate. Recent code comparisons have been focusing on differ-
ences in a cosmological context (e.g. Frenk & et al 1999; O’Shea
et al. 2005; Regan, Haehnelt & Viel 2007). They all find differences
between grid and SPH codes but due to the complexity of these types
of simulations it is not obvious how the differences arise. Similarly,
while SPH studies of galaxy–ICM interactions by Abadi, Moore
& Bower (1999) found that only half the interstellar medium was
removed from the galaxy. Using a grid-based calculation with the
same initial conditions (ICs), Quilis, Moore & Bower (2000) found
that all the gas could be removed and attributed the difference to
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each fluid element in GADGET-2 is defined through the specific en-
tropy and not the specific thermal energy. GADGET-2 uses a somewhat
different formulation of AV than GASOLINE. The viscosity term in
equation (14) is here formulated as

!i j = −
α

2

v
sig
i j wi j

ρi j

, (17)

where v
sig
i j = ci + cj − 3 wi j is the so-called signal velocity. Here

wi j = vi j · ri j/|ri j | is the relative velocity projected on to the separa-
tion vector provided particles approach each other. Like GASOLINE,

Figure 4. Gas density slices through the centre of the cloud at t = 0.25, 1.0, 1.75 and 2.5 τKH. From top to bottom we show GASOLINE (GAS 10M), GADGET-2
(GAD 10M), ENZO (ENZO 256), FLASH (FLASH 256) and ART-HYDRO (ART 256). The grid simulations clearly show dynamical instabilities and complete fragmen-
tation after 2.5 τKH, unlike the SPH simulations in which most of the gas remains in a single cold dense blob.

GADGET uses a spline smoothing kernel (Monaghan 1992) and we
employ smoothing over the 32 nearest neighbours. In our test we
used the publicly available GADGET-2 version 2.01.

5 R E S U LT S O F T H E S I M U L AT I O N S

Fig. 4 shows central density slices of GASOLINE (GAS 10M),
GADGET-2 (GAD 10M), ENZO (ENZO 256), FLASH (FLASH 256) and ART

(ART 256). These are the high-resolution simulations with the de-
fault standard settings.

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 380, 963–978
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Figure 13. Density slices of, from top to bottom, GRID1, GRID3 and SPH3. The panels show the KH simulation at t = τKH/3, 2τKH/3 and τKH. The grid
simulations show clear growth of the KHI while this is completely absent in SPH.

Figure 14. A close up view of the SPH particles at the boundaries between the shearing layers (left) and closer zoom in (right) for SPH3 at τKH. We can clearly
see empty layers formed through erroneous pressure forces due to improper density calculations at density gradients. Even though the two fluids are moving
relative to each other, the gap is so large that proper fluid interaction is severely decreased or even absent.

The effect can be explained in the following way: equation (14) is
the force on each SPH particle coming from the summation over the
32 nearest neighbours. The pressure is given by P ∼ ρT in the as-
sumed case of an ideal gas. This force calculation formally assumes
that temperature, and more importantly, density gradients are small
within the smoothing kernel, where temperature is a quantity ac-
cumulated over time while density usually is re-estimated at each
time-step. When a particle from a hot low-density region approaches
a cold high-density region it will suddenly find a lot of neighbours
at the edge of the smoothing sphere within the dense medium and
its density will be overestimated. This leads to, through momentum
conservation, a repulsive, fictitious, force on the particle, causing it
to bounce back into the low-density region. This behaviour leads to
the formation of a gap between the two phases of the size ∼2hi j ,
where hi j is the effective smoothing kernel length, either obtained by
using smoothing length or smoothing kernel averaging (Hernquist
& Katz 1989), depending on the SPH implementation. Hot particles
close to this gap will now have a strongly asymmetric distribution of
particles around them resulting in an average pressure force point-
ing back into the vacuum layer. Particles then travel back into the
empty region and the whole process is repeated. This particle mi-
gration and its associated pressure forces will act as an effective
restoring force for the surface, a kind of tension. This together with
the gap essentially removes multiphase behaviour from SPH. From
the above arguments it is straightforward to see that in all standard

formulations of SPH, any relaxed multiphase particle distribution
must have an associated gap.

As mentioned above, this erroneous treatment of density contrasts
has also been found to produce overcooling in galaxy formation
simulations. Tittley et al. (2001) showed that in subsonic regimes this
behaviour leads to fictitious accretion of particles on the lateral sides
of gas clouds such as the simulations showed in this paper. Solutions
to this problem has been attempted by several authors (e.g. Ritchie
& Thomas 2001; Marri & White 2003) by reformulating SPH to
more accurately treat the particle interactions at steep boundaries.
While this seems to remove the gap to some extent, it is unclear how
this will affect the simulations discussed here. Possible solutions to
the problem such as improving the method of calculating gradients
and minimizing their errors in SPH will be presented in a follow up
paper by Read et al. (in preparation).

That erroneous density gradients are the root of the instability
suppression becomes even more apparent by studying the KHI us-
ing a density contrast χ = 1, in which the gap cannot form. We
performed a simulation using GASOLINE in the same way as SPH3
described in Section 6.2 but now using 106 particles χ = 1. With
this vanishing density gradient, SPH is able to capture the KHI, see
Fig. 15. The left-hand panel shows the KHI at t = τKH for the stan-
dard α = 1.0, β = 2.0 setting and the right-hand panel shows the
same time-step but using α = 0.01 and β = 1.0. The less evolved
standard viscosity simulation points out the effects of viscosity

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 380, 963–978
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Figure 15. A zoom in of the SPH particles at the boundaries between the shearing layers for the isodensity SPH run with standard viscosity (left) and low
viscosity (right) at τKH. The black and white regions are particles that belonged to the initially separated shearing layers. We clearly see growth of the KHI in
the standard implementation of SPH, and even stronger for the low viscosity version. The simulation was performed with GASOLINE using 106 particles in the
same way as SPH3 described in Section 6.2.

discussed in Section 6.1. Similar results have been recently found
by Junk et al. (in preparation).

7 S U M M A RY

In this paper we have carried out hydrodynamical simulations of a
cold gas cloud interacting with an ambient hot moving gas using
state of the art simulations codes. Striking differences were found
between the two main techniques for simulating fluids. While grid
codes are able to resolve and treat dynamical instabilities and mix-
ing, these processes are poorly or not at all resolved by the current
SPH techniques. We show that the reason for this is that SPH, at
least in the standard usage and formulation, inaccurately handles
situations where density gradients are present. In these situations,
SPH particles of low density close to high-density regions suffer
erroneous pressure forces due to the asymmetric density within the
smoothing kernel. This causes a gap between regions of high-density
contrast, essentially decoupling the different phases of the fluid.

This behaviour has implications for many astrophysical situa-
tions. The stripping of gas from galaxies moving through a gaseous
medium has already been discussed in the literature. The origin of
disc galaxies is an important unsolved problem. Perhaps the inability
to disrupt accreting gas clouds is one reason why numerical calcu-
lations have failed to produce pure disc systems. Simulating star
formation regions and feedback processes also relies on the correct
ability to model turbulence and interacting multiphase fluids.

It should be noted that the behaviour of the grid and SPH meth-
ods agrees on time-scales shorter than those of typical dynamical
instabilities such as the KHIs and RTIs. In our specific test of a cold
cloud engulfed in a hot wind, there is good agreement in the early
gas stripping phase occurring due to pressure differences arising in
the Bernoulli zones. As soon as the large-scale instabilities have
grown, the results of the different methods diverge. There are sev-
eral possible solutions to this behaviour in SPH calculations which
we will explore in a separate work.
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dissipation terms need to be explicitly added



The key is a good switch

Inviscid SPH 3

Figure 2. As Fig. 1, but for SPH with standard (α = 1) or Morris & Mon-
aghan (1997) artificial viscosity, as well as our new method (only every fifth
particle is plotted). Also shown are the undamped wave (solid) and lower-
amplitude sinusoidals (dashed). Only with our method the wave propagates
undamped, very much like SPH without any viscosity, as in Fig. 1.

by ᾱij = (αi + α j)/2, and set β ∝ ᾱij. The individual viscosities are
adapted according to the differential equation

α̇i = (αmin − αi)/τi + Si (7)

with the velocity-based source term

Si = max
{
− ∇·υi, 0

}
. (8)

and the decay time3

τi = hi/(2$ci). (9)

Here, αmin = 0.1 constitutes a lower limit for the artificial viscos-
ity such that αi = αmin for non-convergent flows. For a convergent
flow, on the other hand, αi grows above that value, guaranteeing the
proper treatment of shocks. In the post-shock region, the flow is no
longer convergent and αi decays back to αmin on the time scale τi
(typically $ = 0.1 − 0.2). This method reduces the artificial viscos-
ity away from shocks by an order of magnitude compared to stan-
dard SPH and gives equally accurate post and pre-shock solutions
(Morris & Monaghan 1997).

More recently, Rosswog, Davies, Thielemann & Piran (2000)
proposed to alter the adaption equation (7) to4

α̇i = (αmin − αi)/τi + (αmax − αi) Si (10)

with αmax = 1.5, while Price (2004) advocated αmax = 2. The effect
of this alteration is first to prevent αi to exceed αmax and second to
increase α̇i for small αi, which ensures a faster viscosity growth,
resulting in somewhat better treatment of shocks (Price 2004). This
method may also be combined with the Balsara switch by applying
the reduction factor (6) either to Πij (Rosswog et al. 2000) or to Si
(Morris & Monaghan 1997; Wetzstein et al. 2009).

The scheme of equations (8), (9) and (10) with αmin = 0.1,
αmax = 2 and $ = 0.1 is the current state of the art for SPH and
is implemented in the codes phantom (by Daniel Price) and vine
(Wetzstein et al. 2009). In sections 4 and 5, we will frequently com-
pare our novel scheme (to be described below) with this method and
refer to it as the ‘M&Mmethod’ or the ‘Price (2004) version of the
M&M method’ as opposed to the ‘original M&M method’, which
uses equation (7) instead of (10).

3 The factor 2 in the denominator of equation (9) accounts for the dif-
ference in the definition of the smoothing length h between us and
Morris & Monaghan (1997).
4 This is equivalent to keeping (7) but multiplying the source term (8) by
(αmax − α), which is what Rosswog et al. actually did.

2.4 Critique of the M&Mmethod

The M&M method certainly constitutes a large improvement over
standard SPH, but low-viscosity flows, typical for many astrophys-
ical fluids, are still inadequately modelled. After studying this and
related methods in detail, we identify the following problems.

First, any αmin > 0 results in unwanted dissipation, for example
of sound waves (see Fig. 2) or stellar pulsations (see §4.4), yet the
M&M method requires αmin ≈ 0.1. This necessity has been estab-
lished by numerous tests (most notably of Price 2004) and is under-
stood to originate from the requirement to ‘maintain order amongst
the particles away from shocks’ (Morris & Monaghan 1997).

Second, there is a delay between the peak in the viscosity α
and the shock front (see Fig. 3): the particle viscosities are still
rising when the shock arrives. One reason for this lag is that inte-
grating the differential equation (10) increases αi too slowly: the
asymptotic value

αs =
αmin + αmax Siτi

1 + Siτi
(11)

is hardly ever reached before the shock arrives (and Si decreases).
Third, the source term (8) does not distinguish between pre-

and post-shock regions: for a symmetrically smoothed shock it
peaks at the exact shock position (in practice the peak occurs one
particle separation in front of the shock, Morris & Monaghan 1997,
see also Fig. 3). However, immediately behind the shock (or more
precisely the minimum of ∇·υ), the (smoothed) flow is still con-
verging and hence α continues to increase without need. A further
problem is the inability of the source term (8) to distinguish be-
tween velocity discontinuities and convergent flows.

Finally, in strong shear flows the estimation of the velocity di-
vergence ∇·υ, needed in (8), often suffers from substantial errors
(see Appendix B1 for the reason), driving artificial viscosity with-
out need. This especially compromises simulations of differentially
rotating discs even when using the Balsara switch.

3 A NOVEL ARTIFICIAL VISCOSITY SCHEME

Our aim is a method which overcomes all the issues identified in
§2.4 above and in particular gives αi → 0 away from shocks. To this
end, we introduce a new shock indicator in §3.1, a novel technique
for adapting αi in §3.2, and a method to suppress false compression
detections due to the presence of strong shear in §3.3.

3.1 A novel shock indicator

We need a shock indicator which not only distinguishes shocks
from convergent flows, but, unlike ∇·υ, also discriminates between
pre- and post-shock regions. This requires (at least) a second-order
derivative of the flow velocity and we found the total time deriva-
tive of the velocity divergence, ∇̇·υ ≡ d(∇·υ)/dt, to be most useful.
As is evident from differentiating the continuity equation,

−∇̇·υ = d2 ln ρ/dt2, (12)

∇̇·υ < 0 indicates an non-linear density increase and a steepen-
ing of the flow convergence, as is typical for any pre-shock region.
Conversely, in the post-shock region ∇̇·υ > 0. This suggests to
consider only negative values and, in analogy with equation (8), we
define the new shock indicator

Ai = ξi max
{
− ∇̇·υi, 0

}
. (13)

Cullen & Dehnen (2010), see also Read & Heyfield (2011)

6 Lee Cullen &Walter Dehnen

Figure 6. Steepening of a 1D sound wave: velocity and viscosity param-
eter vs. position for standard SPH, the M&M method, our new scheme,
and Godunov particle hydrodynamics of first and second order (GPH,
Cha & Whitworth 2003), each using 100 particles per wavelength. The solid
curve in the top panel is the solution obtained with a high-resolution grid
code.

4 VISCOSITY SUPPRESSION TESTS

We now present some tests of low-Mach-number flows, where pre-
vious methods give too much unwanted dissipation.

4.1 Sound-wave steepening

The steepening of sound waves is a simple example demonstrat-
ing the importance of distinguishing between converging flows and
shocks. As the wave propagates, adiabatic density and pressure os-
cillations result in variations of the sound speed, such that the den-
sity peak of the wave travels faster than the trough, eventually try-
ing to overtake it and forming a shock.

In our test, a 1D sound wave with a velocity amplitude 10% of
the sound speed is used (ideal gas with γ = 1.4). Fig. 6 compares
the velocity field at the moment of wave steepening for various SPH
schemes, each using 100 particles, with a high-resolution grid sim-
ulation. The new method resolves the shock better than the M&M
scheme, let alone standard SPH.

In Fig. 6, we also show results from GPH (Godunov-type par-
ticle hydrodynamics, Cha & Whitworth 2003), which differs from
SPH by using the pressure P∗, found by solving the Riemann prob-
lem between particle neighbours, in the momentum and energy
equations and avoids the need for explicit artificial viscosity. This
substitution does not affect the energy or momentum conservation
(Cha 2002), and indeed we find that both are well conserved. While
the first-order GPH scheme is comparable to standard SPH and also
to an Eulerian Godunov grid code using the same Riemann solver
without interpolation (not shown), the second-order GPH scheme
resolves the discontinuity almost as well as our novel method.

4.2 1D converging flow test

Similar to sound-wave steepening, this test requires good treatment
of convergent flows and weak shocks. The initial conditions are
uniform pressure and density and a continuous flow velocity

υ =




4(1 + x)υa −1.00 < x < −0.75,
υa −0.75 < x < −0.25,
−4xυa −0.25 < x < 0.25,
−υa 0.25 < x < 0.75,
4(1 − x)υa 0.75 < x < 1.00.

(20)

Figure 7. A 1D converging flow test with initially constant density and
pressure and velocities given by equation (20) using an adiabatic equation
of state with γ = 1.4. Top: run for υa = 1 at t = 0.3; bottom: run for
υa = 2 at t = 0.1. The solid lines are the result of a high-resolution Eulerian
grid-code simulation.

As there is no analytical solution, we compare the results to a high-
resolution grid-code simulation. We run tests for υa = 1 and υa = 2
as shown in the top and bottom panels of Fig. 7.

While the M&M switch certainly improves upon standard
SPH, it still over-smoothes the velocity profile as the viscosity is
increased before a shock has formed. This is particularly evident in
the velocity profile of the υa = 2 case (bottom) near x = 0. The
new switch keeps the viscosity low, in the υa = 2 case an order
of magnitude lower than the M&M method. In fact, the agreement
between our method and the high-resolution grid code is as good
as one can possibly expect at the given resolution, in particular the
velocity plateau and density amplitude around x = 0 in the υa = 2
case (bottom) are correctly modelled.

Use of these switches removes the main disadvantage 
of SPH as used in numerical cosmology

Exact conservation



Exact conservation: Advantages

Orbits are 
orbits... even 
when they’re 
not aligned 

with any 
symmetry axis.

Lodato & Price (2010)

Exact conservation: Disadvantages
• Calculations keep going, even when they’re screwed up...

Orszag-Tang Vortex in MHD (c.f. Price & Monaghan 2005, Rosswog & Price 2007, Price 2010)

In SPH,
“screwing it up” => NOISE

In grid codes,
“screwing it up” => CRASH



2D Orszag-Tang Vortex: Energy conservation

What this gives us: Advantages of SPH

• An exact solution to the continuity equation

• Resolution follows mass

• ZERO dissipation

• Advection done perfectly

• EXACT conservation of mass, momentum, angular momentum, 
energy and entropy

• A guaranteed minimum energy state



The minimum energy state

The “grid” in SPH...

What happens to a random particle arrangement?

SPH particles
know how to 
stay regular

dvi
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= �

X

j

mj

 
Pi

�2i
+

Pj

�2j

!
riWij



Why “rpSPH” (Morris 1996, Abel 2010) is a bad idea

Corollary: Better to use a 
worse but conservative 

gradient operator

Improving the gradient operator 
leads to WORSE results

dvi

dt
=
X

j

mj

 
Pi � Pj

�2j

!
riWij

TRUST 
THE

LAGRANGIAN!

Corollary: Need positive pressures



Compromise approach gives stability

Subtract 
�B(⇥ ·B)

from MHD force: 

Stable but 
nonconservative

2D shock tube
• intrinsic “remeshing” of particles



Why you cannot use “more neighbours”
(or: How to halve your resolution)

Nneigh 
should NOT 

be a free 
parameter!

i.e., should not 
change the ratio of 
smoothing length to 

particle spacing
pairing occurs for > 65 neighbours for the cubic spline in 3D

STOP

2D shock tube
• use smoother quintic kernel - truncated at 3h instead of 2h 

(NOT the same as “more neighbours” with the cubic spline)



Grid vs. SPH: Turbulence

Price & Federrath (2010): Comparison of driven, supersonic, isothermal turbulence
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But SPH resolution is in density field
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What about low Mach number turbulence?
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Shocking results without shocks: Subsonic turbulence in smoothed
particle hydrodynamics and moving-mesh simulations
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ABSTRACT
Highly supersonic, compressible turbulence is thought to be of tantamount importance for
star formation processes in the interstellar medium (ISM). Likewise, cosmic structure forma-
tion is expected to give rise to subsonic turbulence in the intergalactic medium (IGM), which
may substantially modify the thermodynamic structure of gas in virialized dark matter halos
and affect small-scale mixing processes in the gas. Numerical simulations have played a key
role in characterizing the properties of astrophysical turbulence, but thus far systematic code
comparisons have been restricted to the supersonic regime, leaving it unclear whether sub-
sonic turbulence is faithfully represented by the numerical techniques commonly employed
in astrophysics. Here we focus on comparing the accuracy of smoothed particle hydrody-
namics (SPH) and our new moving-mesh technique AREPO in simulations of driven subsonic
turbulence. To make contact with previous results, we also analyze simulations of transsonic
and highly supersonic turbulence. We find that the widely employed standard formulation of
SPH quite badly fails in the subsonic regime. Instead of building up a Kolmogorov-like tur-
bulent cascade, large-scale eddies are quickly damped close to the driving scale and decay
into small-scale velocity noise. In contrast, our moving-mesh technique does yield power-law
scaling laws for the power spectra of velocity, vorticity and density, consistent with expecta-
tions for fully developed isotropic turbulence. We argue that large errors in SPH’s gradient
estimate and the associated subsonic velocity noise are ultimately responsible for producing
essentially unphysical results in the subsonic regime. This casts doubt about the reliability
of SPH for simulations of cosmic structure formation, especially if turbulence in clusters of
galaxies is indeed significant. In contrast, SPH’s performance is much better for supersonic
turbulence, as here the flow is kinetically dominated and characterized by a network of strong
shocks, which can be adequately captured with SPH. When compared to fixed-grid Eulerian
simulations of turbulence, our moving-mesh approach shows qualitatively very similar re-
sults, although with somewhat better resolving power at the same number of cells, thanks to
reduced advection errors and the automatic adaptivity of the AREPO code.

Key words: hydrodynamics, shock waves, turbulence, methods: numerical

1 INTRODUCTION

Astrophysical gas dynamics in the interstellar and intergalactic
medium is typically characterized by very high Reynolds numbers,
thanks to the comparatively low gas densities encountered in these
environments, which imply a very low physical viscosity for the
involved gas. We may hence expect that turbulent cascades over
large dynamic ranges are rather prevalent, provided effective driv-
ing processes exist. Such turbulence can then be an important fea-
ture of gas dynamics, for example providing an additional effective

� E-mail: andreas.bauer@h-its.org

pressure contribution, or leading to thorough small-scale mixing of
chemical elements in the gas.

In fact, it is believed that turbulence in the interstellar medium
(ISM) plays a key role in the formation of ordinary stellar popu-
lations, determining in part the initial mass function of stars, the
lifetime of molecular clouds, and the overall efficiency of star for-
mation (e.g. Klessen et al. 2000; Mac Low & Klessen 2004). Here
the turbulence is highly supersonic, and presumably driven primar-
ily by supernova explosions. In addition, the strong radiative cool-
ing processes of the ISM make its equation-of-state approximately
isothermal, such that very strong shocks and high compression ra-
tios are associated with the supersonic gas motions. An additional
complexity arises from magnetic fields that are flux-frozen into the
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Turbulence in SPH and the moving-mesh code AREPO 7

Figure 3. Visual comparison of the turbulent velocity field (top row), the density field (middle row) and the enstrophy |r⇥v|2 (bottom row) in quasi-stationary
turbulence with M ⇠ 0.3, simulated with different numerical techniques. Shown are thin slices through the middle of the perdiodic simulation box. From left
to right, we show our moving grid result, an equivalent calculation on a static mesh, and an SPH calculation, as labeled.

and F3). After an initial ramp up of the turbulent energy, a quasi-
stationary state is established, starting at time t ⇥ 5�10. There are
however still substantial intermittent fluctuations in the global rms
Mach number, making it clear that averaging over extended periods
of time is required to obtain truly stable results for the statistical
properties of the turbulent fluid state, especially on large scales. We
note that runs carried out with different numerical resolutions give
extremely similar results to the ones shown in Fig. 1. Interestingly,
the time evolutions of the moving-mesh and the fixed-mesh results
agree very well with each other, but the terminal Mach number
reached by SPH is significantly lower. This is despite the fact that
the driving field imposes exactly the same accelerations in all the
simulations. The smaller overall kinetic energy achieved in SPH is

presumably a result of viscous damping of large-scales modes at or
close to the driving scale.

We show the cumulative injected and dissipated energy as a
function of time in Figure 2 for the same simulations. Note that
the difference between these two quantities is exactly the kinetic
energy stored in the gas at the corresponding time. Interestingly,
the mesh-based simulations do hardly dissipate any energy until
t = 5, in contrast to the SPH simulation which shows signs of
energy dissipation right from the start. This is consistent with the
impression from Figure 1 that it is harder in SPH than in the mesh-
code to set the largest eddies into motion. At around t ⇥ 13, the
total cumulative dissipated energies begin to be rather similar for all
three methods, but the total injected energy of the SPH simulation
still lags behind the mesh-based runs. This is simply because the
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erable small-scale bump left, as shown by the dashed green line
which shows the power spectrum of the SPH-smoothed velocity
field. On large scales, the behaviour of this field is the same as for
the nearest neighbour interpolated one, as expected.

In Figure 5, we show a resolution study for the subsonic veloc-
ity power spectra of our AREPO and SPH runs, ranging from 643

to 5123 particles/cells. The SPH simulations approximately con-
verge to each other on the largest scales – however to the wrong
solution. Even with a resolution as high as 5123 particles, there is
no trace of the build up of an inertial range with the expected en-
ergy cascade. We only see that with improving resolution there is a
slight shift towards smaller scales of the rapid decline of the power
spectrum. Also, the minimum of the power spectrum is reached at
progressively smaller scales, but the overall shape of the velocity
power spectrum does not improve, and the small-scale noise bump
remains present.

For the simulations with AREPO, we observe that the bottle-
neck effect moves to smaller scales with improving resolution. This
is expected, as this effect should be tied to the numerical dissipation
occurring on scales close to the resolution limit. As the bottleneck
moves towards smaller scales, a larger inertial range with a self-
similar power-law region is established on large scales. We note
that the rise of the power in the moving mesh-code on very small
scales, at around the Nyquist frequency, is due to noise and alias-
ing effects at the spatial resolution limit that is reached here, which
is qualitatively a very different effect from the small-scale velocity
noise that sets in in SPH on much larger scales.

3.4 Dissipation power spectra

In Figure 6, we show power spectra for the energy dissipation rate,
measured as described in Sections 2.4 and 2.5. In the top panel,
we show results for the simulations A1 to A3 with resolutions 643

to 2563, averaged over the same period of time as in our veloc-
ity power spectrum plots. For comparison, we also plot the kinetic
energy power spectrum as dashed lines, in order to allow a compar-
ison of the shapes of the different curves. Interestingly, the AREPO
simulations show a peak in dissipation right at the scales where
the velocity power spectrum begins to rapidly fall. While there is
also some residual dissipation at very large scales (which becomes
smaller with better resolution), this is more than an order of mag-
nitude lower than the energy drained around the scales where the
dissipation measurement peaks. The result is hence consistent with
an interpretation where only negligible dissipation occurs on large
scales, with all the energy dissipated on some smaller dissipation
scale, which in our case is related to the numerical resolution limit.
Such a scenario is consistent with the theoretical assumptions that
enter Kolmogorov’s theory of self-similar scaling.

In the bottom panel of Figure 6, we show the corresponding
SPH results. Here a very different shape of the dissipation power
spectrum is found. There is a peak already on very large scales,
close to the driving scale. The amplitude of the dissipation lies
considerably higher on these scales range than in the mesh-code,
and shows practically no dependence on numerical resolution. This
explains why there is not much energy left to be fed into a turbu-
lent cascade that could transport it conservatively towards smaller
scales. Interestingly, there is however a second extended maximum
of the SPH dissipation power spectrum on very small scales, co-
inciding with the location of the small-scale bump in the velocity
power spectrum. This is apparently related to viscous dissipation of
some of the small-scale velocity noise in SPH due to the artificial
viscosity.

Figure 5. Convergence study for the velocity power spectrum of M � 0.3
subsonic turbulence. The panel on top shows results for AREPO, from a
resolution of 643 to 5123 cells. The panel on the bottom gives the corre-
sponding results for SPH. However, even at a high resolution as high 5123

particles, no extended inertial range of turbulence can be identified in SPH.
The thin grey lines show the power-law expected for Kolmogorov’s theory.

3.5 Dependence on SPH parameter settings

Given the sobering results we have thus far obtained for subsonic
turbulence in SPH, it is an important question whether this outcome
can be significantly improved with different parameter choices for
the method. The primary numerical parameters that may strongly
affect the SPH results are the number of smoothing neighbors, and
the artificial viscosity parameterization. In fact, these are the only
aspects that can be changed easily without reverting to an entirely
different formulation of SPH, or a fundamentally different method
for particle hydrodynamics.

An increase in the number of smoothing neighbours should re-
duce the noise in SPH kernel estimates. In fact, it has been argued
that convergence of SPH requires a simultaneous increase both
of the number of simulation particles and a (slower) increase of
the number of smoothing neighbours (Rasio 2000). Unfortunately,
in practice the clumping instability present for the normal SPH
kernel shape counteracts attempts to improve the SPH estimates
through a drastic increase of the number of smoothing neighbours
(but see Read et al. 2010). Regardless, we have examined whether
an increase of the number of neighbours to Nngb = 180 or even
Nngb = 512 improves our results. To this end we have repeated
our S2 simulation with these settings.

© 0000 RAS, MNRAS 000, 000–000
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Figure 14. The volume-weighted logarithmic density PDFs for our highly
supersonic runs at M � 8.4, as labeled. The PDF is averaged over two
snapshots at times t = 0.2 and t = 0.3.

number case. We compare the PDFs of moving-mesh, fixed-mesh
and SPH simulations at the 2563 resolution. The shape of all three
results is described reasonably well by a log-normal distribution.
However, the fixed-mesh simulation shows a higher probability at
the low density end and has the largest width of the distribution
for this reason. The SPH simulation tends to give higher probabil-
ity at the high density end, which is a very similar behaviour as
found in Price & Federrath (2010). The moving-mesh run has an
overall very similar distribution as the SPH run, except for being
slightly wider. To the extent that a better representation of the high-
density tail is advantageous in science applications of supersonic
turbulence (which can be argued is particularly true in studies of
star formation), the moving-mesh technique hence works at least
as well as SPH, and clearly better than a fixed-mesh technique.

5 DISCUSSION AND CONCLUSIONS

Perhaps the most important question prompted by our results is
why SPH behaves so badly in the subsonic regime. The concern
that the large subsonic noise in SPH may cause substantial accuracy
problems in the treatment of fluid instabilities has recently been
emphasized (Springel 2010; Abel 2011). Here we speculate that
this may also be the primary culprit in the larger context of estab-
lishing a fully developed turbulent cascade in the subsonic regime.
After all, it is perhaps not too surprising that successfully account-
ing for the conservation of vorticity in a set of swirling and inter-
acting eddies is a serious challenge when ordered subsonic motion
are overlayed with noise components of similar or even larger size.

We argue that the origin of this noise lies in errors of SPH’s
gradient estimate. Numerous studies have pointed out that the stan-
dard approach followed in SPH for constructing derivatives of
smoothed fluid quantities involves rather large error terms, espe-
cially for the comparatively irregular particle distributions in multi-
dimensional simulations. The problem lies in a lack of consistency
of the ordinary density estimates (which do not conserve volume,
i.e. the sum of mi/�i is not guaranteed to add up to the total vol-
ume) and in a low order of the gradient estimate itself (e.g. Quinlan
et al. 2006; Gaburov & Nitadori 2011; Amicarelli et al. 2011). In
practice, this means that there can be pressure forces on particles
even though all individual pressure values of the particles are equal,

a point emphasized in a recent study by Abel (2011). But if this is
the case, spurious jittering motions of particles can be readily trig-
gered even for a vanishingly small large-scale pressure gradient.

In order to demonstrate this point explicitely and quantify the
typical noise in the pressure gradient estimates of SPH and AREPO,
we have carried out a simple experiment. To this end we used the
particle coordinates xi of the last snapshot of our S3 subsonic sim-
ulation run, which is representative for the pseudo-irregular particle
distribution typically encountered in SPH in this situation. We then
assigned entropies to the particles (taking their density estimate into
account) such that the pressures Pi = P (xi) of individual particles
were given by the analytic pressure profile

P (x) = P0 q x, (15)

which is a simple linear gradient in the q-direction (our results are
independent of the actual orientation of this vector). The SPH es-
timate for the pressure gradient was then inferred from the particle
acceleration aSPH computed by the SPH code as

rP = �aSPH �, (16)

which is the relevant quantity that ultimately enters the discretized
equation of motion. We can then consider the relative error of these
SPH pressure gradient estimates with respect to the known analytic
gradient. We define the corresponding errors as

erel =
|rP � P0q|

|P0q|
, e� =

q ·rP
|q||rP | = cos⇥, (17)

and show them as scatter plots for a random subset of the points in
Figure 15.

For comparison, we also carried out the equivalent procedure
for the AREPO code, based on the same particle coordinates. The
resulting errors are also shown in Figure 15. AREPO clearly cal-
culates the pressure gradients highly accurately, both in magnitude
and angle. In fact, AREPO’s gradient estimate is second-order ac-
curate, independent of the distribution of points (Springel 2010),
implying that a linear gradient should be reproduced essentially to
machine precision, which we find is also the case here. In contrast,
SPH shows a huge scatter in both error measures. In fact, the mag-
nitude of the absolute error can sometimes be up to twice as large
as the value of the gradient itself, and also the angular errors are
significant. We note that these large errors occur for a rather simple
problem – a spatially constant gradient. This makes it clear that
standard SPH has comparatively low-order accuracy for smooth
flow, which appears to be the fundamental cause why it does badly
for subsonic phenomena.

We thus think that the problems of SPH in resolving subsonic
turbulence are fundamental. It is unlikely that they can be solved by
just increasing the resolution or the number of smoothing neigh-
bours, the latter is anyway problematic due to the tensile insta-
bility. Likewise, changing the artificial viscosity parameterization
does not improve the gradient estimates, and will hence not be able
to resolve the underlying problem. What appears to be needed for
better results in this subsonic regime are better gradient estimates.
Some extensions and improvements of the standard SPH formu-
lation that go into this direction have already been proposed (e.g.
Heß & Springel 2010; Abel 2011). It will remain to be seen whether
any of them provides a robust and generally applicable alternative
to standard SPH.

We should clarify that despite the large errors in gradient esti-
mates, it remains true that SPH has very good conservative proper-
ties. This feature allows it to still produce physically sensible fluid
behaviour in many situations despite the subsonic noise, especially

© 0000 RAS, MNRAS 000, 000–000

BS explanation:

4 A. Bauer and V. Springel

AREPO can additionally employ on-the-fly refinement and
derefinement operations of its mesh, similar to adaptive mesh re-
finement (AMR) methods. We invoke this in our moving-mesh sim-
ulations to guarantee that the mass resolution is always approxi-
mately constant, as in the SPH simulations that we compare with.
To this end, cells are (de)refined if their mass deviates by more than
a factor of two from the desired target mass resolution (which is the
initial cell mass). We note however that such (de)refinement oper-
ations are only rarely needed because the Lagrangian mesh motion
already yields a nearly constant mass per cell. We also make use
of AREPO’s mesh regularization feature, where mesh-generating
points of highly distorted cells may receive an additional small ve-
locity component towards the geometric center of their cell. This
results in a more regular mesh, which reduces errors in the linear
reconstruction step.

We note that the AREPO code has recently been success-
fully used in first science applications, studying first star forma-
tion (Greif et al. 2011) and galaxy formation (Vogelsberger et al.
2011). There also already exist extensions to include magnetohy-
drodynamics (Pakmor et al. 2011), radiative transfer (Petkova &
Springel 2011), as well as treatment of the full Navier-Stokes equa-
tions (Munoz et al. 2011).

2.1.2 Smoothed particle hydrodynamics

Smoothed particle hydrodynamics (SPH) is a particle-based ap-
proach to fluid dynamics which is popular in astronomy due to its
geometric flexibility, automatic adaptivity, and good conservation
properties (see e.g. Rosswog 2009; Springel 2010, for recent re-
views). We use the simulation code GADGET-3 (last described in
Springel 2005) for our SPH simulations, which employs a “stan-
dard” formulation of SPH with fully adaptive smoothing lengths
and a simultaneous conservation of entropy and energy (Springel
& Hernquist 2002).

In some of our simulations, we also study the influence of nu-
merical parameters in SPH on our results, such as the number Nsph

of smoothing neighbours and the artificial viscosity parameteriza-
tion. In GADGET-3, the SPH smoothing lengths hi of particles are
adjusted such that (4⇤/3)h3

i ⌅i = Nsphm is always fulfilled, where
hi is the radius at which the smoothing length drops to zero, ⌅i is
the density estimate of the particle i, and m is the target mass res-
olution (here equal to the SPH particle masses). In our default 3D
simulations we use Nsph = 64 smoothing neighbours.

The artificial viscosity is implemented as a viscous force:

dvi

dt

����
visc

= �
⌅

j

mj⇥ij⌦iW ij , (1)

where W ij is the arithmetic average of the smoothing kernels and
⇥ij parameterizes the viscous tensor. We use the following form
(Monaghan 1997; Springel 2005) for ⇥ij in our default runs:

⇥ij = ��
2
(ci + cj � 3wij) · wij

⌅ij
, (2)

with wij = vij · rij/|rij | if vij · rij < 0, otherwise wij = 0. For
this definition of wij , the artificial viscosity is always repulsive, and
is non-zero only if a pair of particles approaches each other, imply-
ing that the entropy procuded by the viscosity is positive definite.

One general problem of artificial viscosity parameterizations
is that they may introduce spurious viscosity also outside of shocks,
in regions where it should in principle not be needed (e.g. Cullen
& Dehnen 2010). This can be a significant problem in shear flows,

where this effect may lead to unwanted angular momentum trans-
port. To suppress the artificial viscosity in regions of strong shear,
Balsara (1995) proposed a simple viscosity limiter in the form of an
additional multiplicative factor (fi + fj)/2 for the viscous tensor,
defined as

fi =
|⌦ · v|i

|⌦ · v|i + |⌦⇤ v|i
. (3)

This limiter is often used in cosmological SPH simulations and also
available in the GADGET code. In our default simulations, we have
refrained from enabling it, but we have also run comparison simu-
lations where it is used, as discussed in our results section.

2.2 Turbulent driving

In this work, we consider isothermal gas in which turbulence is in-
duced through an external stochastic forcing on large scales. The
condition of isothermality is not crucial for our study of subsonic
turbulence, but it conveniently prevents that the turbulent kinetic
energy dissipated in the flow leads to a gradual increase of the
pressure in the gas with time. Instead, the dissipated energy is sim-
ply lost from the isothermal system, so that a statistically quasi-
stationary state of developed turbulence can be reached after some
time, where on average the energy injected on large scales is lost
on smaller scales by dissipation.

Our method for calculating the acceleration field follows
closely the procedure used in Federrath et al. (2008, 2009); Fed-
errath et al. (2010) and Price & Federrath (2010). In particular, the
acceleration field is setup in Fourier space and only contains power
in a small range of low frequency modes between kmin = 6.28 and
kmax = 12.57. The relative amplitude of the forcing modes over
this small range is varied as P (k) ⇧ k�5/3. Except in our run at
M ⌅ 8.4, P (k) is a paraboloid centered around (kmin + kmax)/2
with kmin = 6.28 and kmax = 18.85. The phases of the Fourier
modes are drawn from an Ornstein-Uhlenbeck process and are pe-
riodically updated after a time interval �t. The corresponding ran-
dom sequence is given by

xt = f xt��t + ⇧
⇧

(1� f2) zn, (4)

where f is a decay factor given by f = exp(��t/ts), with ts
being the correlation length. zn is a Gaussian random variable and
⇧ is the variance of the Ornstein-Uhlenbeck process. The resulting
sequences have zero mean, ⌥xt� = 0, and their correlations are
given by ⌥xt xt+�t� = ⇧2f . The frequent but correlated changes
of the acceleration field as a function of time result in a smoothly
varying turbulent driving field.

We use a purely solenoidal driving in this study, which can be
obtained by projecting out the compressive part of the acceleration
field through a Helmholtz decomposition in k-space. The projec-
tion operator is given by

â(k)i =

⇥
⇥ij �

kikj
|k|2

⇤
â0(k)j (5)

in Fourier space. We note that solenoidal driving appears partic-
ularly appropriate for subsonic turbulence. Compressive modes
would only cause additional sound waves and only start to cou-
ple to smaller modes once non-linear steepening of these acoustic
waves becomes important. In any case, if a compressive component
was added, we would expect a somewhat broader density PDF for
a given Mach number (Federrath et al. 2008).

Finally, the acceleration field due to the driving mechanism is
calculated in position space at each particle or cell position directly

© 0000 RAS, MNRAS 000, 000–000
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Figure 6. Dissipation power spectra for AREPO and SPH runs at differ-
ent resolutions, compared to the corresponding shape of the velocity power
spectrum at 2563 resolution (dashed lines). For the mesh-code, the dissi-
pation actually peaks on scales where the power spectrum starts to deviate
from Kolmogorov’s self-similar scaling. In contrast, SPH shows very strong
dissipation already on larger scales, preventing the build-up of a turbulent
cascade. In addition, the dissipation is also strong on small scales, close
to the resolution limit, where the small-scale noise developing in SPH is
constantly damped away.

In the top panel of Figure 7, we compare the velocity power
spectra of these two simulations with the S1 simulation. Note that
at the resolution of 1283 employed for these tests, the S2 run with
512 neighbours is expected to have effectively the same mass- and
spatial-resolution as the S1 simulation with our default choice of 64
smoothing neighbours. Interestingly, the power spectra look indeed
very similar on large scales, i.e. there is no noticeable improvement
due to the higher number of smoothing neighbours at a fixed mass
resolution. Only the small-scale noise is reduced when the number
of neighbours is increased.

We now turn to the artificial viscosity parameterization, which
is another area where one may hope that simple changes could lead
to significant improvements in the results obtained for turbulence.
In particular, the problematic damping of the injected turbulence
energy already on large scales suggests that a reduction of the vis-
cosity may help. A lower viscosity seems also warranted because
in our subsonic regime shocks are not really expected, suggesting
that artificial viscosity may perhaps not be needed at all, or only
at a minimal level. We have hence first repeated our default sim-
ulations by enabling the so-called Balsara reduction factor for the

Figure 7. Dependence of SPH turbulence results on numerical nuisance pa-
rameters. The panel on top gives results for the velocity power spectrum
when the number of SPH smoothing neighbours is increased, from our de-
fault of 64 to 180, and finally to 512. Formally, the later run with 1283

particles has the same mass and spatial resolution as our S1 run with 643

particles, hence the latter is included as a dashed line. The bottom panel
illustrates the effect of changing the SPH viscosity parameterization. For
lower �, the velocity power on large scales goes up, but the shape of the
power spectrum does not improve. Note however that this also increases the
small scale velocity noise. Enabling the Balsara viscosity suppression fac-
tor instead has a very similar effect, which by chance turns out to be very
close to the � = 0.1 result. In addition, we show the result without artificial
viscosity (� = 0) at some fiducial time not long after the start of the cor-
responding simulation. Here the noise on small scales grows continuously.
The thin grey lines show the expected Kolmogorv power spectrum.

viscosity in the presence of strong shear. In another test, we have
instead reduced the artificial viscosity parameter by one order of
magnitude to � = 0.1. In the lower panel of Figure 7, we compare
the resulting velocity power spectra to our default result. Both of
these changes lead to an increase of the power on large scales, as
expected due to the reduced viscosity. It turns out that by chance
the Balsara switch happens to lead to an extremely similar reduc-
tion of the effective viscosity as induced by our change of �, but
this is just by accident. However, we note that the reduction of the
viscosity also boosts the small-scale SPH noise. In fact, we find that
the energy dissipated in this noise-dominated regime is essentially
invariant when the viscosity is varied. While a larger artificial vis-
cosity reduces the amplitude of the velocity noise, it also implies
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Dissipation in SPH

There is none (it is a Hamiltonian system)
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Figure 3. Visual comparison of the turbulent velocity field (top row), the density field (middle row) and the enstrophy |r⇥v|2 (bottom row) in quasi-stationary
turbulence with M ⇠ 0.3, simulated with different numerical techniques. Shown are thin slices through the middle of the perdiodic simulation box. From left
to right, we show our moving grid result, an equivalent calculation on a static mesh, and an SPH calculation, as labeled.

and F3). After an initial ramp up of the turbulent energy, a quasi-
stationary state is established, starting at time t ⇥ 5�10. There are
however still substantial intermittent fluctuations in the global rms
Mach number, making it clear that averaging over extended periods
of time is required to obtain truly stable results for the statistical
properties of the turbulent fluid state, especially on large scales. We
note that runs carried out with different numerical resolutions give
extremely similar results to the ones shown in Fig. 1. Interestingly,
the time evolutions of the moving-mesh and the fixed-mesh results
agree very well with each other, but the terminal Mach number
reached by SPH is significantly lower. This is despite the fact that
the driving field imposes exactly the same accelerations in all the
simulations. The smaller overall kinetic energy achieved in SPH is

presumably a result of viscous damping of large-scales modes at or
close to the driving scale.

We show the cumulative injected and dissipated energy as a
function of time in Figure 2 for the same simulations. Note that
the difference between these two quantities is exactly the kinetic
energy stored in the gas at the corresponding time. Interestingly,
the mesh-based simulations do hardly dissipate any energy until
t = 5, in contrast to the SPH simulation which shows signs of
energy dissipation right from the start. This is consistent with the
impression from Figure 1 that it is harder in SPH than in the mesh-
code to set the largest eddies into motion. At around t ⇥ 13, the
total cumulative dissipated energies begin to be rather similar for all
three methods, but the total injected energy of the SPH simulation
still lags behind the mesh-based runs. This is simply because the
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Figure 1. Cross section slices through the midplane showing magnitude of the velocity field (top row), density (second row) and |⌅ � v|2 (bottom row)
at t = 10 for SPH calculations with the PHANTOM code employing the Morris & Monaghan (1997) viscosity switch at resolutions of 643, 1283 and 2563

particles (left to right). The 2563 calculations may be compared to the corresponding panels in Fig. 3 of Bauer & Springel (2011). Estimates of the effective
Reynolds numbers are indicated for each calculation.

3 REDUCING THE VISCOSITY IN SPH

3.1 Standard approaches

Bauer & Springel (2011) do not use any viscosity switches for their
main calculations, despite the fact that most of these switches are
at least ⇤ 15 years old and in widespread use. The standard vis-
cosity switch in use is the one proposed by Morris & Monaghan
(1997), where � is a time-dependent parameter that responds to a
source term proportional to �⌥ · v (i.e., converging flows) and in
the absence of such terms decays to a minimum �min, typically set
to 0.1. Already use of this switch would substantially increase the
Reynolds number, though even a factor of 10 reduction in � gives
only Re ⌅ 6000 for their “S3” calculation which is still a far cry
from the Re ⌅ 105 achieved by Price & Federrath (2010a).

Fig. 1 shows the results of a series of 3 calculations performed
with the PHANTOM SPH code (Price & Federrath 2010a; Lodato
& Price 2010), employing the same driving routine as described

in Price & Federrath (2010a) (adapted from Federrath et al. 2008,
2010) with the same parameters as the Bauer & Springel (2011)
calculations1 but with the Morris & Monaghan (1997) switch with
�min = 0.05, resulting in � ⌅ 0.1. The runs are performed
in a periodic box x, y, z ⇧ [0, 1], using an isothermal equation
of state with a sound speed in code units of unity. Although the
Reynolds numbers achieved are evidently still lower than in the

1 The SPH version of the driving routine can be made available on re-
quest. The parameters used here are stenergy = 0.002, stdecay = 1.0,
stsolweight = 1.0, ststirmin = 6.28, ststirmax = 18.85, stdtfreq =
0.005, corresponding to the stirring energy, decay timescale, solenoidal
driving, minimum and maximum wavenumbers and the frequency with
which the stirring is updated. The driving is given a k�5/3 wavenumber
dependence in the stirring range as described in Bauer & Springel (2011)
and denoted as stspectform = 2 in the input file. The random number gen-
erator and seed will however differ from their calculations.
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Figure 1. Cross section slices through the midplane showing magnitude of the velocity field (top row), density (second row) and |⌅ � v|2 (bottom row)
at t = 10 for SPH calculations with the PHANTOM code employing the Morris & Monaghan (1997) viscosity switch at resolutions of 643, 1283 and 2563

particles (left to right). The 2563 calculations may be compared to the corresponding panels in Fig. 3 of Bauer & Springel (2011). Estimates of the effective
Reynolds numbers are indicated for each calculation.c⇥ 2011 RAS, MNRAS 000, L1–L5
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ABSTRACT
Accounting for the Reynolds number is critical in numerical simulations of turbulence, partic-
ularly for subsonic flow. For smoothed particle hydrodynamics (SPH) with constant artificial
viscosity coefficient α, it is shown that the effective Reynolds number in the absence of explicit
physical viscosity terms scales linearly with the Mach number – compared to mesh schemes,
where the effective Reynolds number is largely independent of the flow velocity. As a result,
SPH simulations with α = 1 will have low Reynolds numbers in the subsonic regime com-
pared to mesh codes, which may be insufficient to resolve turbulent flow. This explains the
failure of Bauer & Springel to find agreement between the moving-mesh code AREPO and the
GADGET SPH code on simulations of driven, subsonic (v ∼ 0.3cs) turbulence appropriate to the
intergalactic/intracluster medium, where it was alleged that SPH is somehow fundamentally
incapable of producing a Kolmogorov-like turbulent cascade. We show that turbulent flow with
a Kolmogorov spectrum can be easily recovered by employing standard methods for reducing
α away from shocks.

Key words: hydrodynamics – turbulence – methods: numerical – galaxies: clusters: intra-
cluster medium – intergalactic medium.

1 IN T RO D U C T I O N

Turbulence in astrophysics is of key importance for the interstel-
lar medium (ISM), intracluster medium (ICM) and intergalactic
medium (IGM). Compressible, hydrodynamic turbulence is char-
acterized by two dimensionless parameters, the Mach number
M ≡ V /cs and the Reynolds number (Stokes 1851; Reynolds
1883)

Re ≡ V L

ν
, (1)

where V is the flow velocity, L is a typical length-scale, ν is the
viscosity of the fluid and cs is the sound speed. Physically, these
parameters estimate the relative importance of each of the terms
in the Navier–Stokes equations – the Mach number specifies the
ratio of the inertial term, (v · ∇)v, to the pressure term, ∇P/ρ,
while the Reynolds number specifies the ratio of the inertial term
to the viscous dissipation term, ν∇2v. Mathematically, these two
parameters – along with the boundary conditions and driving –
entirely characterize the flow.

Given the importance of turbulence in theoretical models, it is
crucial that agreement can be found between codes used for simula-
tions of the ISM and ICM/IGM. Several comparison projects have
been published recently comparing simulations of both decaying

!E-mail: daniel.price@monash.edu

(Kitsionas et al. 2009) and driven (Price & Federrath 2010a) su-
personic turbulence relevant to molecular clouds. However, fewer
calculations appropriate to the ICM or IGM have been performed.
In a recent preprint, Bauer & Springel (2011) have set out to extend
the high Mach number comparisons to the mildly compressible,
driven, subsonic turbulence thought to be appropriate to the ICM
and IGM. In this case, the motions are comparable to or smaller than
the sound speed, turbulent motions are dissipated by viscosity, and
the flow is mainly characterized by the Reynolds number, similar
to turbulence in the laboratory. In particular, it is well known from
laboratory studies that the transition from laminar flow to fully de-
veloped turbulence only occurs once a critical Reynolds number is
reached – for example, for Poiseuille flow (water flowing in a pipe)
this is observed for Re ! 2000 (e.g. Reynolds 1895).

Since at low Mach number the Reynolds number controls not
only the transition to turbulence, but also the character of such
turbulence (e.g. the extent of the inertial range), it is critical to
specify, or at least estimate, the Reynolds number employed in
numerical simulations of turbulence in order to compare with the
physical Reynolds numbers in the problems of interest. For the
ISM, the physical Reynolds numbers are high [e.g. Elmegreen &
Scalo (2004) estimate Re ∼ 105–107 for the cold ISM] so the ap-
proach adopted has been to fix the Mach number and try to reach
high numerical Reynolds numbers by minimizing numerical dissi-
pation away from shocks. Estimates for Re in the ICM/IGM are
more difficult. Brunetti & Lazarian (2007) estimate Re ∼ 52, but
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Figure 2. Time-averaged k5/3-compensated power spectra from subsonic
SPH turbulence calculations using the Morris & Monaghan (1997) viscos-
ity switch at a resolution of 643, 1283 and 2563 particles, as indicated,
for which the corresponding Reynolds numbers are ⇥ 1500, 3000 and
6000, respectively. The shaded regions show the 1� errors from the time-
averaging. At the highest Reynolds numbers a Kolmogorov-like k�5/3

slope is evident at large scales.

grid-based calculations employed by Bauer & Springel (2011), it
is clear that already this is a dramatic improvement on the SPH
simulations shown in their preprint. The resulting power spectra
are shown in Fig. 2, showing the time-averaged spectrum from 191
snapshots sampled every �t = 0.1 between t = 6 and t = 25. The
y�axis shows the power spectrum compensated by k5/3 such that
a k�5/3 spectrum would appear horizontal. Though the spectrum
“turns over” at relatively small k at low resolution, a clear k�5/3

range is apparent in the highest resolution calculations. The resolu-
tion dependence of the high k turnover is also consistent with the
expected R�3/4

e dependence of the dissipation scale.

3.2 The state of the art

With mean motions that are around 1/3 of the sound speed and
transsonic fluctuations, one cannot simply reduce the SPH artificial
viscosity parameters arbitrarily (such as the � = 0.1 and � = 0
calculations attempted by Bauer & Springel 2011), since this term
is necessary to capture the physical dissipation that occurs due to
the non-linear steepening of waves. Such an approach may be ade-
quate for very low Mach number (i.e., incompressible) calculations
but it provides no easy answer at ⇥ 0.3cs. Instead it is clear that
to achieve similar results with SPH an improved viscosity switch is
necessary in order to both capture non-linear steepening and shocks
as well as reducing the viscosity to very low values where it is not
needed. The switch proposed recently by Cullen & Dehnen (2010)
represents the current state-of-the-art in this regard, essentially a
thoroughly enhanced and improved version of the Morris & Mon-
aghan (1997) approach. In particular, they show that they are able
to simulate linear waves for over 50 periods with essentially no nu-
merical dissipation, using the same parameters as would be applied
in shock problems. Thus, with an implementation of the Cullen &
Dehnen (2010) switch it may be expected that significantly higher
Reynolds numbers are achievable in SPH.

4 DISCUSSION

Bauer & Springel (2011) argue that “large errors in SPH’s gra-
dient estimate” are responsible for the failure to reproduce a
Kolmogorov-like turbulent cascade in their SPH calculations. Fig-
ure 2 demonstrates that this argument is incorrect, since we are
able to obtain a k�5/3 spectrum using only standard SPH gradi-
ent terms and a very similar SPH neighbour number to that em-
ployed in their preprint. However, we find that the appearance of
a power-law inertial range in the power spectrum strongly depends
on the Reynolds number employed in the calculations, requiring
at least Re � 1500. This explains the failure to produce a tur-
bulent cascade in their SPH results, since the maximum Reynolds
numbers they achieve are ⇤ 600. With the Morris & Monaghan
(1997) viscosity switch employed in this Letter we estimate that
we are able to achieve Re ⇤ 6, 000 at 2563 particles which al-
ready brings the SPH results into much better agreement with the
grid-based results shown in their work. Indeed, both Dolag et al.
(2005) and Valdarnini (2011) have already pointed out that using
this switch could substantially improve SPH simulations of turbu-
lence in galaxy clusters.

It should be noted that Bauer & Springel (2011) do experiment
with reduced viscosity parameters in their preprint, using either a
fixed � = 0.1 or the Balsara (1995) switch and also a run with
zero viscosity (as we have already discussed in Sec. 3, it is not
clear that one can simply reduce the parameters arbitrarily, so this
approach is questionable — particularly the � = 0 calculation).
Indeed, both the � = 0.1 and Balsara-switch calculations show a
dramatic improvement in the power spectrum at large scales. The
authors dismiss this result because of a corresponding increase in
power at k � 100. However, the power at these scales is low ampli-
tude (⇥ 10�4) and thus sensitive to all manner of numerical arte-
facts (e.g. the interpolation procedure as demonstrated in Fig. 4 of
their preprint). Indeed, we do not find the upturn in power at large
k seen in their results (c.f. Fig. 2), most likely due to our improved
power spectrum estimation — here computed by interpolating the
SPH data to a 3D grid using the kernel and employing a Fast Fourier
Transform, rather than the “nearest neighbour sampling” procedure
employed in their preprint.

Finally, it is important to compare the Reynolds numbers
achievable in numerical simulations to the physical Reynolds num-
bers in the problems of interest (c.f. Sec. 1). For the cold ISM,
Re ⇥ 105–107 which, though high, is not as high as is often as-
sumed, and is certainly within reach of being resolved with cur-
rently achievable resolutions (c.f. Sec. 2). This implies at the very
least that physical viscosity should be introduced into ISM turbu-
lence simulations in the near future. In the ICM/IGM, Re ⇥ 52
would seem to imply laminar flow, though very high estimates for
Re (� 1010) apply in the presence of magnetic fields. Reaching
such Reynolds numbers is not presently achievable with any nu-
merical code. However, this may also imply that ultimately it is
quite incorrect to try to simulate purely hydrodynamic ICM/IGM
turbulence at high Reynolds number without taking into account
more detailed physics, such as magnetic fields.

5 CONCLUSIONS

In this Letter we have emphasized the importance of accounting for
the Reynolds number in numerical turbulence simulations, partic-
ularly in the subsonic regime where it is the main parameter con-
trolling not only whether the flow is turbulent but also the char-
acter of such turbulence. In particular differences in the Reynolds
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Are moving mesh schemes better, or just different?

Hopkins (2012) arXiv:1206.5006
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Figure 7. Central density slices in the “blob test” (a high-density, pressure-
equilibrium cloud hit by a wind) with the pressure-entropy formulation.
Time (in units of the KH growth time) increases from top to bottom. The
high-density (red/orange) cloud gas is efficiently mixed by instabilities
within a couple cloud crossing times; the morphology and density distri-
bution agree well with grid codes.

lence is sub-sonic, they found that density-entropy SPH tended to
reproduce a smaller inertial range. However as discussed there and
in Price (2012a), this can depend quite sensitively on the artificial
viscosity prescriptions and other numerical details. We therefore re-
produce the sub-sonic, driven turbulence experiment from Bauer &
Springel (2011) but adopt the pressure-entropy formulation, to test
whether it also differs significantly from the results in the density-
entropy formulation. We adopt the identical setup and resolution
(A. Bauer, private communication), with the initial conditions and
driving algorithm described therein. Briefly, we initialize a box of
unit length, density, and sound speed with 1283 particles, and drive
the turbulence in a narrow range of large-k modes with character-
istic Mach number M= 0.3 on the largest scales; unlike our other
experiments, the gas is isothermal (� = 1). We run the experiment
to t = 25 (more than sufficient to reach steady-state).

We compare the turbulent velocity spectrum measured follow-
ing Bauer & Springel (2011) (we linearly interpolate the particle-
centered velocity values to a uniform grid, fourier transform each
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Figure 8. Fraction of the initial cloud in Fig. 7 which remains both cold
and dense (i.e. avoids mixing) as a function of time, relative to the KH
growth time at the cloud surface. We compare the standard SPH (density-
entropy) and pressure-entropy formulations here, as well as the pressure-
energy formulation in SM12 (which does not include the rh terms) and
the results from a high-resolution grid code method (Enzo). The grid code
and pressure formulations (independent of the rh terms) agree reasonably
well. Density formulations show slower mixing/stripping.
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Figure 9. Velocity power spectrum in sub-sonic (M= 0.3) driven, isother-
mal turbulence. Each simulation uses 1283 particles and identical driving.
We compare the analytic Kolmogorov inertial-range model, to that cal-
culated from our standard density-entropy (Eq. 14) and pressure-entropy
(Eq. 21) formulations. The mean softening length h is shown as the verti-
cal dotted line. Both do well down to a few softenings, where they first fall
below the analytic result (excess dissipation) then rise above (kernel-scale
noise). The EOM choice has a weak effect on the results. We compare dif-
ferent SPH algorithms and codes (description in text); agreement is good
where the same methods are used. The “PHANTOM” and “GADGET-3
with Morris97 AV” use a density-entropy EOM with similar artificial vis-
cosity treatment to our calculations (which dominates the inertial range),
but different SPH kernels and power spectrum calculation methods (which
dominate the noise at . 3h). The “standard” GADGET-3 calculation uses
a constant artificial viscosity and different kernel, and produces almost no
inertial range. The AREPO calculation considers a grid/moving mesh at the
same resolution: deviations from Kolmogorov occur around the resolution
limit, but are of a different character.
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“...deviations from Kolmogorov 
occur around the resolution limit, 
but are of a different character.”

Summary: Advantages and disadvantages of SPH

• Resolution follows mass
• Zero dissipation until explicitly added
• Exact and simultaneous conservation of all physical quantities is possible
• Intrinsic remeshing procedure
• Does not crash

• Resolution follows mass
• Dissipation terms must be explicitly added to treat discontinuities 

- methods can be crude (need a good switch)
• Exact conservation no guarantee of accuracy
• Screw-ups indicated by noise rather than code crash

• Historical difficulties incorporating magnetic fields (MHD)

Advantages:

Disadvantages:



Magnetic fields in SPH: recent progress

Price, Tricco & Bate (2012, MNRAS Lett.); Tricco & Price (2012, J. Comp. Phys.)

What is the future for SPH in numerical cosmology?

Recent key advances:
• Cullen & Dehnen (2010), Read & Heyfield (2011): state-of-the-art viscosity 

switches now capable of completely removing spurious effects of artificial 
viscosity away from shocks

• Dehnen & Aly (2012): pairing instability can be solved using Wendland kernels
• Tricco & Price (2012): New divergence cleaning scheme for SPMHD, we can 

do MHD in SPH for the first time with no limitations

Myths and misconceptions:
• Will carry on, it’s the method everybody loves to hate
• SPH is deceptively simple to implement, much more difficult to master
• “Fundamental problems” have so far turned out to be rather elementary 

issues common to all numerical methods


