Daniel Price

Royal Society Fellow University of Exeter, UK

Matthew Bate (Exeter)

"The Cosmic Agitator", Lexington, KY, March 25-29, 2008

THE ROYAL SOCIETY PPORC UNIVERSITY OF EXETER

Magnetic fields in star cluster formation

Daniel Price

Royal Society Fellow University of Exeter, UK

Matthew Bate (Exeter)

"The Cosmic Agitator", Lexington, KY, March 25-29, 2008

PPORC UNIVERSITY OF EXETER

Credit: NASA/C.R. O'Dell & S.K.Wong/HST

Motivation

 star formation regions observed to contain magnetic fields of significant strengths

• want to determine their role in the star formation process

Credit: Burrows/STSci/HST

Star formation is clustered!

Credit: J. Hatchell (Exeter)

Star formation is clustered!

Credit: J. Hatchell (Exeter)

Perseus molecular cloud

e.g. Bate, Bonnell & Bromm (2003), Bonnell, Bate & Vine (2003), Bate & Bonnell (2005)

• naturally explain multiplicity / binary fraction and clustering of star formation

- naturally explain multiplicity / binary fraction and clustering of star formation
- reproduce gross characteristics (slope, low mass turnover) of the IMF. Masses determined by "competitive accretion".

- naturally explain multiplicity / binary fraction and clustering of star formation
- reproduce gross characteristics (slope, low mass turnover) of the IMF. Masses determined by "competitive accretion".
- BUT star formation efficiency too high (all gas would eventually form stars).

- naturally explain multiplicity / binary fraction and clustering of star formation
- reproduce gross characteristics (slope, low mass turnover) of the IMF. Masses determined by "competitive accretion".
- BUT star formation efficiency too high (all gas would eventually form stars).
- produce too many brown dwarfs.

- naturally explain multiplicity / binary fraction and clustering of star formation
- reproduce gross characteristics (slope, low mass turnover) of the IMF. Masses determined by "competitive accretion".
- BUT star formation efficiency too high (all gas would eventually form stars).
- produce too many brown dwarfs.
- discrepancy with molecular cloud lifetimes?

- naturally explain multiplicity / binary fraction and clustering of star formation
- reproduce gross characteristics (slope, low mass turnover) of the IMF. Masses determined by "competitive accretion".
- BUT star formation efficiency too high (all gas would eventually form stars).
- produce too many brown dwarfs.
- discrepancy with molecular cloud lifetimes?
- observations indicate magnetic fields cannot be ignored!

Gingold & Monaghan (1977), Phillips & Monaghan (1985), Price (2004), Price & Monaghan (2004a,b,2005)

 $\rho(\mathbf{r}) = \sum_{j=1}^{N} m_j W(|\mathbf{r} - \mathbf{r}_j|, h)$

solve the equations of MHD on moving, Lagrangian particles

• use Euler potentials formulation for the magnetic field

• use Euler potentials formulation for the magnetic field

Euler (1770), Stern (1976), Phillips & Monaghan (1985) Price & Bate (2007), Rosswog & Price (2007)

• use Euler potentials formulation for the magnetic field

Euler (1770), Stern (1976), Phillips & Monaghan (1985) Price & Bate (2007), Rosswog & Price (2007)

• use Euler potentials formulation for the magnetic field

Euler (1770), Stern (1976), Phillips & Monaghan (1985) Price & Bate (2007), Rosswog & Price (2007)

$\mathbf{B} = \nabla \alpha \times \nabla \beta$

$$\frac{d\alpha}{dt} = 0, \frac{d\beta}{dt} = 0$$

'advection of magnetic field lines by Lagrangian particles'

• use Euler potentials formulation for the magnetic field

Euler (1770), Stern (1976), Phillips & Monaghan (1985) Price & Bate (2007), Rosswog & Price (2007)

, need accurate SPH derivatives (Price 2004)

$$= \nabla \alpha \times \nabla \beta \qquad \chi_{\mu\nu} \nabla^{\mu} \alpha_i = -2$$

$$\sum_{j} m_{j} (\alpha_{i} - \alpha_{j}) \nabla_{i}^{\nu} W_{ij}(h_{i})$$
$$\chi_{\mu\nu} = \sum_{j} m_{j} (r_{i}^{\mu} - r_{j}^{\mu}) \nabla^{\nu} W_{ij}(h_{i}).$$

 $\frac{d\alpha}{dt} = 0, \frac{d\beta}{dt} = 0$

B

'advection of magnetic field lines by Lagrangian particles'

• use Euler potentials formulation for the magnetic field

Euler (1770), Stern (1976), Phillips & Monaghan (1985) Price & Bate (2007), Rosswog & Price (2007)

 $\frac{dc}{dt}$

d

, need accurate SPH derivatives (Price 2004)

$$\mathbf{B} = \nabla \alpha \times \nabla \beta$$

$$\chi_{\mu\nu} \nabla^{\mu} \alpha_{i} = -\sum_{j} m_{j} (\alpha_{i} - \alpha_{j}) \nabla^{\nu}_{i} W_{ij}(h_{i})$$

 $\chi_{\mu\nu} = \sum_{j} m_{j} (r_{i}^{\mu} - r_{j}^{\mu}) \nabla^{\nu} W_{ij}(h_{i}).$
add shock dissipation

$$\frac{d\alpha}{dt} = 0, \frac{d\beta}{dt} = 0$$

'advection of magnetic field lines by Lagrangian particles'

$$\frac{d}{dt} = \sum_{b} m_{b} \frac{\alpha_{B} v_{sig}}{\bar{\rho}_{ab}} \left(\alpha_{a} - \alpha_{b} \right) \hat{r} \cdot \nabla_{a} W_{ab}$$

$$\frac{d}{dt} = \sum_{b} m_{b} \frac{\alpha_{B} v_{sig}}{\bar{\rho}_{ab}} \left(\beta_{a} - \beta_{b} \right) \hat{r} \cdot \nabla_{a} W_{ab}$$

• use Euler potentials formulation for the magnetic field

Euler (1770), Stern (1976), Phillips & Monaghan (1985) Price & Bate (2007), Rosswog & Price (2007)

 $\mathbf{B} = \nabla \alpha \times \nabla \beta$

 $\frac{d\alpha}{dt} = 0, \frac{d\beta}{dt} = 0$

'advection of magnetic

field lines by

Lagrangian particles'

, need accurate SPH derivatives (Price 2004)

$$\chi_{\mu\nu}\nabla^{\mu}\alpha_{i} = -\sum_{j}m_{j}(\alpha_{i} - \alpha_{j})\nabla^{\nu}_{i}W_{ij}(h_{i})$$
$$\chi_{\mu\nu} = \sum_{j}m_{j}(r_{i}^{\mu} - r_{j}^{\mu})\nabla^{\nu}W_{ij}(h_{i}).$$

add shock dissipation

$$\frac{d\alpha}{dt} = \sum_{b} m_{b} \frac{\alpha_{B} v_{sig}}{\bar{\rho}_{ab}} \left(\alpha_{a} - \alpha_{b}\right) \hat{r} \cdot \nabla_{a} W_{ab}$$

$$\frac{d\beta}{dt} = \sum_{b} m_{b} \frac{\alpha_{B} v_{sig}}{\bar{\rho}_{ab}} \left(\beta_{a} - \beta_{b}\right) \hat{r} \cdot \nabla_{a} W_{ab}$$

BUT: helicity constraints (A.B = const): cannot represent certain fields. Field growth suppressed once clear mapping from initial to final particle distribution is lost

Test problems

Current loop advection (e.g. Gardiner & Stone 2007) (Rosswog & Price 2007) Orszag-Tang vortex (everyone)

(Price & Monaghan 2005, Rosswog & Price 2007)

Magnetic fields in star cluster formation

Price & Bate (2008), MNRAS, in press (arXiv:0801.3293)

Magnetic fields in star cluster formation

Price & Bate (2008), MNRAS, in press (arXiv:0801.3293)

- 50 solar mass cloud
- diameter 0.375 pc, n_{H2} = 3.7 x 10^4 cm^{-3}
- initial uniform B field
- T ~10K
- turbulent velocity field $P(k) \propto k^{-4}$
- RMS Mach number 6.7
- barytropic equation of state
- form sink particles at 10⁻¹¹ g cm⁻³

Magnetic fields in star cluster formation

Price & Bate (2008), MNRAS, in press (arXiv:0801.3293)

as in Bate, Bonnell & Bromm (2003), but with magnetic fields...

Important parameters

Important parameters

 $\left(\frac{M}{\Phi}\right) / \left(\frac{M}{\Phi}\right)_{crit}$ magnetic field vs gravity
$\left(\frac{M}{\Phi}\right) / \left(\frac{M}{\Phi}\right)_{crit}$ magnetic field vs gravity

 $\beta = \frac{c_s^2 \rho}{\frac{1}{2} B^2 / \mu_0}$

magnetic fields vs pressure

 $\left(\frac{M}{\Phi}\right) / \left(\frac{M}{\Phi}\right)_{crit}$ magnetic field vs gravity

$$\beta = \frac{c_s^2 \rho}{\frac{1}{2}B^2/\mu_0}$$

magnetic fields vs pressure

 v_{turb} v_{Alfven}

magnetic fields vs turbulence

 $\left(\frac{M}{\Phi}\right) / \left(\frac{M}{\Phi}\right)_{crit}$ magnetic field vs gravity

$$\beta = \frac{c_s^2 \rho}{\frac{1}{2} B^2 / \mu_0}$$

magnetic fields vs pressure

$$rac{v_{turb}}{v_{Alfven}}$$

magnetic fields vs turbulence

these parameters are independent!

 $\left(\frac{M}{\Phi}\right) / \left(\frac{M}{\Phi}\right)_{crit}$ magnetic field vs gravity

$$\beta = \frac{c_s^2 \rho}{\frac{1}{2}B^2/\mu_0}$$

magnetic fields vs pressure

$$rac{v_{turb}}{v_{Alfven}}$$

magnetic fields vs turbulence

these parameters are independent!

Observations suggest molecular clouds are: mildly supercritical

have beta < 1

marginally super-Alfvenic

(Crutcher 1999, Bourke et al. 2001, Padoan et al. 2004, Heiles & Troland 2005)

dz [cm]

log ∫

Magnetic pressuresupported voids

2

Ô

2

Ó

Star formation rate

total mass in stars $[M_{\odot}]$

Effect on IMF

Effect on IMF

Effect on IMF

	N _{BDs}	Nstars	ratio
Hydro	44	14	3.14
$M/\Phi = 20$	51	18	2.83
$M/\Phi = 10$	22	11	2.0
$M/\Phi = 5$	15	14	1.07
$M/\Phi = 3$	8	7	1.14

even stronger field...

even stronger field...

Taurus

Column density striations along field lines due to streaming motions in the gas

Column density striations along field lines due to streaming motions in the gas

 $M/\Phi=3$

Column density striations along field lines due to streaming motions in the gas

"A hole...[where] it appears that some agent has been responsible for dispersing the molecular gas"

• (even supercritical) magnetic fields delay and suppress star formation.

• (even supercritical) magnetic fields delay and suppress star formation.

 strong magnetic fields (beta < 1) lead to large scale voids, anisotropic turbulent motions and column density striations in collapsing molecular clouds which we should expect to observe.

• (even supercritical) magnetic fields delay and suppress star formation.

- strong magnetic fields (beta < 1) lead to large scale voids, anisotropic turbulent motions and column density striations in collapsing molecular clouds which we should expect to observe.
- strongly inhibited accretion, resulting in a lower star formation rate and longer molecular cloud lifetimes.

• (even supercritical) magnetic fields delay and suppress star formation.

- strong magnetic fields (beta < 1) lead to large scale voids, anisotropic turbulent motions and column density striations in collapsing molecular clouds which we should expect to observe.
- strongly inhibited accretion, resulting in a lower star formation rate and longer molecular cloud lifetimes.
- trend towards fewer brown dwarfs with increasing field strength.
new vector potential formulation for the magnetic field evolution without restrictions associated with Euler potentials

- new vector potential formulation for the magnetic field evolution without restrictions associated with Euler potentials
- using physical resistivity to solve the magnetic flux problem

- new vector potential formulation for the magnetic field evolution without restrictions associated with Euler potentials
- using physical resistivity to solve the magnetic flux problem
- MHD + radiation transport (flux-limited diffusion)