

DUST DYNAMICS: UNLOCKING THE MYSTERIES OF PROTOPLANETARY DISCS

Daniel Price (Monash University, Melbourne, Australia)

Image credit: DSHARP

Cosmic dust (r)evolution, EWASS 2019, 24-25th June, Lyon, France

THE PROBLEM

Carina Nebula with HST (NASA/ESA/Hubble Heritage)

ISM: dust/gas = 1/100

Pinnacles desert, Western Australia (Price family)

Rocky planets: dust/gas $\approx \infty$

THE PHYSICS

DUST AND GAS AS MULTIPHASE MIXTURE

e.g. Harlow & Amsden (1975), Monaghan & Kocharyan (1995), Laibe & Price (2012a,b)

$$\begin{array}{lll} \displaystyle \frac{\partial \rho_{\rm g}}{\partial t} + \nabla . \left(\rho_{\rm g} {\bf v}_{\rm g} \right) & = & 0, \\ \displaystyle \frac{\partial \rho_{\rm d}}{\partial t} + \nabla . \left(\rho_{\rm d} {\bf v}_{\rm d} \right) & = & 0, \\ \displaystyle \frac{\partial {\bf v}_{\rm g}}{\partial t} + \left({\bf v}_{\rm g} . \nabla \right) {\bf v}_{\rm g} & = & - \frac{\nabla P_{\rm g}}{\rho_{\rm g}} + \frac{K}{\rho_{\rm g}} ({\bf v}_{\rm d} - {\bf v}_{\rm g}) + {\bf f}, \\ \displaystyle \frac{\partial {\bf v}_{\rm d}}{\partial t} + \left({\bf v}_{\rm d} . \nabla \right) {\bf v}_{\rm d} & = & - \frac{K}{\rho_{\rm d}} ({\bf v}_{\rm d} - {\bf v}_{\rm g}) + {\bf f}, \\ \displaystyle \frac{\partial {\bf v}_{\rm d}}{\partial t} + \left({\bf v}_{\rm d} . \nabla \right) {\bf v}_{\rm d} & = & - \frac{K}{\rho_{\rm d}} ({\bf v}_{\rm d} - {\bf v}_{\rm g}) + {\bf f}, \\ \displaystyle \frac{\partial {\bf v}_{\rm d}}{\partial t} + \left({\bf v}_{\rm d} . \nabla \right) {\bf v}_{\rm d} & = & - \frac{K}{\rho_{\rm d}} ({\bf v}_{\rm d} - {\bf v}_{\rm g}) + {\bf f}, \\ \displaystyle \frac{\partial {\bf v}_{\rm d}}{\partial t} + \left({\bf v}_{\rm d} . \nabla \right) {\bf v}_{\rm d} & = & - \frac{K}{\rho_{\rm d}} ({\bf v}_{\rm d} - {\bf v}_{\rm g}) + {\bf f}, \\ \end{array} \right) \\ \end{array}$$

THE "STOPPING TIME"

 $\partial \Delta \mathbf{v}$ t_{stop} long 0.9 *t*_{stop} At 0.8 Differential velocity between gas and dust v_{d} $\equiv \frac{\rho_{\rm d} \rho_{\rm g}}{K(\rho_{\rm d} + \rho_{\rm g})}$ 0.7 *t*_{stop} 0.6 Characteristic timescale for exponential decay t_{stop} short $= \frac{\rho_{\rm gr} s}{\rho c_{\rm s}}$ $t_{\rm stop} =$ 0.5 0.5 1.5 2

"Dustybox" problem from Laibe & Price (2011)

Proportional to grain size / Inversely proportional to gas density

T_{STOP} CAN GO FROM ZERO TO INFINITY

ONE FLUID DUST/GAS

Laibe & Price (2014a,b,c), Price & Laibe (2015), Hutchison et al. (2018), Ballabio et al. (2018)

► Rewrite equations with dust fraction, total density, drift velocity

► Assume short stopping time / low St / large drag, get:

$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} &= -\rho(\nabla \cdot \mathbf{v}) \\ \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} &= -\frac{\nabla P}{\rho} + \mathbf{f} \\ \frac{\mathrm{d}\epsilon}{\mathrm{d}t} &= -\frac{1}{\rho} \nabla \cdot (\epsilon t_{\mathrm{s}} \nabla P) \qquad \epsilon \equiv \frac{\rho_{\mathrm{d}}}{\rho} \end{aligned}$$

➤ Can use explicit timesteps even when stopping time is short

Easily extended to multi-grain populations (Laibe & Price 2014c, Hutchison et al. 2018), implemented in PHANTOM SPH code (Price et al. 2018; <u>http://bitbucket.org/danielprice/phantom</u>)

STOKES NUMBER

Figure 1. Radial velocity versus particle size (schematic). The shape of the curve is determined by the drag laws, but the peak value depends only on the nebular structure.

DUST BEHAVIOUR IN DISCS DEPENDS ON GAS COLUMN DENSITY

Dipierro et al. (2015)

No dependence on stellar mass or mass of dust disc!

PHYSICS I WILL NOT DISCUSS: GRAIN GROWTH

Image: Gemini Observatory/AURA Artwork by Lynette Cook

FROM 0.01 TO INFINITY

After explaining to a student through various lessons and examples that:

$$\lim_{x \to 8} \frac{1}{x-8} = \infty$$

I tried to check if he really understood that, so I gave here a different example. This was the result:

Credit: bad internet jokes

IS THE DUST TO GAS RATIO CONSTANT IN MOLECULAR CLOUDS? *Tricco, Price & Laibe (2017)*

DYNAMICAL SORTING OF GRAINS

Price, Laibe, Maunder, in prep.

DUST+GAS IN DISCS

GAS VS DUST IN PROTOPLANETARY DISCS

GAS VS DUST IN PROTOPLANETARY DISCS

Dipierro et al. (2015)

GAS VS DUST IN PROTOPLANETARY DISCS

GAP CARVING: GAS VS DUST

Require 3 approximately Saturn mass planets

No gas gap, but sharp rings in dust!

Dipierro et al. (2015)

HL TAU: OBSERVATIONS MEET THEORY

Computed using RADMC3D radiative transfer (Dullemond 2012) plus ALMA simulator

Observed image

Credit: ALMA partnership et al. (2015)

Our simulation

Dipierro, Price, Laibe, Hirsh, Cerioli & Lodato (2015)

TW HYA: GAS VS DUST

TW HYA: MODELS VS OBSERVATIONS Mentiplay, Price & Pinte (2019)

Super-earths in TW Hya

KINEMATIC DETECTION OF A PROTOPLANET -2 0 2 -2 0 2 A Ra ["] *Pinte et al.* (2018)

-2

0.74km/s

0.9

 Δ

-2

0.85km/s

HD142527: GAS VS DUST

DISC-BINARY INTERACTION IN HD142527

Price et al. (2018)

See almost polar alignment of binary to disc, c.f. Aly et al. (2015), Martin & Lubow (2017)

100 au

OBSER

DUST HORS

MWC758: GAS VS DUST

Boehler + (2018)

GAS VS DUST AROUND PLANET-CARVED CAVITY

Increasing Stokes number —

Spirals become rings as Stokes number approaches unity

Can use as proxy for the gas disc mass

Explains morphology difference in MWC758

Veronesi+2019, submitted

CONCLUSIONS

THE COSMIC DUST (R)EVOLUTION

- ► Gas and dust already start to decouple in the ISM
- Dust and gas are DECOUPLED in protoplanetary discs
 doing completely different things
- Planet formation is well underway (maybe even finished) by the time we observe protoplanetary discs

PS: Thanks to the EU for funding the Dustbusters RISE network!

SECOND ALMA PROTOPLANET DETECTION!!

Pinte et al. (2019)

Pinte et al. (2019)

howmanyplanetshaschristophefound.com

2-3 MJup PLANET CARVING A GAP AT 130AU!