GRAND CHALLENGES IN COMPUTATIONAL **ASTROPHYSICS: DUST, MHD AND RADIATION**

Daniel Price

Monash University Melbourne, Australia

Carving through the codes: Challenges in Computational Astrophysics 12-17th February 2017, Davos, Switzerland

DUST

TWO FLUID

0.9

Timestep constraint: $\Delta t < t_{
m s}$

DUSTYWAVE

.

Maddison (1993), Laibe & Price (2011)

$$(\omega^2 - c_{\rm s}^2 k^2) - \frac{i}{\omega t_{\rm s}} (\omega - \tilde{c}_{\rm s}^2 k^2) = 0$$

1) OVERDAMPING PROBLEM

strongly damped

Red=analytic solution for dust/gas waves derived by Laibe & Price (2011) MNRAS 418, 1491

OVERDAMPING PROBLEM

Must resolve stopping length L ~ cs ts

"The hybrid scheme ... is second order only in the non-stiff regime ... the drop in accuracy ... is most likely due to the difficulty of coupling the gas and the dust fully self-consistently in the stiff regimes. " (Miniati 2010, J Comp Phys)

Price & Federrath (2010): same issue for tracer/ dust particles on grids

DUST-GAS: ONE FLUID

d

One

$$\rho = \rho_{\rm d} + \rho_{\rm g}$$

$$\frac{\partial \rho_{\rm g}}{\partial t} \Rightarrow \nabla \rho (\overline{\rho_{\rm g}} \mathbf{v} \mathbf{y}), = 0, \qquad \mathbf{v} = \frac{\rho_{\rm d} v_{\rm d} + \rho_{\rm g} \mathbf{v}_{\rm g}}{\rho}$$

$$\frac{\partial \rho_{\rm g}}{\partial t} \Rightarrow \nabla \frac{1}{\rho} (\overline{\rho_{\rm d}} \mathbf{v}_{\rm g})(1 = \epsilon) (\rho \Delta \mathbf{v}], \qquad \Delta \mathbf{v} = \mathbf{v}_{\rm d} - \mathbf{v}_{\rm g}$$

$$\frac{\partial \mathbf{v}_{\rm d}}{\partial t} \Rightarrow (\mathbf{v}_{\rm g} - \mathbf{v}_{\rm g}) \mathbf{v}_{\rm g} + (\mathbf{v}_{\rm g} - \mathbf{v}_{\rm g}) \mathbf{v}_{\rm g} \mathbf{v}_{\rm g} + (\mathbf{v}_{\rm g} - \mathbf{v}_{\rm g}) \mathbf{v}_{\rm g} \mathbf{v}_{\rm g} + (\mathbf{v}_{\rm g} - \mathbf{v}_{\rm g}) \mathbf{v}_{\rm g} \mathbf{v}_{\rm g} \mathbf{v}_{\rm g} + (\mathbf{v}_{\rm g} - \mathbf{v}_{\rm g}) \mathbf{v}_{\rm g} \mathbf{v}_{\rm$$

Laibe & Price (2014) MNRAS 440, 2136

$$\begin{aligned} \frac{\mathrm{d}\rho}{\mathrm{d}t} &= -\rho(\nabla \cdot \boldsymbol{v}) \\ \frac{\mathrm{d}\epsilon}{\mathrm{d}t} &= -\frac{1}{\rho} \nabla \cdot \left[\boldsymbol{e}(t_{\mathrm{s}}^{1} \nabla \cdot R) \rho \Delta \boldsymbol{v} \right] \\ \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} &= -\frac{\nabla P}{\rho} - \frac{1}{\rho} \nabla \cdot \left[\boldsymbol{\epsilon}(1-\boldsymbol{\epsilon}) \Delta \boldsymbol{v} \Delta \boldsymbol{v} \right] \\ \frac{\mathrm{d}\Delta \boldsymbol{v}}{\mathrm{d}t} &= -\frac{\Delta \boldsymbol{v}}{t_{\mathrm{s}}} + \frac{\nabla P}{\rho_{\mathrm{g}}} - (\Delta \boldsymbol{v} \cdot \nabla) \boldsymbol{v} + \frac{1}{2} \nabla \left[(2\boldsymbol{\epsilon} - 1) \Delta \boldsymbol{v}^{2} \right] \end{aligned}$$

EXPLICIT when stopping time is short

Terminal velocity approximation: See also Youdin & Goodman (2005); Chiang (2008); Barranco 2009, Jacquet et al. 2011

APPLICATION TO HL TAU

Observed image ALMA partnership et al. (2015) Our simulation

Dipierro, Price, Laibe, Hirsh, Cerioli & Lodato (2015)

EXAMPLE II: "HORSESHOES" IN TRANSITION DISCS Ragusa+2017

4 Ragusa et al.

Figure 2. Comparison of ALMA simulated observations at 345 GHz of disc models with a mass ratio q = 0.01 (upper left), q = 0.05 (upper right), q = 0.1 (bottom left) and q = 0.2 (bottom right). Intensities are in mJy beam⁻¹. The white colour in the filled ellipse in the upper left corner indicates the size of the half-power contour of the synthesized beam: 0.12×0.1 arcsec (~ 16 × 13 au at 130 pc.).

MHD

see review by Price (2012) **SMOOTHED PARTICLE MAGNETOHYDRODYNAMICS** J. Comp. Phys. 231, 759

$$L = \int \left(\frac{1}{2}\rho v^2 - \rho u - \frac{1}{2\mu_0}B^2\right) dV$$
$$L = \sum_a m_a \left(\frac{1}{2}v_a^2 - u_a - \frac{B_a^2}{2\mu_0\rho_a}\right)$$

Price & Monaghan (2004*a*,*b*, 2005)

Divergence advection test from Dedner et al. (2002)

Euler-Lagrange equations give discrete form of:

 $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathbf{B}}{\rho} \right) = \left(\frac{\mathbf{B}}{\rho} \cdot \nabla \right) \mathbf{v}$

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho(\nabla \cdot \mathbf{v})$$

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\frac{1}{\rho}\nabla \cdot \left[\left(P + \frac{1}{2}\frac{B^2}{\mu_0}\right)\mathbf{I} - \frac{\mathbf{B}\mathbf{B}}{\mu_0}\right] - \frac{\mathbf{B}(\nabla \cdot \mathbf{B})}{\mu_0\rho}$$

$$\frac{\mathrm{d}u}{\mathrm{d}t} = -\frac{P}{\rho}(\nabla \cdot \mathbf{v})$$
Dissipationless: Must add dissipation

terms to handle shocks and discontinuities

Subtract div B

source term for

Need to separately handle div B = 0

These equations are equivalent to the "8-wave formulation" of Powell et al. 1994

HYPERBOLIC/PARABOLIC DIVERGENCE CLEANING

Dedner et al. (2002) Price & Monaghan (2005) Mignone & Tzeferacos (2010)

Hyperbolic term only

WHEN CLEANING ATTACKS

Divergence advection test (Dedner et al. 2002) with 10:1 jump in density

"CONSTRAINED" HYPERBOLIC/PARABOLIC DIVERGENCE CLEANING

.

Tricco & Price (2012); Tricco, Price & Bate (2016)

Define energy associated with cleaning field

$$E = \int \left[\frac{1}{2}\frac{B^2}{\mu_0} + \frac{1}{2}\frac{\psi^2}{\mu_0 c_h^2}\right] dV$$

Enforce energy conservation in hyperbolic terms

Can enforce exact energy conservation in SPH discretisation

CONSTRAINED HYPERBOLIC/PARABOLIC CLEANING

Parabolic term is negative definite!

PHANTOM SPMHD CODE

Price et al. (2017)

Advection of current loop (Gardiner & Stone 2005, 2008)

Convergence on circularly polarised Alfvén wave with ALL dissipation turned on

Performed with all dissipation, shock capturing and divergence cleaning turned on

MAGNETICALLY LAUNCHED OUTFLOWS

First core (100 x 100 au)

Second (protostellar) core (10 x 10 au)

SMALL SCALE DYNAMO: FLASH VS PHANTOM Tricco, Price & Federrath (2016)

Phantom

MAGNETIC FIELDS IN TIDAL DISRUPTION EVENTS (201

Bonnerot, Price, Rossi, Lodato (2017), submitted to MNRAS

Danger! Can get artificial dynamo using "8 wave scheme" w/out div B cleaning

RADIATION

WHY RADIATION?

But Flux Limited Diffusion is both slow and wrong...

PHANTOM + MCFOST MONTE-CARLO RADIATION CODE

Mentiplay, Pinte & Price (2017), in prep.

SUMMARY

- 1. MHD in SPH is now fairly mature, useable out of the box for many practical applications
- New one fluid dust method great for handling small grains / short stopping times
- 3. Direct coupling with Monte-Carlo radiation codes seems feasible, at least for disc studies

PHANTOM IS NOW PUBLIC

	phantomsph.bitbuck	et.io	C	0 (1) -
	Home About Download	Docs Subscribe	Contribute Who we are	
	Price et al. (2017), sub arXiv:1702.0 https://phantomspt	omitted to PAS 03930 h.bitbucket.io		
PHANTOM: A smo	othed particle hydrodynamics and	PHANT Daniel J. Pricel. Chan', Guille une Janes Dentiel J. Pricel. Chan', Guille une Janes Dentiel Monte Collection Dentiel J. Pricel. Dentiel J. Pricel. Dentiel Monte Collection Dentiel Mont	And Sockers of Australian Statistics of Austra	anesto Proces Ly drody manics and