🗞 MONASH University

Australian Government

STAR FORMATION AND THE ROLE OF MAGNETIC FIELDS AND TURBULENCE

Daniel Price (Monash University, Melbourne, Australia) James Wurster (Exeter), Matthew Bate (Exeter), Terry Tricco (CITA), Christophe Pinte (Monash), David Liptai (Monash), Daniel Mentiplay (Monash), Giovanni Dipierro (Milan), Enrico Ragusa (Milan), Giuseppe Lodato (Milan), Simon Casassus (UChile), Nicolás Cuello (PUC)

Stars, Planets & Galaxies, Berlin, April 13th-18th 2018

Star formation: slow or fast? Planet formation: slow or fast?

The night sky near my house

Credit: Alex Cherney, terrastro.com

STAR FORMATION IN NEARBY MOLECULAR CLOUDS

TRADITIONAL VIEW

Star formation (10 Myr)	Planet formation (5-10 Myr)	Transitional phase	Planets			
Time						

MAGNETICALLY CONTROLLED (SLOW) STAR FORMATION

72 SHU, ADAMS & LIZANO

Figure 7 The four stages of star formation. (a) Cores form within molecular clouds as magnetic and turbulent support is lost through ambipolar diffusion. (b) A protostar with a surrounding nebular disk forms at the center of a cloud core collapsing from inside-out. (c) A stellar wind breaks out along the rotational axis of the system, creating a bipolar flow. (d) The infall terminates, revealing a newly formed star with a circumstellar disk.

Shu, Adams & Lizano (1987)

MAGNETIC FIELDS

e.g. Crutcher (1999, 2012), Bourke et al. (2001), Heiles & Crutcher (2005), Crutcher et al. (2010)

Critical mass to flux ratio to prevent gravitational collapse

Field strengths too small to prevent collapse!

Lots of other arguments against slow star formation (see review by Mac Low & Klessen 2004)

TURBULENCE AND MAGNETIC FIELDS

Goldsmith et al. (2008)

TURBULENCE-CONTROLLED STAR CLUSTER FORMATION

Supercritical mass-to-flux ratios: magnetic fields do not prevent collapse

CHARACTERISTICS OF TURBULENCE-CONTROLLED STAR FORMATION

- ► Fast, occurs on dynamical time(~1-2Myr)
- Chaotic; dynamical interactions common
- ► Initial mass function arises from competition for mass
- Binary and multiple stars usual outcome
- Massive, gravitationally unstable discs in early phase
- ► Filaments! (c.f. Philippe André's talk)

e.g. Larson (1978, 1981), Pringle (1989), Bate & Bonnell (1994a,b), Mac Low et al. (1999), Stone et al. (1998), Klessen et al. (2000), Bate et al. (2003), Elmegreen (2000), Mac Low & Klessen (2004), Bate & Bonnell (2005), Bonnell & Bate (2006), Bate (2009, 2012), Bate, Lodato & Pringle (2010)

DOES TURBULENCE DETERMINE THE INITIAL MASS FUNCTION?

Liptai et al. (2017), see also Bertelli-Motta et al. (2016)

SMALL SCALES: MAGNETIC BRAKING CATASTROPHE

og column density [g/cm²]

see Allen et al. (2003), Galli et al. (2006), Price & Bate (2007), Mellon & Li (2008), Hennebelle & Fromang (2008), Commerçon et al. (2010), Krasnopolsky et al. (2010), Seifried et al. (2012), Santos-Lima et al. (2012), Joos et al. (2013) and many others

> No discs in models with realistic magnetic field strengths

But assumed ideal MHD!

Price & Bate (2007)

CAN NON-IDEAL MHD SOLVE THE MAGNETIC BRAKING CATASTROPHE?

Wurster, Price & Bate (2016)

CAN NON-IDEAL MHD SOLVE THE MAGNETIC BRAKING CATASTROPHE?

Wurster, Price & Bate (2016)

Likely answer is combination of non-ideal MHD and turbulence

STAR FORMATION: SUMMARY

- Star formation is fast: Governed by turbulence on large scales (pc)
- Magnetic fields do not prevent gravitational collapse, but may help set star formation rate
- Magnetic braking catastrophe on small scales (~100 au) can be solved with turbulence + non-ideal MHD
- Dynamical interactions, radiation + non-ideal MHD dominate on scales < 100 au</p>
- No fossil fields in stars (embargoed)

PLANET FORMATION – FAST OR SLOW?

Mamajek (2009)

Lifetime of protoplanetary disc ~ 10 Myr

TRADITIONAL VIEW

Star formation (10 Myr)	Planet formation (5-10 Myr)	Transitional phase	Planets			
Time						

PLANET FORMATION IN THE TAURUS MOLECULAR CLOUD

ALMA collaboration et al. (2015)

DUST, GAS AND PLANETS IN HL TAU

Dipierro et al. (2015)

Gas

mm grains

COMPARISON

Dipierro, Price, et al. (2015), MNRAS 453, L73-L77

Figure 4. Comparison between the ALMA image of HL Tau (left) with simulated observations of our disc model (right) at band 6 (continuum emission at 233 GHz). The white colour in the filled ellipse in the lower left corner indicates the size of the half-power contour of the synthesized beam: (left) 0.035 arcsec \times 0.022 arcsec, P.A. 11°; (right) 0.032 arcsec \times 0.024 arcsec, P.A. 6°.

But need 3 x Saturn-mass planets in less than 1 million years!

Similar conclusions reached by Jin + (2016), Picogna + (2016)

TW HYA: OUR NEAREST PROTOPLANETARY DISCAsk Sean Andrews!

TW HYA MODELLING

Mentiplay, Price & Pinte (in prep)

Super-earths in TW Hya

Transitional Disk

Benisty et al. (2016)

Van-der-Marel et al. (2016)

HD142527

0.1

0

0.2

0.3

LETTER

Flows of gas through a protoplanetary gap

Simon Casassus¹, Gerrit van der Plas¹, Sebastian Perez M¹, William R. F. Dent^{2,3}, Ed Fomalont⁴, Janis Hagelberg⁵, Antonio Hales^{2,4}, Andrés Jordán⁶, Dimitri Mawet³, Francois Ménard^{7,8}, Al Wootten⁴, David Wilner⁹, A. Meredith Hughes¹⁰, Matthias R. Schreiber¹¹, Julien H. Girard³, Barbara Ercolano¹², Hector Canovas¹¹, Pablo E. Román¹³ & Vachail Salinas¹

- 0 -2 2 2 CO 5 -1 1 0 0 -1 -1 Angular position north (arcsec) Continuum -2 -2 2 2 d 1 0 -1 HCO⁺ 2 um -2
 - ► Large ~100 au cavity
 - ► Horseshoe in mm emission

-2

► Gap-crossing filaments?

2

SHADOWS = INCLINED INNER DISC?

THE ASTROPHYSICAL JOURNAL LETTERS, 798:L44 (4pp), 2015 January 10

Marino, Perez & Casassus (2015)

"FAST RADIAL FLOWS" = DISC TEARING?

0.5 0bs smooth mod. mod. smooth mod. slow warp 0 0.5 d b -0.5 0.5 0.5 0 0 -0.50 -0.5 0.5 0 -0.50.5

Casassus et al.

Figure 7. Comparison of observed and model CO(6-5) kinematics in the stellar position. Velocity-integrated intensity in CO(6-5) is shown in are spread over [0.21, 7.87] km s⁻¹ (as in Fig. 1). a): Observed moment the radiative transfer prediction, after smoothing to the resolution of t without smoothing. Regions without contours near the origin corresp component perpendicular to the disk plane (v_{warp} in the text).

8

dubbed disk tearing (Nixon et al. 2013; Nealon et al. 2015; Doğan et al. 2015), where nodal precession torques induced by the binary produce a warp at the inner edge

Require infall motions from cavity edge at the free-fall velocity!

Price et al. (2018), arXiv:1803.02484

Almost polar alignment of binary to disc! c.f. Aly et al. (2015), Martin & Lubow (2017)

SUMMARY

- Every disc imaged so far shows signs of interaction with already-formed planets or low mass companions*
- Lots of discs similar to HD142527 disturbed morphologies, asymmetries, spirals. Suggests highly misaligned, eccentric companions are common?*
- Discs with holes telling us about chaotic star formation how discs are born not how they die*
- Suggests planet formation is FAST not slow*

* This is controversial

NEW VIEW?

Star formation (1-2 Myr)	ıation (10 Myr)	Planet formation (5-10 Myr)	Transitional phase	Planets
Planet formation (1-2 Myr)		Time		
Tran sitio		Planets		

Hypothesis: Star and planet formation are both fast, dynamical processes

PREDICTIONS:

Lodato & Price (in prep)

- Expect lots more discs with companions on wild orbits
- Discs around more massive stars should be more disturbed
- ► Rings and gaps will be found everywhere
- Tidal encounters common!

Credit: Nicolás Cuello

Reminds us of galaxy formation!