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Status of Smoothed Particle 
Magnetohydrodynamics

• New “constrained” hyperbolic divergence cleaning 
(Tricco & Price 2012 JCP 231, 7214)!

• Improved switch for artificial resistivity                     
(Tricco & Price 2013, MNRAS 436, 2810)!

• Now able to robustly tackle variety of new & interesting 
applications!

• Ambipolar diffusion (Wurster, Price & Ayliffe 2014, 
submitted to MNRAS)

Protostellar outflows with SPMHD
Price, Tricco & Bate (2012); Bate, Tricco & Price (2014)
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Figure 3. z-column integrated ⇢ and |B|, defined < B >=
R
|B|dz/

R
dz, for FLASH (top) and PHANTOM (bottom) at resolutions of 2563 for t/tc = 2,4,6,8. The

density field has similar structure in both codes at early times, but diverge at late times due to the non-linear behaviour of the turbulence. The magnetic field is
strongest in the densest regions, while the mean magnetic field strength also increases with time.

motions via the driving routine. The magnetic energy satu-
rates at t/tc ⇠ 30 for all three FLASH calculations, but the
time of saturation in the PHANTOM calculations varies from
t/tc = 12 to t/tc = 45 depending on the resolution. In all cases,
the saturation occurs when vA ⇠ cs.

4.2.1. Correlation with the density field

Figure 3 shows a time sequence of column density and col-
umn integrated |B| from t/tc = 2–8, comparing FLASH (top
figure) and PHANTOM (bottom figure) calculations at 2563

since the growth rates are similar at this resolution (c.f. Fig-
ure 1 and Table 2). Both codes show similar patterns in col-

umn density and magnetic field for the first few crossing times
(left two columns), but eventually the patterns diverge due
to the chaotic nature of turbulence (right two columns; this
was also found in PF10). Nevertheless, there exists a definite
correlation between the density and the magnetic field when
compared at a fixed time for each code individually. The mean
magnetic field strength can be seen to increase with time in
both the low and high density regions.

4.2.2. Magnetic energy growth rates

Table 2 compares the slope of a line fitted to the magnetic
energy for each of the six calculations during the growth phase
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ABSTRACT
We have performed simulations of driven, supersonic, magnetohydrodynamic turbulence following the growth
and saturation of an initially weak magnetic field via small-scale dynamo amplification. The results are
compared between two different numerical methods and codes: smoothed particle magnetohydrodynamics
(SPMHD) with the PHANTOM code, and the grid-based code FLASH. We find that the growth rate of FLASH is
largely insensitive to the numerical resolution, whereas PHANTOM shows a resolution dependence that arises
from the scaling of the numerical dissipation terms. The saturation level of the magnetic energy in both codes
is about 2–4% of the mean kinetic energy, increasing with higher magnetic Reynolds numbers. PHANTOM
yields higher mean magnetic energy at saturation than FLASH at comparable resolution. The time-averaged
saturated magnetic spectra have a similar shape between the two methods, though PHANTOM contains twice as
much energy on large scales. Both codes show PDFs of magnetic field strength that are log-normal during the
growth phase, which become lopsided as the magnetic field saturates. We find encouraging agreement between
grid- and particle methods for ideal MHD, concluding that SPMHD is able to reliably simulate the small-scale
dynamo. Quantitative agreement on growth rates can only be achieved by including explicit, physical terms for
viscosity and resistivity, because those are the terms that primarily control the growth rate and saturation level
of the turbulent dynamo.

1. INTRODUCTION

Supersonic turbulence regulates star formation (Mac Low
& Klessen 2004; McKee & Ostriker 2007), producing the
dense filaments that permeate molecular clouds along which
dense cores and protostars form (e.g., Larson 1981; Hartmann
2002; Elmegreen & Scalo 2004; Hatchell et al. 2005; André
et al. 2010; Peretto et al. 2012). That the turbulence is magne-
tized cannot be ignored. Magnetic fields are no longer thought
to prevent gravitational collapse altogether, but may still de-
termine the rate and efficiency of star formation, even with
weak magnetic fields i.e., super-Alfvénic turbulence (Naka-
mura & Li 2008; Lunttila et al. 2009; Price & Bate 2008,
2009; Padoan & Nordlund 2011; Federrath & Klessen 2012).

Magnetic fields grow in a turbulent environment by the con-
version of kinetic energy into magnetic energy. This type of
dynamo is small-scale, operating near the dissipation scale.
It is there that the smallest motions can efficiently grow the
magnetic field through rapid winding and twisting of the mag-
netic field lines, with the magnetic field as a whole growing
exponentially through a reverse cascade from small to large
scales (see review by Brandenburg & Subramanian 2005).
The magnetic field will saturate first on small scales due to the
back-reaction of the Lorentz force on the turbulent flow, after
which it enters a linear or quadratic growth phase, until the
field finally reaches saturation on all scales (Cho et al. 2009;
Schleicher et al. 2013). The growth rate is determined by
the physical viscosity and magnetic resistivity of the plasma,
which can be expressed as dimensionless numbers: the kine-
matic Reynolds number (Re), the magnetic Reynolds number
(Rm), and the ratio of the two, the ‘magnetic Prandtl num-
ber’, Pm = Rm/Re (Schekochihin et al. 2004a; Brandenburg
& Subramanian 2005; Schober et al. 2012a,b; Bovino et al.
2013). Using a large set of numerical simulations, Federrath
et al. (2011) found that the dynamo growth rate also depends
sensitively on the compressibility of the plasma, parameter-
ized by the turbulent Mach number, and is more efficient for

turbulence driven by solenoidal (rotational) flows rather than
compression.

These processes involve highly non-linear dynamics and
complex behaviours, making analytic study difficult (with no-
table exceptions; Sridhar & Goldreich 1994; Goldreich &
Sridhar 1995). Furthermore, observations of magnetic fields
in molecular clouds are time consuming and only yield field
directions in the plane of the sky and magnitudes along the
line of sight (e.g., Crutcher 1999; Bourke et al. 2001; Heiles
& Troland 2005; Troland & Crutcher 2008). Numerical simu-
lations complement analytics and observations. It is therefore
important to compare results from different codes and to es-
tablish the conditions under which those results are represen-
tative of the physical processes involved.

There have been several major code comparison projects
related to supersonic turbulence. Tasker et al. (2008) com-
pared two grid codes (ENZO, FLASH) and two particle-based
codes (GADGET2, HYDRA) on simple test problems involv-
ing strong hydrodynamic shocks, finding comparable results
when the number of particles were roughly equal to the num-
ber of grid cells. Kitsionas et al. (2009) studied decaying, su-
personic, hydrodynamic (non-magnetized) turbulence, com-
paring four grid codes (ENZO, FLASH, TVD, ZEUS) and
three particle codes (GADGET, PHANTOM, VINE). They
found similar velocity power spectra and density probabil-
ity distribution functions (PDF) when the number of resolu-
tion elements was comparable, though the particle codes were
found to be more dissipative. Kritsuk et al. (2011) compared
decaying, supersonic turbulence with magnetohydrodynam-
ics (MHD) using nine different grid codes: ENZO, FLASH,
KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER,
and ZEUS. They found that all methods produced physically
consistent results, with the quality of results improved with
higher-order numerical solvers, and by exactly rather than ap-
proximately maintaining the divergence-free constraint on the
magnetic field.

MRI in SPMHD
112 Chapter 6. Conclusion

Figure 6.1: Snapshots of B
�

at t = 1, 20, and 25⌦ for the 5122 2D shearing box MRI test.
Random small motions in the velocity lead to perturbations in the magnetic field (t = 1⌦).
These coalesce to form large structures (t = 20⌦), which lead to the generation of turbulence
(t = 25⌦). Renderings are not all on the same scale.

is quite natural for simulating global accretion discs. Demonstrating that SPMHD can simulate

the MRI would open a wide range of physical problems for future study.

Preliminary work has been performed on simulating the MRI in SPMHD. Vanaverbeke et al.

(2014) used simulations of the MRI to test their SPMHD code, finding their results to have

qualitative agreement with the grid-based simulations of Guan and Gammie (2008). In the

following, we describe the results of simulations of the MRI in 2D shearing boxes. The initial

density is uniform ⇢ = 1. The equation of state is isothermal. The initial magnetic field is a sine

wave in the z-direction, with amplitude defined to have plasma beta � = 1348 (B
z

⇡ 0.0358).

Random perturbations are introduced to the velocity field on the scale of 0.01 cs. We note

that these simulations use the quintic spline kernel in order to adequately resolve these small

perturbations. These conditions mimic the fiducial model of Guan and Gammie (2008) and

model S1 of Hawley and Balbus (1992). We perform the simulations for 100 orbital periods

(t = 100⌦ where ⌦ is the orbital frequency) at resolutions of 642, 1282, 2562, and 5122. Since the

flow is subsonic, we used the averaged Alfvén speed in the artificial resistivity signal velocity,

rather than the fast MHD wave speed. We found that at low resolutions, the dissipation

from using the fast MHD wave speed can prevent the instability from activating. Similarly,

Vanaverbeke et al. (2014) comment that they use only the r · B source term when using the

PM05 switch in order to avoid excessive dissipation.

Snapshots of the � component of the magnetic field at t = 1, 20, and 25⌦ are presented

in Figure 6.1. The correct qualitative behaviour is obtained: random motions in the initial

conditions induce small perturbations in the magnetic field, which coalesce leading to turbulent

motion. The magnetic energy as a function of time is given by Figure 6.2. The MRI leads

to an exponential increase in magnetic energy which decays once turbulence has formed. The

location of the peak is in agreement with Guan and Gammie (2008). It occurs later for higher

resolutions because the energy contained in the perturbations is at smaller scales, requiring more

time for the perturbations to coalesce into large structures. The maximum magnetic energy

achieved increases with resolution due to the reduction in numerical dissipation. Notably, the

Tricco & Price (in prep.)
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Pillars of Creation (the Eagle Nebula)
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Dust + Gas: A simple example of a 
two-fluid mixture

! Two fluids coupled by a drag term
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Dusty gas with SPH – I. 2355

Figure 5. As in Fig. 4 but using only the double-hump cubic kernel with
a range of drag coefficients K = 0.01, 0.1, 1, 10 and 100 (top to bottom,
solid/black lines), compared with the exact solution in each case given by
the long-dashed/red lines.

can be improved – at considerable cost – by increasing the ratio of
smoothing length to particle spacing (i.e. the neighbour number).
By comparison, use of the double-hump cubic spline kernel gives
errors !0.1 per cent (solid/black line) with no additional overhead
in terms of cost.

4.2.3 DUSTYBOX: effect of drag coefficient and dust-to-gas ratio

Fig. 5 is identical to Fig. 4 but for a range of drag coefficients
K = 0.01, 0.1, 1, 10 and 100, compared to the exact solution in
each case given by a solid/black line. Irrespective of the value of
K, both gas and dust velocities relax to the barycentric velocity
(vg = vd = 0.5) in a few stopping times ts = (ρ̂gρ̂d)/[K(ρ̂g + ρ̂d)].
Using the double-hump cubic, an accuracy between 0.1 and 1 per
cent is achieved in all cases (long dashed/red lines).

Fig. 6 is similar, but varying the dust-to-gas ratio using ρ̂d/ρ̂d =
0.01, 0.1, 1, 10 and 100 (achieved by varying ρ̂d with ρ̂g = 1) and
using K = 1. This changes both the drag stopping time and the
barycentric velocity towards which the system relaxes. Here again,
an accuracy between 0.1 and 1 per cent is achieved in all cases.

4.3 DUSTYWAVE: sound waves in a dust–gas mixture

The exact solution for linear waves propagating in a dust–gas mix-
ture (DUSTYWAVE) has been presented by Laibe & Price (2011a).
We have performed a series of tests involving the propagation of a
sound wave along the x-axis in both one and three dimensions in a
periodic box, adopting the set-up described in table 2 of Laibe &
Price (2011a). The DUSTYWAVE problem is more complex than the
DUSTYBOX problem as the motion of the mixture is driven by both
the drag and the gas pressure.

Specifically, Laibe & Price (2011a) derive the dispersion relation

ω3 + iK
(

1
ρ̂g

+ 1
ρ̂d

)
ω2 − k2c2

s ω − iK
k2c2

s

ρ̂d
= 0, (97)

Figure 6. As in Figs 4 and 5 but varying the dust-to-gas ratio ρ̂d/ρ̂d =
0.01, 0.1, 1, 10 and 100 (top to bottom, solid/black lines) and a fixed drag
coefficient K = 1 using the double-hump cubic kernel. Exact solutions for
each case are given by the long-dashed/red lines.

for solutions in the form ei(kx−ωt). At high drag, equation (97)
can be expanded in a Taylor series, which to first order
gives

ω = ±kc̃s − i
ρ̂gρ̂d

K(ρ̂g + ρ̂d)
k2c2

s

(
1 − A2

2

)
, (98)

where the effective sound speed is defined according to

c̃s ≡ csA = cs

(
1 + ρ̂d

ρ̂g

)−1/2

. (99)

The first term of equation (98) gives the propagation of the cen-
tre of mass of the mixture at the effective sound speed c̃s. The
second term corresponds to a corrective dissipative term since
A ∈ [0, 1].

4.3.1 DUSTYWAVE: set-up

The equilibrium state is characterized by the two phases at rest
where the gas sound speed and both gas and dust densities are set
to unity in code units. In one dimension, this is achieved by placing
equally spaced particles in the periodic domain x ∈ [0, 1]. For the
3D simulations, the tests are run in a periodic box x, y, z ∈ [0, 1]
with gas particles set up on a regular cubic lattice and dust particles
set up on a cubic lattice shifted by half of the lattice step in each
directions. As previously, no artificial viscosity is applied. We set
the relative amplitude of the perturbation to 10−4 in both velocity
and density in order to remain in the linear acoustic regime for which
the solution in Laibe & Price (2011a) is derived (we have verified
that running the same simulations setting the relative amplitudes to
10−8 gives the same results). The density perturbation is applied
to the particles as described in appendix B of Price & Monaghan
(2004). We adopt an isothermal equation of state P = c2

s ρ with
cs = 1.

C⃝ 2011 The Authors, MNRAS 420, 2345–2364
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS

 at M
onash U

niversity on D
ecem

ber 18, 2013
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

K=100

K=0.01



DUSTYWAVE: Waves in a dust-gas 
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Dispersion relation:
!3 + iK

✓
1

⇢̂g
+

1

⇢̂d

◆
!2 � k2c2s! � iK

k2c2s
⇢̂d

= 0

Limit of strong drag:
! = ±kc̃s � i

⇢̂g⇢̂d
K (⇢̂g + ⇢̂d)

k2c2s

✓
1�A2

2

◆

c̃s ⌘ csA = cs

✓
1 +

⇢̂d
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Effective sound speed:

�v = Aei(kx�!t)

Laibe & Price, 2011, MNRAS 418, 1491

Dustywaves: Analytic solution

!-------------------------------!
! D U S T  V E L O C I T I E S!

!-------------------------------!
    vd3r = - (rhogeq*cs**2*k**2*w2r**2*w1r**2*rhogsol + rhogeq**2*w3i**4*k*w1r*vgsol - w3i*cs**2*k**3*rhogeq*Kdrag*vdsol*w2r - w3i*cs**2*k**3*rhogeq*Kdrag*vdsol*w1r + 

w3i*cs**2*k**3*rhogeq*Kdrag*vgsol*w2r + w3i*cs**2*k**3*rhogeq*Kdrag*vgsol*w1r -rhogeq**2*cs**2*k**3*w2i**2*w1r*vgsol + rhogeq*cs**4*k**4*w2r*w1r*rhogsol - 
rhogeq**2*cs**2*k**3*w2r**2*w1r*vgsol - rhogeq*cs**2*k**3*w2r*w1i*Kdrag*vgsol -rhogeq**2*cs**2*k**3*w2r*w1i**2*vgsol + rhogeq*cs**2*k**3*w2r*w1i*Kdrag*vdsol -    

rhogeq**2*cs**2*k**3*w2r*w1r**2*vgsol - rhogeq*w3i**4*cs**2*k**2*rhogsol - rhogeq*cs**4*k**4*w2i*w1i*rhogsol + rhogeq*cs**2*k**2*w1i**2*w2r**2*rhogsol + rhogeq**2*w3i**4*w2r*k*vgsol - 
rhogeq*w3i**3*k*Kdrag*vdsol*w1r +  2*rhogeq*w3i**3*k*Kdrag*vgsol*w2r + rhogeq*w2i**2*w1i**2*cs**2*k**2*rhogsol +  rhogeq*w2i**2*w1r**2*cs**2*k**2*rhogsol - rhogeq*w3i**4*w2r*w1r*rhogsol + 

rhogeq*w3i**4*w1i*rhogsol*w2i +  w3i*cs**4*k**4*rhogeq*rhogsol*w2i + w3i*cs**4*k**4*rhogeq*rhogsol*w1i + w3i**2*Kdrag**2*k*vgsol*w1r -w3i**3*Kdrag*rhogsol*k**2*cs**2 - 
w3i**3*Kdrag*rhogsol*w2r*w1r + w3i**3*Kdrag*rhogsol*w2i*w1i - w3i*cs**2*k**2*rhogeq*rhogsol*w2r**2*w1i - w3i*cs**2*k**2*rhogeq*rhogsol*w1i*w2i**2 +  rhogeq*w3i**3*rhogsol*k**2*cs**2*w2i + 
rhogeq*w3i**3*rhogsol*k**2*cs**2*w1i - rhogeq*w3i**3*rhogsol*w2r**2*w1i  - rhogeq*w3i**3*rhogsol*w1i*w2i**2 - rhogeq*w3i**3*rhogsol*w2i*w1r**2 -  w3i*cs**2*k**2*rhogeq*rhogsol*w2i*w1r**2 - 

w3i*cs**2*k**2*rhogeq*rhogsol*w2i*w1i**2 - rhogeq*w3i**3*rhogsol*w2i*w1i**2 - rhogeq*w3i**3*k*Kdrag*vdsol*w2r + 2*rhogeq*w3i**3*k*Kdrag*vgsol*w1r + w3r*rhogeq**2*cs**2*k**3*w2i**2*vgsol + 
w3r*rhogeq*w2r*w3i**2*cs**2*k**2*rhogsol - w3r*rhogeq**2*w3i**2*k*w1r**2*vgsol + w3r*rhogeq*w3i**2*cs**2*k**2*rhogsol*w1r +  2*w3r*rhogeq*cs**2*k**3*w3i*Kdrag*vdsol - 

w3r*rhogeq*cs**4*k**4*w2r*rhogsol +  w3r*rhogeq**2*cs**2*k**3*w2r**2*vgsol + w3r**4*rhogeq**2*w2r*vgsol*k - w3r**4*rhogeq*w2r*w1r*rhogsol +  w3r**4*rhogeq**2*k*w1r*vgsol - 
w3r**4*rhogeq*rhogsol*k**2*cs**2 + w3r**4*rhogeq*w2i*rhogsol*w1i +2*w3r*rhogeq*w2i*w3i*w1i*k*Kdrag*vgsol + 2*w3r*rhogeq**2*w2i*k*vgsol*w3i*w1r**2 +  

2*w3r*rhogeq*w2r*w3i*w1r*k*Kdrag*vdsol - 2*w3r*rhogeq*w2i*w3i**2*k*Kdrag*vgsol - w3r*w3i**2*Kdrag**2*k*vgsol + w3r*w3i**2*Kdrag**2*k*vdsol - w3r*rhogeq**2*w1i**2*k*vgsol*w3i**2 - 
2*w3r*rhogeq**2*w3i**2*k*w2i*w1i*vgsol + 2*w3r*rhogeq**2*w2i*w1i**2*w3i*k*vgsol + w3r*w3i**2*Kdrag*rhogsol*w1i*w2r + w3r*w3i**2*Kdrag*rhogsol*w2i*w1r - 

w3r*Kdrag*rhogsol*k**2*cs**2*w1i*w2r - w3r*Kdrag*rhogsol*k**2*cs**2*w2i*w1r +  w3r*Kdrag*k*rhogeq*vgsol*w2i*w1r**2 + w3r*Kdrag*k*rhogeq*vgsol*w2i*w1i**2 + w3r*Kdrag**2*k*vdsol*w2r*w1r 
-w3r*Kdrag**2*k*vdsol*w2i*w1i - w3r*Kdrag**2*k*vgsol*w2r*w1r + w3r*Kdrag**2*k*vgsol*w2i*w1i + w3r*Kdrag*k*rhogeq*vgsol*w2r**2*w1i + w3r*Kdrag*k*rhogeq*vgsol*w1i*w2i**2 - 

w3r*rhogeq**2*w2r**2*w3i**2*k*vgsol  - 2*w3r*rhogeq*w2r*w3i*w1r*k*Kdrag*vgsol + w3r*rhogeq*w2i*w3i**2*k*Kdrag*vdsol - 2*w3r*rhogeq**2*w2r*w3i**2*k*w1r*vgsol + 
w3r*rhogeq*w2r**2*w3i**2*w1r*rhogsol -  2*w3r*rhogeq*w1i*w3i**2*k*Kdrag*vgsol + w3r*rhogeq*w1i*w3i**2*k*Kdrag*vdsol + 2*w3r*rhogeq**2*w3i*w2r**2*w1i*k*vgsol + 

w3r*rhogeq*w1i**2*w3i**2*w2r*rhogsol - w3r*rhogeq**2*w3i**2*w2i**2*k*vgsol - w3r*rhogeq*cs**2*k**2*w1i**2*w2r*rhogsol -   w3r*rhogeq*cs**2*k**2*w2r*w1r**2*rhogsol -
w3r*rhogeq*cs**2*k**2*w2r**2*w1r*rhogsol + w3r*rhogeq*w2i**2*w3i**2*w1r*rhogsol + w3r*rhogeq*w2r*w3i**2*w1r**2*rhogsol - 2*w3r*rhogeq**2*cs**2*k**3*w3i*w2i*vgsol - 
w3r*rhogeq*w2i**2*w1r*cs**2*k**2*rhogsol +  2*w3r*rhogeq**2*w2i**2*w3i*w1i*k*vgsol + w3r*rhogeq*cs**2*k**3*w1i*Kdrag*vgsol - w3r*rhogeq*cs**2*k**3*w2i*Kdrag*vdsol + 
w3r*rhogeq*cs**2*k**3*w2i*Kdrag*vgsol - w3r*rhogeq*cs**2*k**3*w1i*Kdrag*vdsol + w3r*rhogeq**2*cs**2*k**3*w1i**2*vgsol -  2*w3r*rhogeq**2*cs**2*k**3*w3i*w1i*vgsol + 

w3r*rhogeq**2*cs**2*k**3*w1r**2*vgsol - w3r*rhogeq*cs**4*k**4*w1r*rhogsol - 2*w3r*rhogeq*cs**2*k**3*w3i*Kdrag*vgsol + 2*w3r*rhogeq**2*cs**2*k**3*w2r*w1r*vgsol - 
2*w3r*rhogeq*w2i*w3i*w1i*k*Kdrag*vdsol + 2*w3r*rhogeq**2*cs**2*k**3*w2i*w1i*vgsol + w3r**2*w3i*rhogeq*rhogsol*k**2*cs**2*w1i - w3r**2*w3i*rhogeq*rhogsol*w2r**2*w1i - 

w3r**2*w3i*rhogeq*rhogsol*w1i*w2i**2 - w3r**2*w3i*rhogeq*rhogsol*w2i*w1r**2 - w3r**2*w3i*rhogeq*rhogsol*w2i*w1i**2 - w3r**2*w3i*rhogeq*k*Kdrag*vdsol*w2r - 
w3r**2*Kdrag*rhogsol*w3i*w2r*w1r + w3r**2*Kdrag*rhogsol*w2i*w3i*w1i - w3r**2*w3i*rhogeq*k*Kdrag*vdsol*w1r + w3r**2*w3i*rhogeq*rhogsol*k**2*cs**2*w2i - 

w3r**2*Kdrag*rhogsol*k**2*cs**2*w3i + w3r**2*Kdrag*rhogsol*k**2*cs**2*w2i + w3r**2*Kdrag*rhogsol*k**2*cs**2*w1i + 2*w3r**2*Kdrag*k*rhogeq*vgsol*w2r*w3i + 
2*w3r**2*Kdrag*k*rhogeq*vgsol*w3i*w1r + 2*w3r**2*rhogeq**2*w2r*k*vgsol*w3i**2 - w3r**2*rhogeq**2*cs**2*k**3*w2r*vgsol + w3r**2*rhogeq*w2r*w1i*k*Kdrag*vgsol + 

w3r**2*rhogeq**2*w2r*w1i**2*k*vgsol - w3r**2*rhogeq*w2r*w1i*k*Kdrag*vdsol + w3r**2*rhogeq**2*w2r*w1r**2*k*vgsol - w3r**2*rhogeq**2*cs**2*k**3*w1r*vgsol - w3r**2*Kdrag**2*k*vdsol*w2r - 
w3r**2*rhogeq*w2i**2*w1i**2*rhogsol - w3r**2*rhogeq*w1r**2*w2i**2*rhogsol - w3r**2*rhogeq*w2r**2*w1r**2*rhogsol + w3r**2*rhogeq*cs**4*k**4*rhogsol - w3r**2*rhogeq*w1i**2*w2r**2*rhogsol - 

w3r**2*Kdrag*rhogsol*w1i*w2i**2 - w3r**2*Kdrag*rhogsol*w2i*w1r**2 - w3r**2*Kdrag*rhogsol*w2i*w1i**2 - w3r**2*Kdrag*rhogsol*w2r**2*w1i - w3r**2*Kdrag**2*k*vdsol*w1r + 
w3r**2*Kdrag**2*k*vgsol*w2r + w3r**2*Kdrag**2*k*vgsol*w1r + w3r**3*Kdrag*rhogsol*w2i*w1r + w3r**3*rhogeq*w2i*k*Kdrag*vdsol - w3r**3*rhogeq**2*w2i**2*k*vgsol + 
w3r**2*rhogeq**2*w2i**2*w1r*k*vgsol - 2*w3r**2*rhogeq*w2r*w3i**2*w1r*rhogsol + 2*w3r**2*rhogeq**2*w3i**2*k*w1r*vgsol + 2*w3r**2*rhogeq*w1i*w3i**2*rhogsol*w2i - 

w3r**2*rhogeq*w2i*w1r*k*Kdrag*vdsol + w3r**2*rhogeq*w2i*w1r*k*Kdrag*vgsol - w3r**3*rhogeq**2*w1i**2*k*vgsol - 2*w3r**3*rhogeq**2*w2r*k*w1r*vgsol + w3r**3*rhogeq*w2r**2*w1r*rhogsol + 
w3r**3*rhogeq*w2r*cs**2*k**2*rhogsol - 2*w3r**3*rhogeq*w2i*k*Kdrag*vgsol - w3r**3*rhogeq**2*w1r**2*k*vgsol + w3r**3*rhogeq*w1r*cs**2*k**2*rhogsol - w3r**3*rhogeq**2*w2r**2*k*vgsol + 

w3r**3*rhogeq*w1i*k*Kdrag*vdsol - 2*w3r**3*rhogeq**2*k*w2i*w1i*vgsol + w3r**3*rhogeq*w2r*w1r**2*rhogsol + w3r**3*rhogeq*w1i**2*w2r*rhogsol + w3r**3*rhogeq*w2i**2*w1r*rhogsol - 
2*w3r**3*rhogeq*w1i*k*Kdrag*vgsol + w3r**3*Kdrag*rhogsol*w1i*w2r + w3r**2*rhogeq**2*w2r**2*k*w1r*vgsol - 2*w3r**2*rhogeq*w3i**2*cs**2*k**2*rhogsol + w3r**3*Kdrag**2*k*vdsol + 

w3i**2*rhogeq**2*cs**2*k**3*w2r*vgsol - w3r**3*Kdrag**2*k*vgsol + w3i**2*rhogeq*w2i*w1r*k*Kdrag*vdsol - w3i**2*Kdrag**2*k*vdsol*w2r + w3i**2*Kdrag**2*k*vgsol*w2r - 
w3i**2*Kdrag*rhogsol*w2r**2*w1i - w3i**2*Kdrag*rhogsol*w1i*w2i**2 - w3i**2*Kdrag*rhogsol*w2i*w1r**2 - w3i**2*Kdrag*rhogsol*w2i*w1i**2 + w3i**2*Kdrag*rhogsol*k**2*cs**2*w2i + 

w3i**2*Kdrag*rhogsol*k**2*cs**2*w1i - Kdrag*k*rhogeq*vgsol*w3i*w1r*w2r**2 - Kdrag*k*rhogeq*vgsol*w3i*w2r*w1r**2 - Kdrag*k*rhogeq*vgsol*w3i*w2r*w1i**2 - 
Kdrag*k*rhogeq*vgsol*w3i*w1r*w2i**2 + Kdrag*rhogsol*k**2*cs**2*w3i*w2r*w1r - Kdrag*rhogsol*k**2*cs**2*w2i*w3i*w1i + Kdrag*rhogsol*w2r**2*w1i**2*w3i + Kdrag*rhogsol*w3i*w1r**2*w2r**2 + 

Kdrag*rhogsol*w1i**2*w2i**2*w3i + Kdrag*rhogsol*w2i**2*w1r**2*w3i + Kdrag**2*k*vdsol*w2r*w1i*w3i + Kdrag**2*k*vdsol*w2i*w3i*w1r - Kdrag**2*k*vgsol*w2r*w1i*w3i - 
Kdrag**2*k*vgsol*w2i*w3i*w1r - w3i**2*Kdrag**2*k*vdsol*w1r + rhogeq*cs**2*k**3*w2i*w1r*Kdrag*vdsol - rhogeq*cs**2*k**3*w2i*w1r*Kdrag*vgsol - w3i**2*rhogeq**2*w2i**2*w1r*k*vgsol - 

w3i**2*rhogeq**2*w2r**2*k*w1r*vgsol - w3i**2*rhogeq*w2i*w1r*k*Kdrag*vgsol - w3i**2*rhogeq*w2r*w1i*k*Kdrag*vgsol - w3i**2*rhogeq**2*w2r*w1i**2*k*vgsol + 
w3i**2*rhogeq*w2r*w1i*k*Kdrag*vdsol - w3i**2*rhogeq**2*w2r*w1r**2*k*vgsol + w3i**2*rhogeq**2*cs**2*k**3*w1r*vgsol + w3i**2*rhogeq*w2i**2*w1i**2*rhogsol + 

w3i**2*rhogeq*w1r**2*w2i**2*rhogsol + w3i**2*rhogeq*w2r**2*w1r**2*rhogsol - w3i**2*rhogeq*cs**4*k**4*rhogsol + w3i**2*rhogeq*w1i**2*w2r**2*rhogsol)/(w1i**2 - 2*w3i*w1i + w3r**2 + w1r**2 + 
w3i**2 - 2*w3r*w1r)/(w2r**2 - 2*w3r*w2r + w2i**2 + w3i**2 - 2*w2i*w3i + w3r**2)/k/rhogeq/Kdrag

Laibe & Price, 2011, MNRAS 418, 1491



Resolution study
Laibe & Price, 2012, MNRAS 420, 2345

Very difficult to 
converge when 
drag is strong!

Resolution Criterion

! Require infinite timesteps AND infinite resolution 
in the obvious limit of perfect coupling!

�t ! 0

�x ! 0

Temporal: �t < t
stop

Spatial: �x . t

stop

c

s

(K ! 1)

t
stop

! 0 implies

(can be fixed with implicit 
timestepping methods)

(much more difficult to fix)

Laibe & Price, 2012, MNRAS 420, 2345



Dustyshock
� �

�

���� � ���

�

���

��	

��


��� ����

�

�

���� � ���

���

��	

��


���

�

�

�

�

���� � ���

�

���

�

�

�

�

���� � ���

���

�

� �

�

���� � ���

�

���

��	

��


��� ����

�

�

���� � ���

���

��	

��


���

�

�

�

�

���� � ���

�

���

�

�

�

�

���� � ���

���

�

sensible resolution ludicrous resolution

Laibe & Price, 2012, MNRAS 420, 2345

Dusty Gas with One Fluid

! Reformulate equations on the barycentre of both 
fluids

v ⌘ ⇢gvg + ⇢dvd

⇢g + ⇢d

to v,�v, ⇢, ⇢d/⇢g

vg,vd, ⇢g, ⇢d! Change of variables, from

Laibe & Price (2014a,b, MNRAS 440, 2136-2163



TWO BECOME ONE

! Two fluids coupled by a drag term
@⇢g
@t

+r. (⇢gvg) = 0,

@⇢d
@t

+r. (⇢dvd) = 0,

@vg

@t
+ (vg.r)vg = �rPg

⇢g
+K(vd � vg) + f,

@vd

@t
+ (vd.r)vd = �K(vd � vg) + f,

A phoenix from the ashes

TWO BECOME ONE

One mixture with a differential velocity

A phoenix from the ashes

Laibe & Price (2014) MNRAS 

d⇢

dt
= �⇢(r · v),

dv

dt
= �rPg

⇢
� 1

⇢
r ·

✓
⇢g⇢d
⇢

�v�v

◆
+ f ,

d

dt

✓
⇢d
⇢g

◆
= �1

⇢
r ·

✓
⇢g⇢d
⇢

�v

◆
,

d�v

dt
= ��v

ts
+

rPg

⇢g
� (�v ·r)v +

1

2
r


⇢d � ⇢g
⇢g + ⇢d

�v2

�
,

No approximations!



Eulerian form

F =

2

664

⇢v
⇢✏vd

⇢vv + P I+ ⇢✏(1� ✏)�v�v
⇢✏vdvd

3

775

vd ⌘ v + (1� ✏)�v ✏ ⌘ ⇢d
⇢

Laibe & Price (2014) MNRAS 

S =

2

664

0
0
0
�K�v

3

775u =

2

664

⇢
⇢✏
⇢v
⇢✏vd

3

775

@u

@t
+r · F = S

DUSTY WAVES: TWO FLUID
Laibe & Price (2012a)

no drag

strong!
drag



DUSTY WAVES: ONE FLUID
Laibe & Price (2014b

no drag

strong!
drag

Dustyshock with one fluid
Laibe & Price (2014b

no drag strong drag

No spatial resolution issue, but 
still requires implicit timestepping



! Assume �v =
rPg

⇢g
ts , valid when t

stop

< �t

Laibe & Price (2014)

✏ ⌘ ⇢d
⇢

 Breaks down when diffusion controls timestep!

Terminal velocity approximation

d⇢

dt
= �⇢(r · v)

dv

dt
= �rP

⇢
+ f

d✏

dt
= �1

⇢
r · (✏tsrP )

“Diffusion approximation for dust”

Dusty gas with SPH – I. 2355

Figure 5. As in Fig. 4 but using only the double-hump cubic kernel with
a range of drag coefficients K = 0.01, 0.1, 1, 10 and 100 (top to bottom,
solid/black lines), compared with the exact solution in each case given by
the long-dashed/red lines.

can be improved – at considerable cost – by increasing the ratio of
smoothing length to particle spacing (i.e. the neighbour number).
By comparison, use of the double-hump cubic spline kernel gives
errors !0.1 per cent (solid/black line) with no additional overhead
in terms of cost.

4.2.3 DUSTYBOX: effect of drag coefficient and dust-to-gas ratio

Fig. 5 is identical to Fig. 4 but for a range of drag coefficients
K = 0.01, 0.1, 1, 10 and 100, compared to the exact solution in
each case given by a solid/black line. Irrespective of the value of
K, both gas and dust velocities relax to the barycentric velocity
(vg = vd = 0.5) in a few stopping times ts = (ρ̂gρ̂d)/[K(ρ̂g + ρ̂d)].
Using the double-hump cubic, an accuracy between 0.1 and 1 per
cent is achieved in all cases (long dashed/red lines).

Fig. 6 is similar, but varying the dust-to-gas ratio using ρ̂d/ρ̂d =
0.01, 0.1, 1, 10 and 100 (achieved by varying ρ̂d with ρ̂g = 1) and
using K = 1. This changes both the drag stopping time and the
barycentric velocity towards which the system relaxes. Here again,
an accuracy between 0.1 and 1 per cent is achieved in all cases.

4.3 DUSTYWAVE: sound waves in a dust–gas mixture

The exact solution for linear waves propagating in a dust–gas mix-
ture (DUSTYWAVE) has been presented by Laibe & Price (2011a).
We have performed a series of tests involving the propagation of a
sound wave along the x-axis in both one and three dimensions in a
periodic box, adopting the set-up described in table 2 of Laibe &
Price (2011a). The DUSTYWAVE problem is more complex than the
DUSTYBOX problem as the motion of the mixture is driven by both
the drag and the gas pressure.

Specifically, Laibe & Price (2011a) derive the dispersion relation

ω3 + iK
(

1
ρ̂g

+ 1
ρ̂d

)
ω2 − k2c2

s ω − iK
k2c2

s

ρ̂d
= 0, (97)

Figure 6. As in Figs 4 and 5 but varying the dust-to-gas ratio ρ̂d/ρ̂d =
0.01, 0.1, 1, 10 and 100 (top to bottom, solid/black lines) and a fixed drag
coefficient K = 1 using the double-hump cubic kernel. Exact solutions for
each case are given by the long-dashed/red lines.

for solutions in the form ei(kx−ωt). At high drag, equation (97)
can be expanded in a Taylor series, which to first order
gives

ω = ±kc̃s − i
ρ̂gρ̂d

K(ρ̂g + ρ̂d)
k2c2

s

(
1 − A2

2

)
, (98)

where the effective sound speed is defined according to

c̃s ≡ csA = cs

(
1 + ρ̂d

ρ̂g

)−1/2

. (99)

The first term of equation (98) gives the propagation of the cen-
tre of mass of the mixture at the effective sound speed c̃s. The
second term corresponds to a corrective dissipative term since
A ∈ [0, 1].

4.3.1 DUSTYWAVE: set-up

The equilibrium state is characterized by the two phases at rest
where the gas sound speed and both gas and dust densities are set
to unity in code units. In one dimension, this is achieved by placing
equally spaced particles in the periodic domain x ∈ [0, 1]. For the
3D simulations, the tests are run in a periodic box x, y, z ∈ [0, 1]
with gas particles set up on a regular cubic lattice and dust particles
set up on a cubic lattice shifted by half of the lattice step in each
directions. As previously, no artificial viscosity is applied. We set
the relative amplitude of the perturbation to 10−4 in both velocity
and density in order to remain in the linear acoustic regime for which
the solution in Laibe & Price (2011a) is derived (we have verified
that running the same simulations setting the relative amplitudes to
10−8 gives the same results). The density perturbation is applied
to the particles as described in appendix B of Price & Monaghan
(2004). We adopt an isothermal equation of state P = c2

s ρ with
cs = 1.

C⃝ 2011 The Authors, MNRAS 420, 2345–2364
Monthly Notices of the Royal Astronomical Society C⃝ 2011 RAS
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See also Youdin & Goodman (2005); Chiang (2008); Barranco 2009, Jacquet et al. 2011

Zeroth order approximation

Laibe & Price (2014

�v = 0 t
stop

⌧ �t

d⇢

dt
= �⇢(r · v)

dv

dt
= �rP

⇢
+ f

d✏

dt
= 0

! Assume              , valid when 

P = c̃s⇢

“Heavy fluid”



Shock+wave 
Price & Laibe (in prep.

Explicit timestepping only!
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Relation to multi-fluid MHD?

2270 B. P. Pandey and M. Wardle

significant role. In fusion plasmas, the Hall effect can play an im-

portant role in describing various discharge behaviour (Kappraff,

Grossmann & Kress 1981; Wang & Bhattacharjee 1993). For ex-

ample, it can significantly enhance the non-ohmic current drive in

tokamaks (Pandey et al. 1995).

Two mechanisms may decouple the ions from the magnetic

field under different physical conditions. This has led to distinct

approaches being adopted to investigate the role of the Hall ef-

fect in the dynamics of laboratory (Kappraff et al. 1981; Wang &

Bhattacharjee 1993; Pandey et al. 1995), space (Huba 1995;

Zhelyankov et al. 1996; Richmond & Thayer 2000; Huba 2003;

Aburjania et al. 2005) and astrophysical (W99; BT01; Goldreich &

Reisenegger 1992) plasmas.

In a highly ionized plasma the Hall effect arises because of the

difference in electron and ion inertia: ions are unable to follow

magnetic fluctuations at frequencies higher than their cyclotron fre-

quency, whereas electrons remain coupled to the magnetic field. The

corresponding physical scale, the ion skin depth, is typically much

smaller than the scale of the system. In this case the Hall effect has

typically been incorporated by explicitly including the ion–electron

drift in the induction equation.

In a partially ionized plasma the Hall effect may instead arise

because neutral collisions more easily decouple ions from the mag-

netic field than electrons. In this case, the Hall scale can become

comparable to the size of the system itself. Its effects are typically

incorporated through a second-rank conductivity tensor appearing

in a generalized Ohm’s law (Cowling 1957; Mitchner & Kruger

1973).

The Hall dynamics of highly ionized and weakly ionized plasmas

are similar, but occur on very different frequency ranges and spatial

scales due to the different mechanisms responsible for the under-

lying symmetry breaking in ion and electron dynamics. This has

led to some confusion in the literature, where estimates of the fully

ionized Hall length-scale have been applied to the ionized compo-

nent of partially ionized media to conclude that the Hall effect is

irrelevant in circumstances when it is, in fact, crucial (Huba 1995;

Bacciotti, Chiuderi & Pouquet 1997; Rudakov 2001; Huba 2003).

The purpose of this paper is to clarify the relationship between

the fully ionized and weakly ionized limits by developing a unified

single-fluid framework for the dynamics of plasmas of arbitrary

ionization. Our treatment is of necessity approximate in the inter-

mediate case, but has the correct behaviour in the highly or weakly

ionized limits and is not strongly limited in applicability in the in-

termediate ionization regime. This allows us to explore the change

of scale in the Hall effect in moving from fully to partially ionized

plasmas and gain a deep physical understanding of the nature of the

transition between the two ionization regimes. Furthermore, this for-

mulation is useful in gaining insight into the behaviour of plasmas

that are neither fully ionized nor weakly ionized (e.g. near a toka-

mak wall or the surface of a white dwarf), when neutral collisions

and ionized plasma inertia may both be important.

The paper is organized in the following fashion. In Section 2

we derive a set of fluid equation in the bulk frame suitable for the

weakly ionized medium and the characteristic scales on which the

Hall effect manifests, are discussed. In Section 3, waves in a par-

tially ionized plasma are described and the dependence of the wave

damping on fractional ionization in the ambipolar regime is dis-

cussed. The very low-frequency ion-cyclotron and high-frequency

collisional whistler is shown to be the two branches in the Hall

regime. In Section 4 we discuss the potential wide ranging applica-

tions of this work to laboratory, space and astrophysical plasmas. A

brief summary of the results is given in the final section.

2 F O R M U L AT I O N

Space and astrophysical plasmas are generally partially ionized con-

sisting of electrons, ions, neutrals, and charged and neutral dust

grains. We shall neglect grains in the present formulation and con-

sider a partially ionized plasma consisting of electrons, ions and

neutrals. The dynamics of such a plasma is complex but depend-

ing upon the physical conditions pertaining to the problem at hand,

reasonable simplifying assumptions can be made. For example, the

dynamics of a PPD has been investigated by assuming that the neu-

trals provide the inertia of the bulk fluid and plasma particles carry

the current (W99). This approach is reasonable as in a cold proto-

stellar disc, the ionization fraction (i.e. the ratio of electron to the

neutral number density) is very low (∼10−8 to 10−13) and the rel-

ative drift between ions and neutrals are small. Therefore, such a

description is not only economical but also captures the essential

physics of the PPDs. However, the inertia of the ionized compo-

nents may in general play an important role, e.g. near the wall of

a tokamak, in the lower part of Earth’s F-region, at the base of

the solar chromosphere, in the outer part of active galactic nucleus

(AGN) discs, in the discs around the dwarf novae etc., when the

ionization fraction is small and yet not negligible. In neutron star

crusts too, neutron and proton densities are comparable and a multi-

component description of the strongly magnetized fluid is desirable.

In the solar chromosphere, utilizing three component description,

Alfvén wave damping have been studied in the context of spicule

dynamics (Pontieu & Haerendel 1998). In the solar photosphere, the

effect of ion–neutral damping on the propagation of waves has also

been recently studied (Kumar & Roberts 2003). Our aim therefore

is to develop an approximate single-fluid-like description of a mul-

ticomponent, partially ionized plasma and demand that it reduces

to the fully and weakly ionized descriptions in different fractional

ionization limits. This approximate formulation will permit us to

explore the relationship between the onset of the Hall effect due

to the ion inertia or due to the ion–neutral collisions. Furthermore,

such a description will provide us the freedom to investigate the

effect of fractional ionization in various limits on the MHD wave

modes.

2.1 A single-fluid model for partially ionized plasma

We start with the three-component (ions, electrons and neutrals)

description of a partially ionized plasma and reduce it to a single-

fluid description. The continuity equation is

∂ρ j

∂t
+ ∇ · (ρ j v j ) = 0, (1)

where ρ j = mj nj is the mass density,vj is the velocity, and nj and mj

are the number density and particle mass of the various components

for j = i, e, n. We shall assume that the ions are singly charged and

adopt charge neutrality, so that ni = ne. The momentum equations

for the electrons, ions and neutrals are

dve

dt
= −

∇ Pe

ρe

−
e

me

(

E +
ve

c
× B

)

−
∑

j=i, n

νe j (ve − v j ), (2)

dvi

dt
= −

∇ Pi

ρi

+
e

m i

(

E +
vi

c
× B

)

−
∑

j=e, n

νi j (vi − v j ), (3)

dvn

dt
= −

∇ Pn

ρn

+
∑

j=e, i

νn j (v j − vn). (4)

C⃝ 2008 The Authors. Journal compilation C⃝ 2008 RAS, MNRAS 385, 2269–2278
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significant role. In fusion plasmas, the Hall effect can play an im-

portant role in describing various discharge behaviour (Kappraff,

Grossmann & Kress 1981; Wang & Bhattacharjee 1993). For ex-

ample, it can significantly enhance the non-ohmic current drive in

tokamaks (Pandey et al. 1995).

Two mechanisms may decouple the ions from the magnetic

field under different physical conditions. This has led to distinct

approaches being adopted to investigate the role of the Hall ef-

fect in the dynamics of laboratory (Kappraff et al. 1981; Wang &

Bhattacharjee 1993; Pandey et al. 1995), space (Huba 1995;

Zhelyankov et al. 1996; Richmond & Thayer 2000; Huba 2003;

Aburjania et al. 2005) and astrophysical (W99; BT01; Goldreich &

Reisenegger 1992) plasmas.

In a highly ionized plasma the Hall effect arises because of the

difference in electron and ion inertia: ions are unable to follow

magnetic fluctuations at frequencies higher than their cyclotron fre-

quency, whereas electrons remain coupled to the magnetic field. The

corresponding physical scale, the ion skin depth, is typically much

smaller than the scale of the system. In this case the Hall effect has

typically been incorporated by explicitly including the ion–electron

drift in the induction equation.

In a partially ionized plasma the Hall effect may instead arise

because neutral collisions more easily decouple ions from the mag-

netic field than electrons. In this case, the Hall scale can become

comparable to the size of the system itself. Its effects are typically

incorporated through a second-rank conductivity tensor appearing

in a generalized Ohm’s law (Cowling 1957; Mitchner & Kruger

1973).

The Hall dynamics of highly ionized and weakly ionized plasmas

are similar, but occur on very different frequency ranges and spatial

scales due to the different mechanisms responsible for the under-

lying symmetry breaking in ion and electron dynamics. This has

led to some confusion in the literature, where estimates of the fully

ionized Hall length-scale have been applied to the ionized compo-

nent of partially ionized media to conclude that the Hall effect is

irrelevant in circumstances when it is, in fact, crucial (Huba 1995;

Bacciotti, Chiuderi & Pouquet 1997; Rudakov 2001; Huba 2003).

The purpose of this paper is to clarify the relationship between

the fully ionized and weakly ionized limits by developing a unified

single-fluid framework for the dynamics of plasmas of arbitrary

ionization. Our treatment is of necessity approximate in the inter-

mediate case, but has the correct behaviour in the highly or weakly

ionized limits and is not strongly limited in applicability in the in-

termediate ionization regime. This allows us to explore the change

of scale in the Hall effect in moving from fully to partially ionized

plasmas and gain a deep physical understanding of the nature of the

transition between the two ionization regimes. Furthermore, this for-

mulation is useful in gaining insight into the behaviour of plasmas

that are neither fully ionized nor weakly ionized (e.g. near a toka-

mak wall or the surface of a white dwarf), when neutral collisions

and ionized plasma inertia may both be important.

The paper is organized in the following fashion. In Section 2

we derive a set of fluid equation in the bulk frame suitable for the

weakly ionized medium and the characteristic scales on which the

Hall effect manifests, are discussed. In Section 3, waves in a par-

tially ionized plasma are described and the dependence of the wave

damping on fractional ionization in the ambipolar regime is dis-

cussed. The very low-frequency ion-cyclotron and high-frequency

collisional whistler is shown to be the two branches in the Hall

regime. In Section 4 we discuss the potential wide ranging applica-

tions of this work to laboratory, space and astrophysical plasmas. A

brief summary of the results is given in the final section.

2 F O R M U L AT I O N

Space and astrophysical plasmas are generally partially ionized con-

sisting of electrons, ions, neutrals, and charged and neutral dust

grains. We shall neglect grains in the present formulation and con-

sider a partially ionized plasma consisting of electrons, ions and

neutrals. The dynamics of such a plasma is complex but depend-

ing upon the physical conditions pertaining to the problem at hand,

reasonable simplifying assumptions can be made. For example, the

dynamics of a PPD has been investigated by assuming that the neu-

trals provide the inertia of the bulk fluid and plasma particles carry

the current (W99). This approach is reasonable as in a cold proto-

stellar disc, the ionization fraction (i.e. the ratio of electron to the

neutral number density) is very low (∼10−8 to 10−13) and the rel-

ative drift between ions and neutrals are small. Therefore, such a

description is not only economical but also captures the essential

physics of the PPDs. However, the inertia of the ionized compo-

nents may in general play an important role, e.g. near the wall of

a tokamak, in the lower part of Earth’s F-region, at the base of

the solar chromosphere, in the outer part of active galactic nucleus

(AGN) discs, in the discs around the dwarf novae etc., when the

ionization fraction is small and yet not negligible. In neutron star

crusts too, neutron and proton densities are comparable and a multi-

component description of the strongly magnetized fluid is desirable.

In the solar chromosphere, utilizing three component description,

Alfvén wave damping have been studied in the context of spicule

dynamics (Pontieu & Haerendel 1998). In the solar photosphere, the

effect of ion–neutral damping on the propagation of waves has also

been recently studied (Kumar & Roberts 2003). Our aim therefore

is to develop an approximate single-fluid-like description of a mul-

ticomponent, partially ionized plasma and demand that it reduces

to the fully and weakly ionized descriptions in different fractional

ionization limits. This approximate formulation will permit us to

explore the relationship between the onset of the Hall effect due

to the ion inertia or due to the ion–neutral collisions. Furthermore,

such a description will provide us the freedom to investigate the

effect of fractional ionization in various limits on the MHD wave

modes.

2.1 A single-fluid model for partially ionized plasma

We start with the three-component (ions, electrons and neutrals)

description of a partially ionized plasma and reduce it to a single-

fluid description. The continuity equation is

∂ρ j

∂t
+ ∇ · (ρ j v j ) = 0, (1)

where ρ j = mj nj is the mass density,vj is the velocity, and nj and mj

are the number density and particle mass of the various components

for j = i, e, n. We shall assume that the ions are singly charged and

adopt charge neutrality, so that ni = ne. The momentum equations

for the electrons, ions and neutrals are

dve

dt
= −

∇ Pe

ρe

−
e

me

(

E +
ve

c
× B

)

−
∑

j=i, n

νe j (ve − v j ), (2)

dvi

dt
= −

∇ Pi

ρi

+
e

m i

(

E +
vi

c
× B

)

−
∑

j=e, n

νi j (vi − v j ), (3)

dvn

dt
= −

∇ Pn

ρn

+
∑

j=e, i

νn j (v j − vn). (4)
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The electron and ion momentum equations (2)–(3) contain on the

right hand side pressure gradient, Lorentz force and collisonal mo-

mentum exchange terms where Pj is the pressure, E and B are the

electric and magnetic field, c is the speed of light and νi j is the

collision frequency for species i with species j. The electron–ion

collision frequency νei can be expressed in terms of the fractional

ionization xe = ne/nn and the plasma temperature Te = T i = T as

νei = 51 xe nn T −1.5 s−1, (5)

where T and nn are in K and cm−3, respectively. The plasma–neutral

collision frequency ν jn is

ν jn = γ jn ρn =
⟨σv⟩ j

mn + m j

ρn. (6)

Here ⟨σ v⟩j is the rate coefficient for the momentum transfer by

collision of the j th particle with the neutrals. The ion–neutral and

electron–neutral rate coefficients are (Draine, Roberge & Dalgarno

1983)

⟨σ v⟩in = 1.9 × 10−9 cm3 s−1,

⟨σ v⟩en = 8.28 × 10−10 T 1/2 cm3 s−1. (7)

The density of the bulk fluid is

ρ = ρe + ρi + ρn ≈ ρi + ρn. (8)

Then defining the neutral density fraction

D =
ρn

ρ
, (9)

the bulk velocity v = (ρ i vi + ρn vn)/ρ can be written as

v = (1 − D)vi + D vn. (10)

Note that we are implicitly neglecting the electron inertia in (10),

and therefore in the momentum equation (13) below.

The continuity equation for the bulk fluid is obtained by summing

up equation (1) for each species:

∂ρ

∂t
+ ∇ · (ρ v) = 0. (11)

The momentum equation can be derived by adding equations (2)–(4)

to obtain

ρ
dv

dt
+ ∇ ·

(

ρiρn

ρ
vDvD

)

= −∇ P +
J × B

c
, (12)

where P = Pe + Pi + Pn is the total pressure, vD = vi − vn is

the ion–neutral drift velocity and J = ne e (vi − ve) is the current

density.

Defining vA = B/
√

4 π ρ as the Alfvén speed in the bulk fluid

and cs =
√

γ p/ρ as the acoustic speed, we note that if ρ iρnv
2
D ≪

ρ2(v2
A + c2

s ) then we may neglect the vD vD term in equation (12)

and recover the single-fluid momentum equation

ρ
dv

dt
= −∇ P +

J × B

c
. (13)

To derive a criterion for this, we estimate vD by rewriting the ion

and neutral equations of motion (3) and (4) as

(ρi νin + ρe νen) vD = −ρi

dvi

dt
− ∇ (Pe + Pi)

+
J × B

c
+

me νen

e
J (14)

and

(ρi νin + ρe νen) vD = ρn

dvn

dt
+ ∇ Pn +

me νen

e
J, (15)

respectively. Multiplying equation (14) by ρn and equation (15) by

ρ i and then adding

(ρi νin + ρe νen)vD = D
J × B

c
+ ∇ Pn − D ∇ P

+
ρi ρn

ρ

[

dvD

dt
− (vD · ∇)vi − (vi · ∇)vD

]

+
me νen

e
J. (16)

The term in the square bracket can be neglected if

ω !
ρ

ρi

νni. (17)

Then equation (16) can be written as

vD = D
J × B

c ρi νin

+
∇ Pn

ρi νin

− D
∇ P

ρi νin

+

(

βi

βe

)

J

e ne

, (18)

where

β j =
ωcj

ν j

(19)

is the ratio of the cyclotron frequency of the jth particle ωcj =
e B/mj c (where e, B, mj , c denote electron charge, magnetic field,

mass and speed of light, respectively) to the sum of the plasma–

plasma, and plasma–neutral, ν jn collision frequencies. For electrons

νe = νen + νei and for ions ν i = ν in + νie. While writing (18), we

have used ρeνen ≪ ρ iν in. In the weakly ionized limit, when D →
1, neglecting plasma pressure terms and assuming βe ≫ 1, equa-

tion (18) reduces to the strong coupling approximation, i.e. vD ≈
(J × B)/(cρ iν in) (Shu 1983).

Equation (18) implies that for gradients with a length-scale L, and

signal speed s, vD ∼ ρn s2(1 + 1/D βe)/(ρ i ν in L). The associated

dynamical frequency is ω ∼ s/L, so the requirement ρi ρn v2
D ≪

ρ2
(

v2
A + c2

s

)

means that the vD vD term in (12) can be neglected

for dynamical frequencies satisfying

ω !
ρ

√
ρi ρn

(

D βe

1 + D βe

)

νni. (20)

At higher frequencies the single-fluid approximation (13) breaks

down. Note that this frequency constraint is much weaker in the

highly ionized and weakly ionized limits, for which ρ ≈ ρn(D →
1). In the appendix we show that equation (20) is a conservative

bound on the dynamical frequency. Further, we also show in the

appendix that (17) is implied by equation (20).

To obtain an equation for the evolution of the magnetic field, we

need to derive an expression for the electric field E in terms of the

fluid properties to insert into Faraday’s law

∂B

∂t
= −c∇ × E. (21)

We start with the electron momentum equation (2), which in the

zero electron inertia limit yields an expression for the electric field

in the rest frame of the ions:

E +
vi

c
× B = −

∇ Pe

e ne

+
J

σ
+

J × B

c e ne

−
me νen

e
vD (22)

where

σ =
e2ne

me (νen + νei)
(23)

is the ohmic conductivity and J is given by Ampere’s law,

J =
c

4π
∇ × B. (24)

It is desirable to have an expression for electric field (22) in the bulk

fluid frame. To obtain this we use vi = v+ DvD, with equation (18)
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for vD. Substituting the result into (22) to obtain

∂B

∂t
= ∇ ×

[

(v× B) −
J × B

e ne

+ D2 (J × B) × B

cρi νin

−
J

σ
+

D2

ρi νin

(

ρi

ρn

∇ Pn − ∇ Pi − ∇ Pe

)

× B

]

, (25)

where we have neglected the ‘Biermann’s battery’ contribution from

the ∇Pe/ene term in equation (22) as well as small terms of order

Dβ i/βe, which is !10−3. The right-hand side of this induction equa-

tion has convective, ohmic, Hall and ambipolar diffusion terms, re-

spectively. We note that ambipolar term in a partially ionized plasma

includes a contribution from the pressure gradient terms as well from

the magnetic stresses.

The relative importance of the various terms in the induction

equation (25) can be easily estimated. The ratio of the Hall (H) and

the Ohm (O) terms gives H/O ∼βe, the electron Hall parameter. The

ratio between ambipolar (A) and Hall (H) terms are A/H ∼ D2 β i. In

the weak ionization (D → 1) limit, A/H ∼ β i, i.e. ion Hall parameter

determines the relative importance between the ambipolar and the

Hall terms. In a highly ionized plasma, D ≃ 0 and, the ambipolar

effect becomes inconsequential. Unlike ambipolar diffusion, Hall

diffusion does not disappear in the high fractional ionization limit.

The ambipolar diffusion terms in (25) arise from DvD × B in the

vi × B term in (22) since vi × B = v × B + DvD × B. The terms

due to pressure gradients ∇P × B are negligible compared to the

inductive term v × B when

ω !

(

v2
A

c2
s

)

ρ2

ρi ρn

νni, (26)

where cs is some effective sound speed. We note that for D βe ∼
1, equation (20) guarantees (26) when vA ! cs. In the opposite

limit, when vA > cs, equation (26) is not implied by (20). Our final

induction equation without ∇P × B term becomes

∂B

∂t
= ∇ ×

[

(v× B) −
4 π η

c
J −

4 π ηH

c
J × B̂

+
4 πηA

c

(

J × B̂
)

× B̂

]

, (27)

where B̂ = B/B, and the ohmic (η), ambipolar (ηA) and Hall (ηH)

diffusivity are

η =
c2

4 πσ
, ηA =

D2 B2

4 π ρi νin

≡
D v2

A

νni

, ηH =
c B

4 π e ne

. (28)

Equation (27) is identical to the known expression for a weakly

ionized medium (e.g. Königl 1989) apart from the appearance of

the factor D2 in ηA, which suppresses ambipolar diffusion if the

ionization of the plasma is significant. The dependence of ambipolar

term on the D2 factor was first noted by Cowling (1957).

To summarize, the single-fluid equations have been derived ne-

glecting electron inertia in the low-frequency limit given by (20).

Pressure gradient terms have been neglected in the induction equa-

tion (27), which is valid if inequality (26) is satisfied. Then equa-

tions (11), (13) and (27) along with prescriptions for determining

P and ne describe the dynamics of a plasma of arbitrary ioniza-

tion. For example, when the plasma is fully ionized (i.e. D → 0),

v = vi and (11), (13) and (27) reduce to the fully ionized Hall-

resistive MHD description. In the other extreme limit D → 1, the

equations reduce to those describing weakly ionized MHD (W99,

BT01).

2.2 The Hall scale

In fully ionized plasmas the Hall effect becomes important for fre-

quencies in excess of the ion gyrofrequency. In natural systems

the associated time-scales are usually much shorter than those of

interest and Hall dynamics can be safely neglected. However, in

partially ionized plasmas the Hall effect becomes important on

longer length and time-scales, and in weakly ionized plasmas these

may even become comparable to the dynamical time-scale of the

system.

This behaviour is easily inferred from the fluid equations derived

in the previous section. If diffusion is unimportant, the characteristic

length-scale of a gradient in the fluid associated with frequency ω

is L ∼ vA/ω where vA is the Alfvén speed in the total fluid (not

just the ionized component). Then comparing the magnitudes of the

advective and Hall diffusion terms in the induction equation (27),

we find that the Hall term becomes important for frequencies in

excess of the Hall frequency

ωH =
eB

m∗
i c

=
ρi

ρ
ωci ≡

v2
A

ηH

, (29)

where the effective ion mass is

m∗
i = ρ/ne. (30)

The corresponding Hall length-scale is

LH =
vA

ωH

=

(

ρ

ρi

)1/2

δi =

(

ρ

ρi

)

(vA

νin

)

β−1
i , (31)

where δi = vAi/ωci is the ion skin depth with vAi = B/
√

4 π ρi as

the Alfvén speed in the ion fluid.

The Hall effect arises because through an asymmetry in the abil-

ity of positive and negative charge carriers to drift in response to

the instantaneous electric field. In the fully ionized limit, for fre-

quencies ωci ! ω ! ωce electrons are able to attain a drift velocity

in instantaneous balance between electric, magnetic and collisonal

stresses, whereas the inertia of the ions prevents them from doing

so.1 In the single-fluid approximation, the ions are tightly coupled

to the neutrals by collisions so that they are unable to drift through

them but must carry them along also. Thus they pick up the neutral

inertia, gaining an effective mass m∗
i , and are unable to fully respond

to changes with frequencies in excess of ωH (cf. Pandey & Wardle

2006a,b). Implicit in this is the requirement that collisions are able

to provide the strong coupling between ions and neutrals, as noted

in equation (20).

The condition ω " ωH implies that the Hall term dominates the

inductive term in (27), but does not guarantee that it is the dominant

diffusion mechanism. As noted earlier the ratio of the Hall and ohmic

diffusion terms is ∼βe, whereas the ratio of the ambipolar and Hall

diffusion terms is ∼D2β i, so for Hall diffusion to dominate the other

mechanisms, we require

D2βi ≪ 1 ≪ βe. (32)

Note that in the weakly ionized limit we recover the standard re-

quirement β i ≪ 1 ≪ βe. In the fully ionized limit D2β i → 0 and

the first inequality is guaranteed.

1 The effects associated with ω " ωce are absent in our estimate (29) because

electron inertia was explicitly neglected in our development of the single-

fluid equations.
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MHD DUST
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Summary
! New single fluid formulation for dust-gas mixtures

! Solves both spatial and temporal resolution problems 
for small grains!

! New “Diffusion approximation for dust”!

! Similar to existing methods for non-ideal MHD

Corollary
! When diffusion controls the timestep, diffusion is 

the wrong approximation
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