Dust

Daniel Price
Monash University Melbourne, Australia

Guillaume Laibe
Monash University
Now St Andrew's, Scotland

ASTRONUM 2014, June 23rd-27th Long Beach CA

Things I am not going to talk about

Status of Smoothed Particle Magnetohydrodynamics

- New "constrained" hyperbolic divergence cleaning (Tricco \& Price 2012 JCP 231, 7214)
- Improved switch for artificial resistivity (Tricco \& Price 2013, MNRAS 436, 2810)
- Now able to robustly tackle variety of new $\&$ interesting applications
- Ambipolar diffusion (Wurster, Price \& Ayliffe 2014, submitted to MNRAS)

Protostellar outflows with SPMHD

Price, Tricco \& Bate (2012); Bate, Tricco \& Price (2014)

Small-scale dynamo in SPMHD

MRI in SPMHD

Figure 6.1: Snapshots of B_{ϕ} at $t=1,20$, and 25Ω for the $512^{2} 2 \mathrm{D}$ shearing box MRI test. Random small motions in the velocity lead to perturbations in the magnetic field ($t=1 \Omega$). These coalesce to form large structures $(t=20 \Omega)$, which lead to the generation of turbulence $(t=25 \Omega)$. Renderings are not all on the same scale.

A Dusty Wedding

DUST IS KEY TO STAR AND PLANET

Image: Gemini Observatory/ AURA Artwork by Lynette Cook

Pillars of Creation (the Eagle Nebula)

Dust + Gas: A simple example of a two-fluid mixture

* Two fluids coupled by a drag term

$$
\begin{aligned}
\frac{\partial \rho_{\mathrm{g}}}{\partial t}+\nabla \cdot\left(\rho_{\mathrm{g}} \mathbf{v}_{\mathrm{g}}\right) & =0 \\
\frac{\partial \rho_{\mathrm{d}}}{\partial t}+\nabla \cdot\left(\rho_{\mathrm{d}} \mathbf{v}_{\mathrm{d}}\right) & =0 \\
\frac{\partial \mathbf{v}_{\mathrm{g}}}{\partial t}+\left(\mathbf{v}_{\mathrm{g}} \cdot \nabla\right) \mathbf{v}_{\mathrm{g}} & =-\frac{\nabla P_{\mathrm{g}}}{\rho_{\mathrm{g}}}+K\left(\mathbf{v}_{\mathrm{d}}-\mathbf{v}_{\mathrm{g}}\right)+\mathbf{f} \\
\frac{\partial \mathbf{v}_{\mathrm{d}}}{\partial t}+\left(\mathbf{v}_{\mathrm{d}} \cdot \nabla\right) \mathbf{v}_{\mathrm{d}} & =-K\left(\mathbf{v}_{\mathrm{d}}-\mathbf{v}_{\mathrm{g}}\right)+\mathbf{f}
\end{aligned}
$$

Stopping time

DUSTYWAVE: Waves in a dust-gas

Laibe \& Price, 2011, MNRAS 418, 1491

$$
\delta v=A e^{i(k x-\omega t)}
$$

Dispersion relation:
$\omega^{3}+i K\left(\frac{1}{\hat{\rho}_{\mathrm{g}}}+\frac{1}{\hat{\rho}_{\mathrm{d}}}\right) \omega^{2}-k^{2} c_{\mathrm{s}}^{2} \omega-i K \frac{k^{2} c_{\mathrm{s}}^{2}}{\hat{\rho}_{\mathrm{d}}}=0$
Limit of strong drag:
$\omega= \pm k \tilde{c}_{\mathrm{s}}-i \frac{\hat{\rho}_{\mathrm{g}} \hat{\rho}_{\mathrm{d}}}{K\left(\hat{\rho}_{\mathrm{g}}+\hat{\rho}_{\mathrm{d}}\right)} k^{2} c_{\mathrm{s}}^{2}\left(\frac{1-A^{2}}{2}\right)$
Effective sound speed:
$\tilde{c}_{\mathrm{S}} \equiv c_{\mathrm{S}} A=c_{\mathrm{S}}\left(1+\frac{\hat{\rho}_{\mathrm{d}}}{\hat{\rho}_{\mathrm{g}}}\right)^{-\frac{1}{2}}$

Dustywaves: Analytic solution

Laibe \& Price, 2011, MNRAS 418, 1491

Abstract

DUSTVELOCITIES rhogeq w31

Resolution study

Laibe \& Price, 2012, MNRAS 420, 2345

Figure 8. Resolution study for the dustywave test in one dimension using a high drag coefficient ($K=100$) and a dust-to-gas ratio of unity using 32, $64,128,256,512$ and 1024 particles from bottom to top. At large drag, high resolution is required to resolve the small differential motions between the fluids and thus to prevent overdamping of the numerical solution, corresponding to the criterion $h \lesssim c_{\mathrm{s}} t_{\mathrm{s}}$, here implying $\gtrsim 240$ particles. See also Fig. 9.

Figure 9. As in Fig. 8 but showing the kinetic energy as a function of time in the numerical solution at a progressively increasing resolution, compared to the analytic solution given by the solid black line. The kinetic energy decay converges to the analytic solution at $\sim 256-512$ particles per wavelength, implying a demanding resolution criterion ($h \lesssim c_{\mathrm{s}} t_{\mathrm{s}}$) for high drag.

Resolution Criterion

Laibe \& Price, 2012, MNRAS 420, 2345

Temporal: $\Delta t<t_{\text {stop }}$

Spatial:

$$
\begin{array}{r}
\Delta x \lesssim t_{\text {stop }} c_{\mathrm{s}} \\
\substack{t_{\mathrm{stop}} \rightarrow 0 \\
(K \rightarrow \infty)}
\end{array} \quad \text { implies }
$$

(can be fixed with implicit timestepping methods)
(much more difficult to fix)

- Require infinite timesteps AND infinite resolution in the obvious limit of perfect coupling!

Dustyshock

Laibe \& Price, 2012, MNRAS 420, 2345

sensible resolution
ludicrous resolution

Dusty Gas with One Fluid

Laibe \& Price (2014a,b, MNRAS 440, 2136-2163

* Reformulate equations on the barycentre of both fluids

$$
\mathbf{v} \equiv \frac{\rho_{\mathrm{g}} \mathbf{v}_{\mathrm{g}}+\rho_{\mathrm{d}} \mathbf{v}_{\mathrm{d}}}{\rho_{\mathrm{g}}+\rho_{\mathrm{d}}}
$$

* Change of variables, from $\mathrm{v}_{\mathrm{g}}, \mathrm{v}_{\mathrm{d}}, \rho_{\mathrm{g}}, \rho_{\mathrm{d}}$

$$
\text { to } \quad \mathbf{v}, \Delta \mathbf{v}, \rho, \rho_{\mathrm{d}} / \rho_{\mathrm{g}}
$$

TWO BECOME ONE

A phoenix from the ashes

* Two fluids coupled by a drag term

$$
\begin{aligned}
\frac{\partial \rho_{\mathrm{g}}}{\partial t}+\nabla \cdot\left(\rho_{\mathrm{g}} \mathbf{v}_{\mathrm{g}}\right) & =0 \\
\frac{\partial \rho_{\mathrm{d}}}{\partial t}+\nabla \cdot\left(\rho_{\mathrm{d}} \mathbf{v}_{\mathrm{d}}\right) & =0 \\
\frac{\partial \mathbf{v}_{\mathrm{g}}}{\partial t}+\left(\mathbf{v}_{\mathrm{g}} \cdot \nabla\right) \mathbf{v}_{\mathrm{g}} & =-\frac{\nabla P_{\mathrm{g}}}{\rho_{\mathrm{g}}}+K\left(\mathbf{v}_{\mathrm{d}}-\mathbf{v}_{\mathrm{g}}\right)+\mathbf{f} \\
\frac{\partial \mathbf{v}_{\mathrm{d}}}{\partial t}+\left(\mathbf{v}_{\mathrm{d}} \cdot \nabla\right) \mathbf{v}_{\mathrm{d}} & =-K\left(\mathbf{v}_{\mathrm{d}}-\mathbf{v}_{\mathrm{g}}\right)+\mathbf{f}
\end{aligned}
$$

TWO BECOME ONE
 A phoenix from the asbes

- One mixture with a differential velocity

$$
\begin{aligned}
\frac{\mathrm{d} \rho}{\mathrm{~d} t} & =-\rho(\nabla \cdot \mathbf{v}) \\
\frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t} & =-\frac{\nabla P_{\mathrm{g}}}{\rho}-\frac{1}{\rho} \nabla \cdot\left(\frac{\rho_{\mathrm{g}} \rho_{\mathrm{d}}}{\rho} \Delta \mathbf{v} \Delta \mathbf{v}\right)+\mathbf{f}, \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\rho_{\mathrm{d}}}{\rho_{\mathrm{g}}}\right) & =-\frac{1}{\rho} \nabla \cdot\left(\frac{\rho_{\mathrm{g}} \rho_{\mathrm{d}}}{\rho} \Delta \mathbf{v}\right), \\
\frac{\mathrm{d} \Delta \mathbf{v}}{\mathrm{~d} t} & =-\frac{\Delta \mathbf{v}}{t_{\mathrm{s}}}+\frac{\nabla P_{\mathrm{g}}}{\rho_{\mathrm{g}}}-(\Delta \mathbf{v} \cdot \nabla) \mathbf{v}+\frac{1}{2} \nabla\left[\frac{\rho_{\mathrm{d}}-\rho_{\mathrm{g}}}{\rho_{\mathrm{g}}+\rho_{\mathrm{d}}} \Delta \mathbf{v}^{2}\right],
\end{aligned}
$$

Eulerian form

$$
\begin{gathered}
\frac{\partial \mathbf{u}}{\partial t}+\nabla \cdot \mathbf{F}=\mathbf{S} \\
\mathbf{u}=\left[\begin{array}{l}
\rho \\
\rho \epsilon \\
\rho \mathbf{v} \\
\rho \in \mathbf{v}_{\mathrm{d}}
\end{array}\right] \quad \mathbf{F}=\left[\begin{array}{l}
\rho \mathbf{v} \\
\rho \in \mathbf{v}_{\mathbf{d}} \\
\rho \mathbf{v} \mathbf{v}+P \mathbf{I}+\rho \epsilon(1-\epsilon) \Delta \mathbf{v} \Delta \mathbf{v} \\
\rho \in \mathbf{v}_{\mathrm{d}} \mathbf{v}_{\mathrm{d}}
\end{array}\right] \mathbf{S}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
-K \Delta \mathbf{v}
\end{array}\right] \\
\mathbf{v}_{\mathrm{d}} \equiv \mathbf{v}+(1-\epsilon) \Delta \mathbf{v} \quad \epsilon \equiv \frac{\rho_{\mathrm{d}}}{\rho}
\end{gathered}
$$

Laibe \& Price (2014) MNRAS

DUSTY WAVES: TWO FLUID

Laibe \& Price (2012a)

DUSTY WAVES: ONE FLUID

Laibe \& Price (2014b

Dustyshock with one fluid

Laibe \& Price (2014b

Terminal velocity approximation

$*$ Assume $\Delta \mathrm{v}=\frac{\nabla P_{\mathrm{g}}}{\rho_{\mathrm{g}}} t_{\mathrm{s}}$, valid when $t_{\text {stop }}<\Delta t$

$$
\begin{aligned}
& \frac{\mathrm{d} \rho}{\mathrm{~d} t}=-\rho(\nabla \cdot \mathbf{v}) \\
& \frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t}=-\frac{\nabla P}{\rho}+\mathbf{f} \\
& \frac{\mathrm{d} \epsilon}{\mathrm{~d} t}=-\frac{1}{\rho} \nabla \cdot\left(\epsilon t_{\mathrm{s}} \nabla P\right) \quad \epsilon \equiv \frac{\rho_{\mathrm{d}}}{\rho}
\end{aligned}
$$

"Diffusion approximation for dust"

Breaks down when diffusion controls timestep!

Laibe \& Price (2014)
See also Youdin \& Goodman (2005); Chiang (2008); Barranco 2009, Jacquet et al. 2011

Zeroth order approximation

* Assume $\Delta \mathbf{v}=0$, valid when $t_{\text {stop }} \ll \Delta t$

$$
\begin{aligned}
& \frac{\mathrm{d} \rho}{\mathrm{~d} t}=-\rho(\nabla \cdot \mathbf{v}) \\
& \frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t}=-\frac{\nabla P}{\rho}+\mathbf{f} \\
& \frac{\mathrm{d} \epsilon}{\mathrm{~d} t}=0 \\
& P=\tilde{c}_{\mathrm{s}} \rho \\
& \text { "Heavy fluid" }
\end{aligned}
$$

Shock+wave

Price \& Laibe (in prep.

Explicit timestepping only!

Relation to multi-fluid MHD?

$$
\begin{align*}
& \frac{\partial \rho_{j}}{\partial t}+\nabla \cdot\left(\rho_{j} \boldsymbol{v}_{j}\right)=0 \tag{1}\\
& \frac{\mathrm{~d} \boldsymbol{v}_{\mathrm{e}}}{\mathrm{~d} t}=-\frac{\nabla P_{\mathrm{e}}}{\rho_{\mathrm{e}}}-\frac{e}{m_{\mathrm{e}}}\left(\boldsymbol{E}+\frac{\boldsymbol{v}_{\mathrm{e}}}{c} \times \boldsymbol{B}\right)-\sum_{j=\mathrm{i}, \mathrm{n}} v_{\mathrm{e} j}\left(\boldsymbol{v}_{\mathrm{e}}-\boldsymbol{v}_{j}\right) \tag{2}\\
& \frac{\mathrm{d} \boldsymbol{v}_{\mathrm{i}}}{\mathrm{~d} t}=-\frac{\nabla P_{\mathrm{i}}}{\rho_{\mathrm{i}}}+\frac{e}{m_{\mathrm{i}}}\left(\boldsymbol{E}+\frac{\boldsymbol{v}_{\mathrm{i}}}{c} \times \boldsymbol{B}\right)-\sum_{j=\mathrm{e}, \mathrm{n}} v_{\mathrm{i} j}\left(\boldsymbol{v}_{\mathrm{i}}-\boldsymbol{v}_{j}\right) \tag{3}\\
& \frac{\mathrm{d} \boldsymbol{v}_{\mathrm{n}}}{\mathrm{~d} t}=-\frac{\nabla P_{\mathrm{n}}}{\rho_{\mathrm{n}}}+\sum_{j=\mathrm{e}, \mathrm{i}} v_{\mathrm{n} j}\left(\boldsymbol{v}_{j}-\boldsymbol{v}_{\mathrm{n}}\right) \tag{4}
\end{align*}
$$

Multiple fluid -> single fluid
 MHD

The continuity equation for the bulk fluid is obtained by summing up equation (1) for each species:
$\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{v})=0$.
The momentum equation can be derived by adding equations (2)-(4) to obtain
$\rho \frac{\mathrm{d} \boldsymbol{v}}{\mathrm{d} t}+\nabla \cdot\left(\frac{\rho_{\mathrm{i}} \rho_{\mathrm{n}}}{\rho} \boldsymbol{v}_{\mathrm{D}} \boldsymbol{v}_{\mathrm{D}}\right)=-\nabla P+\frac{\boldsymbol{J} \times \boldsymbol{B}}{c}$,
where $P=P_{\mathrm{e}}+P_{\mathrm{i}}+P_{\mathrm{n}}$ is the total pressure, $\boldsymbol{v}_{\mathrm{D}}=\boldsymbol{v}_{\mathrm{i}}-\boldsymbol{v}_{\mathrm{n}}$ is the ion-neutral drift velocity and $\boldsymbol{J}=n_{\mathrm{e}} e\left(\boldsymbol{v}_{\mathrm{i}}-\boldsymbol{v}_{\mathrm{e}}\right)$ is the current density.

$$
\begin{aligned}
\frac{\partial \boldsymbol{B}}{\partial t}= & \nabla \times\left[(\boldsymbol{v} \times \boldsymbol{B})-\frac{4 \pi \eta}{c} \boldsymbol{J}-\frac{4 \pi \eta_{\mathrm{H}}}{c} \boldsymbol{J} \times \hat{\boldsymbol{B}}\right. \\
& \left.+\frac{4 \pi \eta_{\mathrm{A}}}{c}(\boldsymbol{J} \times \hat{\boldsymbol{B}}) \times \hat{\boldsymbol{B}}\right]
\end{aligned}
$$

$$
\frac{\mathrm{d} \epsilon}{\mathrm{~d} t}=-\frac{1}{\rho} \nabla \cdot\left[\frac{\rho_{\mathrm{g}} \rho_{\mathrm{d}}}{\rho} \Delta \mathbf{v}\right]
$$

Pandey \& Wardle (2008)
SPMHD implementation: Wurster, Price \& Ayliffe (2014)
Laibe \& Price (2014)

Summary

New single fluid formulation for dust-gas mixtures

* Solves both spatial and temporal resolution problems for small grains

New "Diffusion approximation for dust"
Similar to existing methods for non-ideal MHD

Corollary

* When diffusion controls the timestep, diffusion is the wrong approximation

Open-source implementation: \qquad

