

Smoothed Particle Magnetohydrodynamics:

 The state of the artDaniel Price (Monash), Terry Tricco (Monash)
Matthew Bate (Exeter), Guillaume Laibe (Monash, now St. Andrews)

"There is no Solution without Mesh"

- Tahar Amari, yesterday

Smoothed Particle Hydrodynamics

Grid

$$
\frac{\mathrm{d} \mathbf{x}}{\mathrm{~d} t}=\mathbf{v}
$$

Smoothed Particle Magnetohydrodynamics

 Price \& Monaghan 2004a,b,2005, Price 2012$$
L_{s p h}=\sum_{b} m_{b}\left[\frac{1}{2} v_{b}^{2}-u_{b}\left(\rho_{b}, s_{b}\right)-\frac{1}{2 \mu_{0}} \frac{B_{b}^{2}}{\rho_{b}}\right] .
$$

$$
\int \delta L d t=0
$$

$$
\left[\left(\frac{S^{i j}}{\rho^{2}}\right)_{a}+\left(\frac{S^{i j}}{\rho^{2}}\right)_{b}\right] \nabla_{a}^{j} W_{a b},
$$

$$
S_{i j}=\left(P+\frac{B^{2}}{2 \mu_{0}}\right) \delta_{i j}-\frac{B_{i} B_{j}}{\mu_{0}}
$$

Smoothed Particle Magnetohydrodynamics

Price \& Monaghan (2004a,b,2005), see review by Price 2012, J. Comp. Phys. 231, 759

advection of a current loop (Gardiner \& Stone 2006, Rosswog \& Price 2007)

Orszag-Tang vortex problem (Balsara 1998, PM05, Rosswog \&
7 -wave MHD shock (RJ95)

Price 2007)

Magnetic rotor problem (Tóth 2000, PM05)

Mach 25 MHD shock (Balsara 98)

0

Previous approach: Euler potentials

(Rosswog \& Price 2007, Price \& Bate 2007, 2008, 2009, Brandenburg 2010)
$\mathbf{B}=\nabla \alpha \times \nabla \beta$

$$
\begin{aligned}
& \frac{d \alpha}{d t}=0 \\
& \frac{d \beta}{d t}=0
\end{aligned}
$$

* advection of magnetic fields: no change in topology (A.B = 0)
* does not follow wind-up of magnetic fields
* difficult to model resistive effects - reconnection processes not treated correctly

Hyperbolic/parabolic divergence cleaning

Dedner et al. (2002), as adapted by Price \& Monaghan (2005)
See also Mignone \& Tzeferacos (2010)

$$
\begin{aligned}
& \left(\frac{\mathrm{d} \mathbf{B}}{\mathrm{~d} t}\right)_{\psi}=-\nabla \psi \\
& \frac{\mathrm{d} \psi}{\mathrm{~d} t}=-c_{h}^{2} \nabla \cdot \mathbf{B}-\frac{\psi}{\tau}
\end{aligned}
$$

damping time:

$$
\tau \equiv \frac{\sigma h}{c_{h}}
$$

$$
\sigma=0.2-0.3 \text { in } 2 \mathrm{D}
$$

$$
\sigma=0.8-1.0 \text { in } 3 \mathrm{D}
$$

Combine to produce damped wave equation for div B:

$$
\frac{\partial^{2}(\nabla \cdot \mathbf{B})}{\partial t^{2}}-c_{h}^{2} \nabla^{2}(\nabla \cdot \mathbf{B})+\frac{1}{\tau} \frac{\partial(\nabla \cdot \mathbf{B})}{\partial t}=0 .
$$

Hyperbolic/parabolic divergence cleaning

Dedner et al. (2002), c.f. Price \& Monaghan (2005)

Issues at density jumps + free surfaces

see Tricco \& Price (2012)

Constrained hyperbolic/parabolic divergence cleaning Tricco \& Price 2012, J. Comp. Phys. 231, 7214

* Define energy associated with ψ field

$$
\begin{aligned}
& \qquad E=\int\left[\frac{B^{2}}{2 \mu_{0} \rho}+e_{\psi}\right] \rho \mathrm{d} V . \\
& \text { Find: } \quad e_{\psi} \equiv \frac{\psi^{2}}{2 \mu_{0} \rho c_{h}^{2}}
\end{aligned}
$$

Also need: $\quad \frac{\mathrm{d} \psi}{\mathrm{d} t}=-c_{h}^{2} \nabla \cdot \mathbf{B}-\frac{\psi}{\tau}-\frac{1}{2} \psi \nabla \cdot \mathbf{v}$.

Constrained hyperbolic/parabolic divergence cleaning for smoothed particle magnetohydrodynamics

Tricco \& Price 2012, J. Comp. Phys. 231, 7214

$$
\begin{gathered}
E=\sum_{a} m_{a}\left[\frac{B_{a}^{2}}{\mu_{0} \rho_{a}}+\frac{\psi_{a}^{2}}{\mu_{0} \rho_{a} c_{h}^{2}}\right] \\
\frac{\mathrm{d} E}{\mathrm{~d} t}=\sum_{a} m_{a}\left[\frac{\mathbf{B}_{a}}{\mu_{0} \rho_{a}} \cdot\left(\frac{\mathrm{~d} \mathbf{B}_{a}}{\mathrm{~d} t}\right)_{\psi}+\frac{\psi_{a}}{\mu_{0} \rho_{a} c_{h}^{2}} \frac{\mathrm{~d} \psi_{a}}{\mathrm{~d} t}\right]=0
\end{gathered}
$$

Constrains the numerical operators for $\nabla \psi$ and $\nabla \cdot$ B

Constrained hyperbolic/parabolic divergence cleaning

 for smoothed particle magnetohydrodynamics

Does it work?

Star formation with divergence cleaning

26650 yrs

First and second core

(Larson 1969)

Masanaga \& Inutsuka (2000)

$$
P= \begin{cases}c_{\mathrm{s}}^{-} \rho, & \rho<\rho_{\mathrm{c}} \\ c_{\mathrm{s}}^{2} \rho_{\mathrm{c}}\left(\rho / \rho_{\mathrm{c}}\right)^{7 / 5} & \rho_{\mathrm{c}} \leq \rho<\rho_{\mathrm{d}} \\ c_{\mathrm{s}}^{2} \rho_{\mathrm{c}}\left(\rho_{\mathrm{d}} / \rho_{\mathrm{c}}\right)^{7 / 5} \rho_{\mathrm{d}}\left(\rho / \rho_{\mathrm{d}}\right)^{1.1} & \rho \geq \rho_{\mathrm{d}}\end{cases}
$$

* Temperature in core constant, then rises above $10^{-13} \mathrm{~g} / \mathrm{cm}^{3}$
* At $\sim 2000 \mathrm{~K}, \mathrm{H}_{2}$ dissociates, leading to second isothermal phase and collapse to form the second, protostellar core.
* This core accretes to reach final stellar mass and contracts until fusion sets in

First core is SHORT LIVED (1000-10,000 years)

DETECTION OF A BIPOLAR MOLECULAR OUTFLOW DRIVEN BY A CANDIDATE FIRST HYDROSTATIC CORE

Michael M. Dunham ${ }^{1}$, Xuepeng Chen ${ }^{1}$, Héctor G. Arce ${ }^{1}$, Tyler L. Bourke ${ }^{2}$, Scott Schnee ${ }^{3}$, and Melissa L. Enoch ${ }^{4}$
${ }^{1}$ Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520, USA; michael.dunham@yale.edu
${ }^{2}$ Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
${ }^{3}$ National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA
${ }^{4}$ Department of Astronomy, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720, USA
Received 2011 April 4; accepted 2011 August 5; published 2011 October 28

~1 solar mass core

The outflow is slow (characteristic velocity of $2.9 \mathrm{~km} \mathrm{~s}-1$), shows a jet-like morphology (opening semi-angles $\sim 8 \circ$ for both lobes), and extends to the edges of the primary beam.
${ }^{12} \mathrm{COJ}=2-1$ emission integrated from 0.3 to $7.3 \mathrm{~km} \mathrm{~s}^{-1}$, while the red contours show redshifted emission integrated from 7.3 to $14.3 \mathrm{~km} \mathrm{~s}^{-1}$. The solid blue

Radiation-MHD to the second core

100 x 100 AU

Comparison of Mach 10, hydro turbulence

SPH=PHANTOM

grid=FLASH

Good agreement between methods...

Figure 6. Time-averaged PDF of the logarithm of the density field $s \equiv \ln \rho$ from the PHANTOM [SPH, dark (black in online version) lines other than dotted] and flash [grid, lighter (red in online version) lines] calculations, each at resolutions of $128^{3}, 256^{3}$ and 512^{3} particles/grid cells. The PDFs are

Price \& Federrath, 2010, MNRAS 406, 1659

Small-scale magnetic dynamo

Tricco, Price \& Federrath (2013, in prep)

Magnetic energy

Tricco, Price \& Federrath (2013, in prep)

Two fluids

Dust + Gas: A simple example of a two-fluid mixture

* Two fluids coupled by a drag term

$$
\begin{array}{rlr}
\frac{\partial \rho_{\mathrm{g}}}{\partial t}+\nabla \cdot\left(\rho_{\mathrm{g}} \mathbf{v}_{\mathrm{g}}\right) & =0, & \text { "Stopping tim } \\
\frac{\partial \rho_{\mathrm{d}}}{\partial t}+\nabla \cdot\left(\rho_{\mathrm{d}} \mathbf{v}_{\mathrm{d}}\right) & =0 \\
\frac{\partial \mathbf{v}_{\mathrm{g}}}{\partial t}+\left(\mathbf{v}_{\mathrm{g}} \cdot \nabla\right) \mathbf{v}_{\mathrm{g}} & =-\frac{\rho_{\mathrm{d}} \rho_{\mathrm{g}}}{K\left(\rho_{\mathrm{d}}+\rho_{\mathrm{g}}\right.} \\
\frac{\partial \mathbf{v}_{\mathrm{g}}}{\partial t}+\left(\mathbf{v}_{\mathrm{d}} \cdot \nabla\right) \mathbf{v}_{\mathrm{d}} & =-K\left(\mathbf{v}_{\mathrm{d}}-\mathbf{v}_{\mathrm{g}}\right)+\mathbf{f} \\
& -K\left(\mathbf{v}_{\mathrm{d}}-\mathbf{v}_{\mathrm{g}}\right)+\mathbf{f}
\end{array}
$$

If you don't understand simple examples, you'll be really flummoxed when it comes to the complicated stuff

- Phil Collella, yesterday

Dustywave: Waves in a two fluid medium

Laibe \& Price, 2011, MNRAS 418, 1491

$$
\delta v=A e^{i(k x-\omega t)}
$$

Dispersion relation:

$$
\omega^{3}+i K\left(\frac{1}{\hat{\rho}_{\mathrm{g}}}+\frac{1}{\hat{\rho}_{\mathrm{d}}}\right) \omega^{2}-k^{2} c_{\mathrm{s}}^{2} \omega-i K \frac{k^{2} c_{\mathrm{s}}^{2}}{\hat{\rho}_{\mathrm{d}}}=0
$$

Limit of strong drag:

$$
\omega= \pm k \tilde{c}_{\mathrm{s}}-i \frac{\hat{\rho}_{\mathrm{g}} \hat{\rho}_{\mathrm{d}}}{K\left(\hat{\rho}_{\mathrm{g}}+\hat{\rho}_{\mathrm{d}}\right)} k^{2} c_{\mathrm{s}}^{2}\left(\frac{1-A^{2}}{2}\right)
$$

Effective sound speed:
$\tilde{c}_{\mathrm{S}} \equiv c_{\mathrm{S}} A=c_{\mathrm{S}}\left(1+\frac{\hat{\rho}_{\mathrm{d}}}{\hat{\rho}_{\mathrm{g}}}\right)^{-\frac{1}{2}}$

Dustywaves: Analytic solution

Laibe \& Price, 2011, MNRAS 418, 1491

DUSTVELOCITIES

Resolution study

Laibe \& Price, 2012, MNRAS 420, 2345

Figure 8. Resolution study for the dustywave test in 1D using a high drag coefficient ($K=100$) and a dust-to-gas ratio of unity using $32,64,128,256$ 512 and 1024 particles from bottom to top. At large drag high resolution is required to resolve the small differential motions between the fluids and thus prevent over-damping of the numerical solution, corresponding to the criterion $h \lesssim c_{\mathrm{s}} t_{\mathrm{s}}$, here implying $\gtrsim 240$ particles. See also Fig. 9 .

Dustyshock

Laibe \& Price, 2012, MNRAS 420, 2345

sensible resolution

ludicrous resolution

RESOLUTION CRITERION

Laibe \& Price, 2012, MNRAS 420, 2345

Temporal: $\Delta t<t_{\text {stop }}$ (can be fixed with implicit
timestepping methods)

Spatial:
$\Delta x \lesssim t_{\text {stop }} c_{\mathrm{s}} \quad$ (cannot be fixed)

$$
\begin{array}{cc}
t_{\text {stop }} \rightarrow 0 \\
(K \rightarrow \infty)
\end{array} \quad \text { implies } \quad \begin{aligned}
& \Delta t \rightarrow 0 \\
& \Delta x \rightarrow 0
\end{aligned}
$$

* Require infinite timesteps AND infinite resolution in the obvious limit of perfect coupling!

DUSTY GAS WITH ONE FLUID

Laibe \& Price (2013, submitted to MNRAS)

* Reformulate equations on the barycentre of both fluids

$$
\mathbf{v} \equiv \frac{\rho_{\mathrm{g}} \mathbf{v}_{\mathrm{g}}+\rho_{\mathrm{d}} \mathbf{v}_{\mathrm{d}}}{\rho_{\mathrm{g}}+\rho_{\mathrm{d}}}
$$

- Change of variables, from $\mathbf{v}_{\mathrm{g}}, \mathbf{v}_{\mathrm{d}}, \rho_{\mathrm{g}}, \rho_{\mathrm{d}}$

$$
\text { to } \quad \mathrm{v}, \Delta \mathbf{v}, \rho, \rho_{\mathrm{d}} / \rho_{\mathrm{g}}
$$

TWO BECOME ONE

A phoenix from the askes

- One mixture with decay of differential velocity

$$
\begin{aligned}
\frac{\mathrm{d} \rho}{\mathrm{~d} t} & =-\rho(\nabla \cdot \mathbf{v}) \\
\frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t} & =\mathbf{f}-\frac{\nabla P_{\mathrm{g}}}{\rho}-\frac{1}{\rho} \nabla\left(\frac{\rho_{\mathrm{g}} \rho_{\mathrm{d}}}{\rho} \Delta \mathbf{v}^{2}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\rho_{\mathrm{d}}}{\rho_{\mathrm{g}}}\right) & =-\frac{\rho}{\rho_{\mathrm{g}}^{2}} \nabla \cdot\left(\frac{\rho_{\mathrm{g}} \rho_{\mathrm{d}}}{\rho} \Delta \mathbf{v}\right) \\
\frac{\mathrm{d} \Delta \mathbf{v}}{\mathrm{~d} t} & =-\frac{\Delta \mathbf{v}}{t_{\mathrm{s}}}+\frac{\nabla P_{\mathrm{g}}}{\rho_{\mathrm{g}}}-(\Delta \mathbf{v} \cdot \nabla) \mathbf{v}+\frac{1}{2} \nabla\left(\frac{\rho_{\mathrm{d}}-\rho_{\mathrm{g}}}{\rho_{\mathrm{d}}+\rho_{\mathrm{g}}} \Delta \mathbf{v}^{2}\right)
\end{aligned}
$$

Laibe \& Price (2013, submitted to MNRAS)

Strong drag/small grains

Laibe \& Price (2013, submitted)

* Equations simplify further in this limit

$$
\begin{aligned}
& \Delta \mathbf{v}=\frac{\nabla P_{\mathrm{g}}}{\rho_{\mathrm{g}}} t_{\mathrm{s}} \\
& \frac{\mathrm{~d} \rho}{\mathrm{~d} t}=-\rho(\nabla \cdot \mathbf{v}), \\
& \frac{\mathrm{d} \mathbf{v}}{\mathrm{~d} t}=\mathbf{f}-\frac{\nabla P_{\mathrm{g}}}{\rho}, \quad \text { Note: } P_{\mathrm{g}}=\tilde{c}_{\mathrm{s}} \rho \\
& \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\rho_{\mathrm{d}}}{\rho_{\mathrm{g}}}\right)=-\frac{\rho}{\rho_{\mathrm{g}}^{2}} \nabla \cdot\left(\frac{\rho_{\mathrm{g}} \rho_{\mathrm{d}}}{\rho}\left[\frac{\nabla P_{\mathrm{g}}}{\rho_{\mathrm{g}}} t_{\mathrm{s}}\right]\right) .
\end{aligned}
$$

Valid when $t_{\text {stop }}<\Delta t$

DUSTY WAVES: TWO FLUIDS

Laibe \& Price (2012a)

DUSTY WAVES: ONE FLUID

Laibe \& Price (2013, in prep)

Dustyshock with one fluid

Summary

* New conservative formulation of hyperbolic divergence cleaning
* Enables robust maintenance of divergence-free condition in Smoothed Particle Magnetohydrodynamics
* Applications to magnetic jets, dynamos
* General spatial resolution issue in two-fluid mixtures in limit of strong drag

