talk given at "Frontiers in Computational Astrophysics" conference, Ascona, Switzerland, 17th July 2008

Smoothed Particle

 Hydrodynamics
A review

or how I learnt to stop worrying and love Lagrangians

Daniel Price

School of Physics, University of Exeter as of August 2008: Monash University, Melbourne, Australia

EXETER

PART I - improvements in the basic physics (hydro, gravity)

Smoothed Particle Hydrodynamics

Lucy (1977), Gingold \& Monaghan (1977), Monaghan (1992), Price (2004), Monaghan (2005)

$$
\begin{aligned}
& L_{s p h}=\sum_{j} m_{j}\left[\frac{1}{2} v_{j}^{2}-u_{j}\left(\rho_{j}, s,{ }_{c}\right)\right] \\
& + \\
& d u=\frac{P}{\rho^{2}} d \rho, \quad 1 \text { st aw of thernoodyhamics } \\
& \nabla \rho_{i}=\sum m_{0} \nabla W_{1}(h), \text { censitysum } \\
& + \\
& \frac{d}{d t}\left(\frac{\partial \tau}{\partial v}\right), \partial L, \sigma_{r}, a \text { Eiler agrange equations } \\
& \text { equations } \\
& \frac{d \mathbf{v}_{i}}{d t}=-\sum_{j} m_{j}\left(\frac{P_{i}}{\rho_{i}^{2}}+\frac{P_{j}}{\rho_{j}^{2}}\right) \nabla_{i} W_{i j}(h) \\
& \begin{array}{l}
\text { of motion! } \\
\left(\frac{d \mathrm{v}}{d t}=-\frac{\nabla P}{\rho}\right)
\end{array}
\end{aligned}
$$

SPH gradients 101

|

Sowhat about

BAD?

Why SPH works

particles are constrained to remain semi-regular: Do NOT become randomised!

Second derivatives in SPH

naive way

Brookshaw (1985)

equivalent to:

$$
\begin{aligned}
& \nabla^{2} A_{0}=\sum_{b} \frac{m_{b}}{\rho_{b}}\left(A_{\sigma}-A_{b}\right) \nabla^{2} Y_{a b} \\
& Y_{a b}^{W}=-2 \frac{1}{\Gamma} \frac{\nabla W_{a b}}{\| r_{a b} \mid}=-2 W^{\prime}(q) / q \\
& \text { could ust use } Y^{\prime \prime}=W
\end{aligned}
$$

Artificial viscosity interpreted

* second derivatives for vector quantities. (Espanot \& Revenga2003)

$$
\begin{aligned}
& \nabla W_{a b}=\hat{r}_{a b} T_{a b}
\end{aligned}
$$

- artificial viscosity Monaghaniggt)
- contains both bulk and shear viscosity
- easy to remove shear component but would no longer conserve angular momentum

$$
\begin{aligned}
& \nabla \rho_{i}=-\& m^{2}, W_{i}(h), \text { density sum } \\
& + \\
& \frac{d}{d t}\left(\frac{\partial T}{\partial \mathrm{v}}\right), \frac{\partial L}{\partial \mathrm{r}}, \mathrm{Q}, \mathrm{atle} \text { agrange equations } \\
& \text { equations } \\
& \frac{d \mathbf{v}_{i}}{d t}=-\sum_{j} m_{j}\left(\frac{P_{i}}{\rho_{i}^{2}}+\frac{P_{j}}{\rho_{j}^{2}}\right) \nabla_{i} W_{i j}(h) \\
& \begin{array}{l}
\text { of motion! } \\
\left(\frac{d \mathrm{v}}{d t}=-\frac{\nabla P}{\rho}\right)
\end{array}
\end{aligned}
$$

Variable h

(Springel \& Hernquist 2002, Monaghan 2002, Price \& Monaghan 2004b)

$$
\begin{aligned}
& \rho_{a}=\sum_{b} m_{b} W\left(\mathrm{r}_{\sigma}, r_{6}, \mathrm{~h}_{4}\right)
\end{aligned}
$$

Noninear equation for ho (x)
(different to humber of neighbours approach can solve to arbitrary Drecision le fractions of neighbours)

$$
\frac{d \mathbf{v}_{a}}{d t}=-\sum_{b} m_{b}\left[\frac{P_{a}}{\Omega_{a} \rho_{a}^{2}} \nabla_{a} W_{a b}\left(h_{a}\right)+\frac{P_{b}}{\Omega_{b} \rho_{b}^{2}} \nabla_{a} W_{a b}\left(h_{b}\right)\right]
$$

$$
\Omega_{a}=\frac{d h_{a}}{d \rho_{a}} \sum m_{c} \frac{\partial W_{a b}\left(h_{a}\right)}{\partial h_{a}}
$$

Adaptive gravitational force softening

Price \& Monaghan (2007), MNRAS; 374; 1347

$$
\rho(\mathbf{r})=\sum_{j=1}^{N} m_{j} W(\mathbf{r}+\mathrm{r} \times \mathrm{r} \mid h)
$$

(e.g. Dehnen 2001, Athanassoula et al: 2000)

> now ise

momentum, angular momentum and energy (and phase space)!

Why fixed softening lengths

 are evilTwo Plummer spheres

Also, in SPH hirav $=$ hoas can result in artificial fragmentation (Bate \& Burkert 1997)

The now-infamous Kelvin-Helmholtz problem
 Agertz et al. 2007, Price 2008

KH instability across a 2:1 density jump: no dissipation

with viscosity

$t=0$

Entropy

* Volker's argument (paraphrased)

VS.

- entropy in both configirations is the same
- If energy penalty associated with surfaces, right will be preferred - leads to surface tension like effect

Integral vs. differential form

VS.
integral

$$
\rho(\mathrm{r})=\int \rho^{\prime} W\left(\mathrm{r}-\mathrm{r}^{\prime}, h\right) d V
$$

are they equivalent? (e.g. Monaghan 1997)
continuity equation
density sum

le. they differ at discontinuities...

But what about the thermal energy discontinuity?

or equivalent.
ie. We are forced to use a differential form for the thermal energy/ entropy evolution
corollary discontinuities in u need treatment

$$
\begin{aligned}
& L_{\text {sph }}=\sum_{j} m_{j}\left[\frac{1}{2} v_{j}^{2}-u_{j}\left(\rho_{j}, s_{j}\right)\right], \text { Gagrangian }
\end{aligned}
$$

$$
\begin{aligned}
& \text { equations } \\
& \frac{d \mathbf{v}_{i}}{d t}=-\sum_{j} m_{j}\left(\frac{P_{i}}{\rho_{i}^{2}}+\frac{P_{j}}{\rho_{j}^{2}}\right) \nabla_{i} W_{i j}(h) \\
& \begin{array}{l}
\text { of motion! } \\
\left(\frac{d \mathrm{v}}{d t}=-\frac{\nabla P}{\rho}\right)
\end{array}
\end{aligned}
$$

KH with conductivity

Price (2008)

conductivity also proposed by Wadsley et al. (2008) w.r.t. entropy mixing problems in galaxy clusters

Godunov-SPli

Inutsuka (2002), Cha \& Whitworth (2004)

Ritchie \& Thomas (2001) method

conductivity + viscosity using switch

PART II - new physics

Smoothed Particle Magnetohydrodynamics

Price \& Monaghan (2004a,b;2005)

$$
\begin{aligned}
& \frac{d v_{a}^{i}}{d t}=\sum_{b} m_{b}\left[\left(\frac{S^{i j}}{\rho^{2}}\right)_{a}+\left(\frac{S^{i j}}{\rho^{2}}\right)_{b}\right] \nabla_{a}^{j} W_{a b}, \text { vequations }_{\text {equ }}^{\text {equin }} \\
& S_{i}^{i j}:\left(P_{a}+\frac{1}{2 \mu_{0}} B_{a}^{2}\right) \delta^{i j}+\frac{1}{\mu_{0}}\left(B_{a}^{i} B_{a}^{j}\right),
\end{aligned}
$$

Technical issues

1) Momentum
use force which vanishes for constant stress conserving force
is unstable,

2) Shocks

formuate artifial dissipation terms (PMO4a)
3) Variable 1

$$
\begin{aligned}
& \left(\frac{d \mathrm{v}}{} \mathrm{dt}\right) \\
& \left(\frac{d \mathrm{~B}}{d t}\right) \\
& \left(\frac{d e_{a}}{d t}\right) \text {) }
\end{aligned}
$$

use Lagrangian (Price \& Monaghan 2004b)

4) The $\nabla \cdot B=0$ constraint

* tried lots of things which didn't work (e. gedner et al cleaning)
* Euler potentials:

Buler (1rro) isten (19ri6), Phillips 8 (Monaghan (1985)
ise accurate SPH derivatives (Price 2004)

$$
d A
$$

Test problems

Mach 25 MHD shock (e.g:Balsara 1998)
-(Price \& Monaghan 2004a,b, Price 2004)

Orszag-Tang vortex (everyone) (Price \& Monaghan 2005, Rosswog \& Price 2007)

Star formation

Magnetic fields in star cluster formation

Bate, Bonnell \& Bromm (2003) with magnetic fields...

Effect on IMF

Radiative transfer

* photoionisation/ray -tracing schemes (Dale 2006. SPHRAY, Altay et al 08, TRAPHIC, Pawilk
- SPH+Monte Carlo (e O. Oxley \& Woolíson 03) single temperature
- approximate methods (Stamatellos et al 07)
- Single temperature diffision approximation (implicit) (Bastien et al 04, Viau et al 06)
* single temperature flux linited diffusion (Mayer et al. '06)
- two temperature flux limited diffusion (implicit) Whitehouse \& Bate 04 , Whitehouse et al. '05, Whitehouse \& Bate 06)

Radiation hydro

Hydro/Barytropic EOS

Radiation + MHD

$\operatorname{MHD}(\mathrm{M} / \phi=3) /$ Barytropic EOS
MHD $(M / \Phi=3) /$ Radiative transfer

Conclusions

