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PART I - improvements 
in the basic physics
(hydro, gravity)



Smoothed Particle Hydrodynamics 

2h

ρ(r) =
N∑

j=1

mjW (|r − rj |, h)

Lucy (1977), Gingold & Monaghan (1977), Monaghan (1992), Price (2004), Monaghan (2005)



dvi

dt
= −

∑

j

mj

(

Pi

ρ2
i

+
Pj

ρ2
j

)

∇iWij(h)

=

Lsph =
∑

j

mj

[

1

2
v2

j − uj(ρj , sj)

]

Lagrangian

du =

P

ρ2
dρ

+
1st law of thermodynamics

∇ρi =
∑

j

mj∇Wij(h)

+
density sum

d

dt

(

∂L

∂v

)

−

∂L

∂r

= 0

+
Euler-Lagrange equations

equations
of motion!

(

dv

dt
= −

∇P

ρ

)



SPH gradients 101
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BAD

exact const

exact linear

BAD?

so what about



Why SPH works

particles are 
constrained 
to remain 

semi-regular. 
Do NOT 
become 

randomised!



Second derivatives in SPH

W(r/h)

W’

W’’

naive way:
∇2Aa =

∑

b

mb

ρb
Ab∇2Wab

Brookshaw (1985):

∇2Aa = −2
∑
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mb

ρb
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r̂ ·∇Wab

|rab|

Y ′′
ab ≡ −2

r̂ ·∇Wab

|rab|
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equivalent to:

Y’’

could just use Y’’ = W

Y’’



∑
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ρb
Wab ≈ 1

good density estimate:

∑

b

mb
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∂Wab

∂x
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good gradients:

1
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good second derivatives:
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W
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second derivatives for vector quantities: (Espanol & Revenga 2003)

Artificial viscosity interpreted

(
dv
dt

)

diss

= −
∑

b

mb

ρ̄ab
αvsig(va − vb) · r̂ab∇aWab

artificial viscosity (Monaghan 1997):

≈ αvsigh

10
[
∇2v + 2∇(∇ · v)

]
(e.g. Murray 1996)

∇(∇ · A)a ≈ −
∑

b

mb

ρb
[(5Aab · r̂ab)r̂ab −Aab]

Fab

|rab|

∇2Aa ≈ −2
∑

b

mb

ρb
(Aa −Ab)

Fab

|rab| ∇Wab = r̂abFab

contains both bulk and shear viscosity

easy to remove shear component but would no longer conserve angular momentum
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+PHYSICS

CHANGE SOMETHING HERE



Variable h
(Springel & Hernquist 2002, Monaghan 2002, Price & Monaghan 2004b)

ρa =
∑

b

mbW (ra − rb,ha).

ha = η

(

ma

ρa

)(1/ν)

Nonlinear equation for rho(x)
(different to “number of neighbours” approach - can 

solve to arbitrary precision, i.e. fractions of neighbours)

dva

dt
= −

∑

b

mb

[

Pa

Ωaρ2
a

∇aWab(ha) +
Pb

Ωbρ
2

b

∇aWab(hb)

]

Ωa =

[

1 −

dha

dρa

∑

c

mc

∂Wab(ha)

∂ha

]



Adaptive gravitational force softening
Price & Monaghan (2007), MNRAS, 374, 1347
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.

adaptive softening with conservation of 
momentum, angular momentum and 

energy (and phase space)!

ρ(r) =
N∑

j=1

mjW (|r − rj |, h)

∇2Φ =4 πGρ(r) F = −G
∑

j

mimjrij

|rij |3
NOT

2 Price & Monaghan

angular momentum it is necessary to use a symmetric form
of F so that each particle in a pair interaction experiences
an equal but opposite force. This can be achieved by using,
for example h̄ = 1

2
(hi + hj) in place of h in (2). However,

because the softening length then varies in space the total
energy of the system will not be conserved. The errors are
often not large but, in long integrations, and when systems
may be on the border-line of stability, as for example in some
cases of star formation, they may have a significant effect.

In this paper we show how a Lagrangian for a self grav-
itating gas can be devised which has the softening of the
force and the variation of h built in. The advantage of using
a Lagrangian is that, provided it is constructed correctly, the
conservation laws are automatically satisfied. In particular
the conservation of energy and momentum is exact though,
in practice, the accuracy is determined by the time step-
ping algorithm. The new equations of motion have an extra
term in addition to the standard SPH terms. It is this term
which guarantees energy conservation. We apply our algo-
rithm to both static and dynamic problems. In some cases
the new equations give results which are very similar to re-
sults obtained previously, but in some cases the results are
very much improved.

2 KERNEL SOFTENING

A general formulation for force softening was given by
Dehnen (2001) and we use a similar formulation here. The
modified gravitational potential per unit mass may be writ-
ten in the form

Φ(r) = −G

N
∑

b=1

mbφ (|r − rb|, h) (5)

where φ is the softening kernel which is a function of the
particle separation and the softening length h (we use h to
denote the softening length since it corresponds with the
smoothing length used in the SPH density estimate). The
kernel determines the functional form of the modified grav-
itational force law. For example, in the case of Plummer
softening the softening kernel is given by

φ(r, h) =
1
h

[

1 +
(

r
h

)2
]−1/2

. (6)

Neglecting the spatial variation of h the force estimate
corresponding to (5) is given by

F̂(r) = −∇Φ = −G

N
∑

b=1

mbφ
′ (|r − rb|, h)

r − rb

|r − rb|
, (7)

where φ′ = ∂φ/∂|r − rb|. The underlying smooth density
field can be obtained from Poisson’s equation

∇2Φ = 4πGρ, (8)

giving

ρ(r) =

N
∑

b=1

mbW (|r − rb|, h) , (9)

where the density kernel is related to the softening kernel
according to

Figure 1. The functional form of the modified potential (-), grav-
itational force and the density profile using the cubic spline kernel.
For r/h ≥ 2 the smoothing is zero and the potential and force are
exact.

W (r) = − 1
4πr2

∂
∂r

(

r2 ∂φ
∂r

)

. (10)

The kernel density given by (9) corresponds to the mass dis-
tribution of each particle being smoothed. Readers familiar
with SPH will notice that (9) corresponds to the density es-
timate used in SPH calculations, where W is the usual SPH
smoothing kernel.

In general, the functional form of the softening kernel
may be specified for either the potential term φ, the force
evaluation term φ′ or W . In each case the corresponding ker-
nel for the other cases may be determined by a straightfor-
ward integration or differentiation. For example, in N-body
codes, it may be preferable to choose a kernel primarily for
the force evaluation, from which the functional form of the
potential and density kernel can be derived. In SPH the
kernel is primarily used for the density estimate, where the
most commonly used form is the cubic spline of Monaghan
& Lattanzio (1985)

W (r,h) =
1

πh3

{

1 − 3

2
q2 + 3

4
q3, 0 ≤ q < 1;

1

4
(2 − q)3, 1 ≤ q < 2;

0. q ≥ 2.
(11)

where q = r/h. The corresponding force kernel is given by

φ′ =
4π
r2

∫ r

0

Wr2dr, (12)

the functional form of which is given for the cubic spline
in Appendix A. The softening kernel for the gravitational
potential may be calculated from the force kernel using

φ =

∫

Fdr, (13)

the form of which is also given in Appendix A for the cubic
spline. For general kernels (13) combined with (12) can be
integrated by parts to give

φ(r, h) = 4π

[

−1
r

∫ r

0

Wr′2dr′ +

∫ r

0

Wr′dr′ −
∫

2h

0

Wr′dr′
]

,

c© 2005 RAS, MNRAS 000, 1–11

F̂(r) = −G
N∑

b=1

mbφ
′ (|r− rb|, h)

r− rb

|r − rb|
,

φ′ =
4π

r2

∫ r

0
Wr′2dr′,

(e.g. Dehnen 2001, Athanassoula et al. 2000)

ha = η

(

ma

ρa

)(1/ν)

now use:



Why fixed softening lengths 
are evil

Also, in SPH hgrav ≠ hgas can result in artificial fragmentation (Bate & Burkert 1997)



Fig. 7. Results of the Kelvin-Helmholtz instability test using a density ratio of 2:1 as
in Figure 5 but here using an initial particle spacing of ∆ = 1/512 in the least-dense
component. The results are similar to Figure 5, namely that adding the artificial
thermal conductivity term gives a dramatic improvement in SPH’s ability to resolve
the Kelvin-Helmholtz instability.

24

The now-infamous 
Kelvin-Helmholtz 
problem

Agertz et al. 2007, Price 2008



KH instability across a 2:1 
density jump: no dissipation



with viscosity



Entropy
Volker’s argument (paraphrased):

vs.

entropy in both configurations is the same

if energy penalty associated with surfaces, right will 
be preferred - leads to surface-tension like effect



Integral vs. differential form

ρi =
∑

j

mjWij(hi)

dρi

dt
=

∑

j

mj(vi − vj) ·∇Wij(hi)

vs.

ρ(r) =
∫

ρ′W (|r− r′|, h)dV

integral

differential

are they equivalent? (e.g. Monaghan 1997)



continuity equation density sum

ie. they differ at discontinuities...

∫ [
∂ρ′

∂t
+∇′ · (ρ′v′)

]
W (|r− r′|, h)dV ′ = 0.

d

dt

∑

j

mjWij =
∑

j

mj(vi − vj) ·∇Wij −
∫

[ρ′v′W ] · dS.



But what about the thermal 
energy discontinuity?

dS

dt
=

γ − 1
ργ−1

(
du

dt
− P

ρ2

dρ

dt

)
= 0

or equivalent:

ie. we are forced to use a differential form for 
the thermal energy / entropy evolution

corollary: discontinuities in u need treatment

du

dt
=

P

ρ2

dρ

dt

1st law of 
thermodynamics gives:
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KH with conductivity
Price (2008)

conductivity also proposed by Wadsley et al. (2008) w.r.t. 
entropy mixing problems in galaxy clusters



Godunov-SPH
Inutsuka (2002), Cha & Whitworth (2004)



Ritchie & Thomas (2001) method
dvi

dt
= (1− γ)

∑

j

mj

[
uj

〈ρi〉
∇Wij(hi) +

ui

〈ρj〉
∇Wij(hj)

]
, 〈ρi〉 =

〈Pi〉
(γ − 1)ui

=
∑

j mjujWij(hi)
ui

.



conductivity + viscosity using switch



PART II - new physics



Smoothed Particle Magnetohydrodynamics

Lsph =
∑

b

mb

[

1

2
v2

b − ub(ρb, sb) −
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2µ0

B2
b

ρb

]

∫
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=

∑
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+

(

Sij
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b

]

∇
j
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+

1
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Bi
aBj

a

)

,

equations
of motion

δ

(

Bb

ρb

)

= −
∑

c

mc(δrb − δrc)
Bb

ρ2

b

·∇bWbc

mag field 
evolution

δρb =
∑

c

mc (δrb − δrc) ·∇bWbc,

continuity 
equation

Price & Monaghan (2004a,b, 2005)



Technical issues
1) Momentum 
conserving force 
is unstable

2) Shocks

3) Variable h

(Morris 1996)

use force which vanishes for constant stress

dvi

dt
= −

∑

b

mb

(

Pa + 1

2
B2

a/µ0

ρ2
a

+
Pb + 1

2
B2

b /µ0

ρ2
b

)

∂Wab

∂xi

+
1

µ0

∑

b

mb
(BiBj)b − (BiBj)a

ρaρb

∂Wab

∂xj
.

(

dv

dt

)

diss

= −
∑

b

mb
αvsig(va − vb) · r̂

ρ̄ab
∇aWab,

(

dB

dt

)

diss

= ρa

∑

b

mb
αBvsig

ρ̄2

ab

(Ba − Bb) r̂ ·∇aWab

(

dea

dt

)

diss

= −
∑

b

mb
vsig(e∗a − e∗b)

ρ̄ab
r̂ ·∇aWab

formulate artificial dissipation terms (PM04a)

use Lagrangian (Price & Monaghan 2004b)



tried lots of things which didn’t work (e.g. Dedner et al. cleaning)

Euler potentials:

4) The ∇•B = 0 constraint

B = ∇α ×∇β

Euler (1770), Stern (1976), 
Phillips & Monaghan (1985)

use accurate SPH derivatives (Price 2004)

χµν∇
µαi = −

∑

j

mj(αi − αj)∇
ν
i Wij(hi)

χµν =
∑

j

mj(r
µ
i − r

µ
j )∇νWij(hi).

add shock dissipation

dα

dt
=

∑

b

mb
αBvsig

ρ̄ab
(αa − αb) r̂ ·∇aWab

dβ

dt
=

∑

b

mb
αBvsig

ρ̄ab
(βa − βb) r̂ ·∇aWab

dα

dt
= 0,

dβ

dt
= 0

‘advection of magnetic 
field lines’



Mach 25 MHD shock (e.g. Balsara 1998)

Current loop advection (e.g. Gardiner & Stone 2007)

Orszag-Tang vortex (everyone)

Test problems

(Price & Monaghan 2004a,b, Price 2004)

(Price & Monaghan 2005, Rosswog & Price 2007)

(Rosswog & Price 2007)



Star formation



Magnetic fields in star cluster formation

50 solar mass cloud

diameter 0.375 pc, nH2 = 3.7 x 104

initial uniform B field

T ~10K

turbulent velocity field P(k)∝k-4

RMS Mach number 6.7

barytropic equation of state

Price & Bate (2008) MNRAS 385, 1820

Bate, Bonnell & Bromm (2003) with magnetic fields...





Effect on IMF
10 Price & Bate

Figure 7. Initial mass functions at tff = 1.5 for each of the five runs, in order of increasing magnetic field strength (left to right, top to bottom) and the
cumulative fractional number of stars as a function of mass in all four cases (bottom right panel), with lines corresponding to the hydrodynamic run (black,

solid), M/Φ = 20 (red, dotted), M/Φ = 10 (green, dashed),M/Φ = 5 (blue, long-dashed) andM/Φ = 3 (magenta, dot-dashed). The vertical dashed line

in each case indicates the characteristic mass in the hydrodynamic run.

of the cluster (which fragments spectacularly in the M/Φ = 20
run) is at earlier times much less massive and forms only an ac-

creting binary system (tff = 1.29 in Figure 6), though the mass
accretion onto this system at later times (tff > 1.33, centre panel
of last three rows in Figure 6) causes further fragmentation.

4.3.4 M/Φ = 5

The star formation sequence in theM/Φ = 5 run (Figure 5, fourth
column) is almost unrecognisable compared to the hydrodynamic

case. The first fragmentation occurs in this case in a disc which ap-

pears edge-on in Figure 5 (tff = 1.1 panel) – that is, perpendicular
to the global magnetic field direction. Whilst this disc fragments to

form a multiple system from which a brown dwarf is ejected, the

subsequent accretion and thus star formation occurs at a dramati-

c© 2007 RAS, MNRAS 000, 1–13
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Radiative transfer
photoionisation/ray-tracing schemes (Dale 2006, 
SPHRAY, Altay et al. ’08; TRAPHIC, Pawlik)

SPH+Monte Carlo (e.g. Oxley & Woolfson ’03), single 
temperature

approximate methods (Stamatellos et al. ’07)

single temperature diffusion approximation (implicit) 
(Bastien et al. ’04, Viau et. al. ’06)

single temperature flux limited diffusion (Mayer et al. ’06)

two-temperature flux limited diffusion (implicit) 
(Whitehouse & Bate ’04, Whitehouse et al. ’05, 
Whitehouse & Bate ’06)



Radiation hydro



Radiation + MHD



Conclusions


