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GRID VS. SPH

“The complete absence of an inertial range with a reasonable 
slope, or with a reasonable dependence of the slope on the 
Mach number, makes their SPH simulations totally inadequate 
for testing the turbulent fragmentation model...”

In numerical simulations, even when the variance should not
be dominant, power-law tails may be absent from statistical dis-
tributions of core properties, as a result of the limited range of
scales relative to the actual interstellar turbulence. If the range
of scales is reduced, the range of values in core properties due to
the scale dependence is also reduced, possibly to the point of be-
coming smaller than the variance of the distribution at a fixed
scale. Lognormal-like tails may then cut short the power-law dis-
tributions as a numerical effect.

It is important to appreciate that a driven turbulent flow may
experience over time significant deviations from its average scal-
ing laws, and that this may be the explanation for observed var-
iations of the stellar IMF from place to placemuch in excess of the
Poisson variance related to the statistical sample size. The scaling
laws were understood phenomenologically by Kolmogorov as
due to a scale-independent energy-dissipation rate, arising from
an efficient energy cascade from large to small scales in turbulent
flows. This transfer from large to small scales takes approximately
a dynamical time of the outer scale. Therefore, in a driven flow,
any variations of the energy injection rate on a timescale of the
order of the dynamical time causes a ‘‘bump’’ in inertial-range
scaling laws that has to propagate down the turbulent cascade
until it reaches the small viscous scales after approximately a
dynamical time of the outer scale. Because the typical lifetime
of star-forming regions is comparable to this dynamical time (and
star formation starts immediately when a molecular cloud is as-
sembled), the turbulence can hardly be considered relaxed, and
large variations of the IMF from place to place should be ex-
pected. These variations should not be interpreted as the lack of
a universal process of star formation, but rather as the evidence
of both its turbulent origin and its short lifetime.

4.2. Previous Results

Ballesteros-Paredes et al. (2006) argue that the fragmentation
model of Padoan&Nordlund (2002) is in contradiction with their
numerical results, based on TVD and SPH simulations without
magnetic fields. They conclude that the core mass distribution
depends on the rms Mach number, but fail to point out that the
Padoan and Nordlund model contains such a Mach number de-
pendence, with the peak of the mass distribution shifting to lower
masses as the Mach number increases, in agreement with the nu-
merical results in Ballesteros-Paredes et al. (2006). In the Padoan
andNordlundmodel, the slope of themass distribution for masses

above the peak is independent of theMach number, also in agree-
ment with the results of Ballesteros-Paredes et al. (2006) based
on the TVD simulations (see their Fig. 4), but in contradiction
with their SPH simulations (see their Fig. 5).

Figure 8 compares the power spectrum from the Stagger
code HD run with two TVD and two SPH power spectra from
Ballesteros-Paredes et al. (2006), for Mach numbers 3 and 6. The
inertial range in both the TVDand SPHcases is not very extended,
due to the low numerical resolution. The TVD code gives a slope
of ! ! 2:2, the same value found in the Zeus run, for both Mach
numbers. The extent of the inertial range in the TVD run is also
comparable to the Zeus result at the same resolution (not shown).
The power spectra of the SPH runs are instead much steeper, and
their slope increases with decreasing Mach number, ! ! 2:7 for
MS ! 6 and ! ! 2:9 for MS ! 3. As shown by the TVD runs,
the power spectrum should not vary much with Mach number be-
tweenMS ¼ 6 andMS ¼ 3. For lowerMach numbers, the power
spectrum should become shallower and converge to a value of
! ! 5/3 forMS < 1. The SPH power spectrum slope is therefore
much too steep and its Mach number dependence unphysical.

In summary, it appears that the TVD runs of Ballesteros-
Paredes et al. (2006) are able to qualitatively reproduce the

Fig. 7.—Left panel: Size distribution of the unstable cores selected from the same two snapshots of the Stagger code MHD experiment as in the left panels of Figs. 5
and 6. The core size is defined as the cubic root of its volume. The power-law distribution resulting from the scale dependence of the core size,N (l ) / l#6/(3#!), is plotted
as a solid line, using the value of ! ¼ 1:94 found in the two snapshots. Right panel: Same as in the left panel, but for the Stagger code HD experiment. The scaling law
would now give an extremely steep power law, N (l ) / l#3/(2#!), or essentially no size range.

Fig. 8.—Power spectra compensated for the slope of the Stagger code HD
run, ! ¼ 1:9. The TVD and SPH power spectra are the same as in Fig. 2 of
Ballesteros-Paredes et al. (2006) for the Mach numbers 3 and 6.
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ABSTRACT

We investigate the core mass distribution (CMD) resulting from numerical models of turbulent fragmentation of
molecular clouds. In particular we study its dependence on the sonic rms Mach numberMs. We analyze simulations
withMs ranging from 1 to 15 to show that, asMs increases, the number of cores increases as well, while their average
mass decreases. This stems from the fact that high Mach number flows produce many and strong shocks on inter-
mediate to small spatial scales, leading to a highly fragmented density structure. We also show that the CMD from
purely turbulent fragmentation does not follow a single power law, but can be described by a function that changes
its shape continuously, probably similar to a lognormal function. The CMD in supersonic turbulent flows does not
have a universal slope, which casts some doubt on attempts to directly relate the CMD to a universal initial mass
function.

Subject headinggs: ISM: clouds — methods: numerical — stars: formation — turbulence

Online material: color figure

1. INTRODUCTION

An isothermal supersonic shock with a Mach number Ms

creates density enhancements of !1/!0 ¼ M 2
s , where !1 and !0

are the densities of the post- and pre-shocked gas (e.g., Spitzer
1978). Since molecular clouds are turbulent and supersonic, it is
expected that their internal density structure is, to first order (i.e.,
neglecting gravitational or thermal fragmentation), a direct con-
sequence of the fragmentation by the chaotic, supersonic veloc-
ity field (see, e.g., the reviews by Vázquez-Semadeni et al. 2000;
Mac Low & Klessen 2004; Scalo & Elmegreen 2004, and ref-
erences therein), a process that has been called ‘‘turbulent frag-
mentation.’’ Thus, it is reasonable to expect that supersonic
turbulence plays a crucial role in determining the mass distribu-
tion of dense cores. In fact, the gravoturbulent scenario of star
formation suggests that the cores are formed by compressible tur-
bulent motions inside molecular clouds and that some of those
cores may become gravitationally unstable and form stars, while
others will redisperse in the ambient medium (Sasao 1973; Hunter
& Fleck 1982; Elmegreen 1993; Ballesteros-Paredes et al. 1999;
Klessen et al. 2000; Padoan et al. 2001; Padoan&Nordlund 2002,
hereafter PN02).

On the other hand, themass distribution of young stars follows
a well-known distribution called the initial mass function (IMF).
For stellar massesM " 1 M#, this shows a power-law behavior
dN /d logM / M!, with slope ! ¼ $1:3 (Salpeter 1955; Scalo
1998; Kroupa 2002; Chabrier 2003). Understanding the origin of
the IMF is one of the fundamental goals of a complete theory of
star formation. Although important progress has been achieved
in the observational determination of the IMF, there are still sev-
eral proposed models to explain it (see reviews by Meyer et al.

2000; Mac Low & Klessen 2004, and references therein), with
no agreement in the community on a standard one. One of the
more recent models suggests that the IMF properties are a direct
consequence of the core mass distribution (CMD). Observa-
tional works (e.g., Motte et al. 1998; Testi & Sargent 1998) have
reported a slope of the high-mass wing of the dense core mass
distribution (or mass spectrum) that is similar to the slope of
Salpeter’s IMF, suggesting that those cores are the direct pro-
genitors of single stars. Since stars are born from dense cores this
idea is, in principle, tempting. However, there is a large number of
physical processes that may play an important role during the core
fragmentation and the protostellar collapse (see e.g., Klessen
& Burkert 2000; Goodwin et al. 2004; Bate & Bonnell 2005).
These make it unclear whether a single core will give birth to one
or more stars, and what determines the masses of individual stars
within a single core. Some of these processes are: (1) The mass
distribution of cores changes with time as cores merge with each
other (e.g., Klessen 2001; Schmeja&Klessen 2004). (2) Cores gen-
erally produce not a single star but clusters of stars, and so the
relation between the masses of cores and those of individual
stars is unclear (e.g., Larson 1985, Hartmann 2001, Goodwin
et al. 2004). In addition, there may be (3) competitive accretion
influencing the mass-growth history of individual stars (see, e.g.,
Bate & Bonnell 2005), (4) stellar feedback through winds and
outflows, or (5) changes in the equation of state, introducing pre-
ferredmass scales (e.g., Scalo et al. 1998; Li, Klessen&Mac Low
2003; Jappsen et al. 2005; Larson 2005).
In addition to the uncertainties mentioned above, there are

other important caveats when looking for a direct relationship
between the CMD and the IMF. For instance, even though some
observational and theoretical works for dense, compact cores fit
power laws in the high-mass wing of the CMD, the actual shape
of those CMDs is not necessarily a single-slope power law, but a
functionwhose slope varies in amore continuous way, frequently
similar to a lognormal distribution. From a theoretical point of
view, PN02 have argued that the mass distribution of dense cores
generated by turbulent fragmentation closely follows the Salpeter
distribution of intermediate- to high-mass newborn stars, with a
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Price & Federrath (2010): Comparison of driven, Mach 10 turbulence
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Density variance - Mach number relation in 
solenoidally-driven turbulence

Price, Federrath & Brunt (2011, ApJL)
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2 C. M. Brunt: The Density Variance – Mach Number Relation in the Taurus Molecular Cloud

Fig. 1. Integrated intensity map of the 13CO J=1–0 line over the velocity range [0, 12] km s−1 in the Taurus molecular cloud.

square of the Fourier space representation of the telescope beam
pattern.

An observational measurement of σ2
N/N0

and R can then yield
σ2
ρ/ρ0

. The BFP method assumes isotropy in the 3D density field,
so equation (1) must be applied with some caution. Using mag-
netohydrodynamic turbulence simulations, BFP show that this
assumption is valid if the turbulence is super-Alfvénic (MA > 1)
or, failing this, is strongly supersonic (M � 10). The BFP
method can be used to derive σ2

ρ/ρ0
to around 10% accuracy

if these criteria are met, while up to a factor of 2 uncertainty
may be expected in the sub-Alfvénic, low sonic Mach number
regime.

3. Application to the Taurus Molecular Cloud

We now apply the BFP method to 13CO (J=1–0) spectral line
imaging observations of the Taurus molecular cloud. Figure 1
shows the 13CO emission integrated over the velocity range
[0, 12] km s−1. In the construction of this map, we have removed
the contribution of the error beam to the observed intensities and
expressed the resulting intensities on the corrected main beam
scale, TMB,c (Bensch, Stutzki, & Heithausen 2001; Brunt, Heyer,
& Mottram in prep.; Mottram & Brunt in prep.) The map is
2048 pixels × 1529 pixels across, corresponding to 28 pc × 21 pc
at a distance of 140 pc (Elias 1978).

Following the procedure described in Section 2, we first es-
timate the variance in the normalized projected field. We assume
that the 13CO integrated intensity, I, is linearly proportional to
the column density, N; the advantages and disadvantages of this
assumption are discussed below. Taking I ∝ N, we calculate
σ2

N/N0
= σ2

I /I
2
0 , where I0 is the mean intensity. The observed

variance in the field, σ2
I+N , is the sum of the signal variance,

σ2
I , and the noise variance, σ2

N . We measure σ2
I+N = 2.81 and

Fig. 2. Central portion of the power spectrum of the Taurus 13CO J=1–
0 integrated intensity map. The black/white contours (smoothed for
clarity) show levels of equal power, while the red circles represent an
isotropic power spectrum for reference.

σ2
N = 0.42, giving σ2

I = 2.39 (units are all (K km s−1)2). With a
measured I0 = 1.06 K km s−1, we then find σ2

N/N0
= 2.25.

The power spectrum of the integrated intensity field is now
calculated. We use a square field of size 2048 pixels × 2048 pix-
els in which the map is embedded, and compute the power spec-
trum using a Fast Fourier Transform. Application of tapers to
smoothly roll-off the field edges had an insignificant effect on the

vs.



J. Kainulainen et al.: Probing the evolution of molecular cloud structure L37

Fig. 1. Left: wide-field extinction map of the Taurus molecular cloud complex covering ∼7.5◦ × 7.5◦ (∼18 × 18 pc at d = 140 pc). The FWHM
resolution of the map is 2.4′. Right: the same, but in logarithmic scaling highlighting the low column density regions. The contour at AV = 4 mag
shows the region above which the column density PDF differs from the simple log-normal form. The crosses show the embedded population of
the cloud as listed by Rebull et al. (2009).

Fig. 2. Left: probability density functions (PDFs) of the column density for the non-star-forming clouds Lupus 5 and Coalsack. Right: the same for
the active star-forming clouds Taurus and Lupus 1. The error bars show the

√
N uncertainties. Solid lines show the fits of log-normal functions to

the distributions around the peak, typically over the range ln Av/AV = [−0.5, 1]. The dispersions of the fitted functions are shown in the panels. The
x-axis on top of the panels shows the extinction scale in magnitudes. The vertical dashed line shows the upper limit of extinction values probed by
the extinction mapping method. Similar plots for 19 other clouds are shown in Figs. 4−6 (online only).

where AV is the mean extinction, and m and σ are the scale and
dispersion in logarithmic units. The fits are shown in Figs. 2
and 4−6. Since it is evident that most PDFs are not well fitted by
log-normals over their entire range, the fit was typically made
over the range s = [−0.5, 1]. The dispersions of the fitted log-
normal functions are shown in Table 1, and they span the range
σs ≈ 0.3−0.5. Table 1 also shows the total mass and the mean
and standard deviation of the pixels above AV = 0 mag. The to-
tal mass was calculated by summing up the extinction values in
the map above AV = 0.5 mag and adopting the standard ratio of
N(H2 + H)/AV = 9.4 × 1020 cm−2 (Bohlin et al. 1978).

Another interesting form of the PDFs is the cumulative form
of the pixel probability distribution, describing the fractional
mass enclosed by an isocontour as a function of column den-
sity (or more precisely, the survival function). The cumulative
PDFs are shown in Fig. 3 for all the clouds of the study. In
this figure, the active star-forming clouds are separated from
quiescent clouds. Clearly, the fraction of mass in high column
density regions is higher in star-forming clouds than in clouds
without star formation. We approximated the average cumula-
tive functions for these two classes as a simple mean of all the
clouds in the class, which resulted in the relation (N/Npeak)SF ≈
(N/Npeak)0.4

non−SF. For example, the star-forming clouds then have
roughly one order of magnitude more mass above AV = 5 mag
than non-star-forming clouds and more than three orders of mag-
nitude above AV = 15 mag.

Fig. 3. Cumulative forms of the PDFs shown in Figs. 2 and 4−6. The
curves show the fractional mass above the certain extinction threshold
(abscissae). Solid blue lines are for clouds that show active star forma-
tion and dotted red lines for clouds without active star formation.

4. Discussion and conclusions

While supersonic turbulence is expected to develop a density
PDF close to a log-normal distribution, prominent deviations
from that shape are predicted in strongly self-gravitating sys-
tems (e.g. Klessen 2000; Federrath et al. 2008a). Recent obser-
vational studies have indeed indicated that the column density
PDFs of molecular clouds are close to log-normal distributions.
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4. Discussion and conclusions

While supersonic turbulence is expected to develop a density
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Shocking results without shocks: Subsonic turbulence in smoothed

particle hydrodynamics and moving-mesh simulations
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ABSTRACT

Highly supersonic, compressible turbulence is thought to be of tantamount importance for
star formation processes in the interstellar medium (ISM). Likewise, cosmic structure forma-
tion is expected to give rise to subsonic turbulence in the intergalactic medium (IGM), which
may substantially modify the thermodynamic structure of gas in virialized dark matter halos
and affect small-scale mixing processes in the gas. Numerical simulations have played a key
role in characterizing the properties of astrophysical turbulence, but thus far systematic code
comparisons have been restricted to the supersonic regime, leaving it unclear whether sub-
sonic turbulence is faithfully represented by the numerical techniques commonly employed
in astrophysics. Here we focus on comparing the accuracy of smoothed particle hydrody-
namics (SPH) and our new moving-mesh technique AREPO in simulations of driven subsonic
turbulence. To make contact with previous results, we also analyze simulations of transsonic
and highly supersonic turbulence. We find that the widely employed standard formulation of
SPH quite badly fails in the subsonic regime. Instead of building up a Kolmogorov-like tur-
bulent cascade, large-scale eddies are quickly damped close to the driving scale and decay
into small-scale velocity noise. In contrast, our moving-mesh technique does yield power-law
scaling laws for the power spectra of velocity, vorticity and density, consistent with expecta-
tions for fully developed isotropic turbulence. We argue that large errors in SPH’s gradient
estimate and the associated subsonic velocity noise are ultimately responsible for producing
essentially unphysical results in the subsonic regime. This casts doubt about the reliability
of SPH for simulations of cosmic structure formation, especially if turbulence in clusters of
galaxies is indeed significant. In contrast, SPH’s performance is much better for supersonic
turbulence, as here the flow is kinetically dominated and characterized by a network of strong
shocks, which can be adequately captured with SPH. When compared to fixed-grid Eulerian
simulations of turbulence, our moving-mesh approach shows qualitatively very similar re-
sults, although with somewhat better resolving power at the same number of cells, thanks to
reduced advection errors and the automatic adaptivity of the AREPO code.

Key words: hydrodynamics, shock waves, turbulence, methods: numerical

1 INTRODUCTION

Astrophysical gas dynamics in the interstellar and intergalactic
medium is typically characterized by very high Reynolds numbers,
thanks to the comparatively low gas densities encountered in these
environments, which imply a very low physical viscosity for the
involved gas. We may hence expect that turbulent cascades over
large dynamic ranges are rather prevalent, provided effective driv-
ing processes exist. Such turbulence can then be an important fea-
ture of gas dynamics, for example providing an additional effective

� E-mail: andreas.bauer@h-its.org

pressure contribution, or leading to thorough small-scale mixing of
chemical elements in the gas.

In fact, it is believed that turbulence in the interstellar medium
(ISM) plays a key role in the formation of ordinary stellar popu-
lations, determining in part the initial mass function of stars, the
lifetime of molecular clouds, and the overall efficiency of star for-
mation (e.g. Klessen et al. 2000; Mac Low & Klessen 2004). Here
the turbulence is highly supersonic, and presumably driven primar-
ily by supernova explosions. In addition, the strong radiative cool-
ing processes of the ISM make its equation-of-state approximately
isothermal, such that very strong shocks and high compression ra-
tios are associated with the supersonic gas motions. An additional
complexity arises from magnetic fields that are flux-frozen into the
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Turbulence in SPH and the moving-mesh code AREPO 7

Figure 3. Visual comparison of the turbulent velocity field (top row), the density field (middle row) and the enstrophy |∇×v|2 (bottom row) in quasi-stationary

turbulence with M ∼ 0.3, simulated with different numerical techniques. Shown are thin slices through the middle of the perdiodic simulation box. From left

to right, we show our moving grid result, an equivalent calculation on a static mesh, and an SPH calculation, as labeled.

and F3). After an initial ramp up of the turbulent energy, a quasi-

stationary state is established, starting at time t ∼ 5−10. There are

however still substantial intermittent fluctuations in the global rms

Mach number, making it clear that averaging over extended periods

of time is required to obtain truly stable results for the statistical

properties of the turbulent fluid state, especially on large scales. We

note that runs carried out with different numerical resolutions give

extremely similar results to the ones shown in Fig. 1. Interestingly,

the time evolutions of the moving-mesh and the fixed-mesh results

agree very well with each other, but the terminal Mach number

reached by SPH is significantly lower. This is despite the fact that

the driving field imposes exactly the same accelerations in all the

simulations. The smaller overall kinetic energy achieved in SPH is

presumably a result of viscous damping of large-scales modes at or

close to the driving scale.

We show the cumulative injected and dissipated energy as a

function of time in Figure 2 for the same simulations. Note that

the difference between these two quantities is exactly the kinetic

energy stored in the gas at the corresponding time. Interestingly,

the mesh-based simulations do hardly dissipate any energy until

t = 5, in contrast to the SPH simulation which shows signs of

energy dissipation right from the start. This is consistent with the

impression from Figure 1 that it is harder in SPH than in the mesh-

code to set the largest eddies into motion. At around t ∼ 13, the

total cumulative dissipated energies begin to be rather similar for all

three methods, but the total injected energy of the SPH simulation

still lags behind the mesh-based runs. This is simply because the
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erable small-scale bump left, as shown by the dashed green line
which shows the power spectrum of the SPH-smoothed velocity
field. On large scales, the behaviour of this field is the same as for
the nearest neighbour interpolated one, as expected.

In Figure 5, we show a resolution study for the subsonic veloc-
ity power spectra of our AREPO and SPH runs, ranging from 643

to 5123 particles/cells. The SPH simulations approximately con-
verge to each other on the largest scales – however to the wrong
solution. Even with a resolution as high as 5123 particles, there is
no trace of the build up of an inertial range with the expected en-
ergy cascade. We only see that with improving resolution there is a
slight shift towards smaller scales of the rapid decline of the power
spectrum. Also, the minimum of the power spectrum is reached at
progressively smaller scales, but the overall shape of the velocity
power spectrum does not improve, and the small-scale noise bump
remains present.

For the simulations with AREPO, we observe that the bottle-
neck effect moves to smaller scales with improving resolution. This
is expected, as this effect should be tied to the numerical dissipation
occurring on scales close to the resolution limit. As the bottleneck
moves towards smaller scales, a larger inertial range with a self-
similar power-law region is established on large scales. We note
that the rise of the power in the moving mesh-code on very small
scales, at around the Nyquist frequency, is due to noise and alias-
ing effects at the spatial resolution limit that is reached here, which
is qualitatively a very different effect from the small-scale velocity
noise that sets in in SPH on much larger scales.

3.4 Dissipation power spectra

In Figure 6, we show power spectra for the energy dissipation rate,
measured as described in Sections 2.4 and 2.5. In the top panel,
we show results for the simulations A1 to A3 with resolutions 643

to 2563, averaged over the same period of time as in our veloc-
ity power spectrum plots. For comparison, we also plot the kinetic
energy power spectrum as dashed lines, in order to allow a compar-
ison of the shapes of the different curves. Interestingly, the AREPO
simulations show a peak in dissipation right at the scales where
the velocity power spectrum begins to rapidly fall. While there is
also some residual dissipation at very large scales (which becomes
smaller with better resolution), this is more than an order of mag-
nitude lower than the energy drained around the scales where the
dissipation measurement peaks. The result is hence consistent with
an interpretation where only negligible dissipation occurs on large
scales, with all the energy dissipated on some smaller dissipation
scale, which in our case is related to the numerical resolution limit.
Such a scenario is consistent with the theoretical assumptions that
enter Kolmogorov’s theory of self-similar scaling.

In the bottom panel of Figure 6, we show the corresponding
SPH results. Here a very different shape of the dissipation power
spectrum is found. There is a peak already on very large scales,
close to the driving scale. The amplitude of the dissipation lies
considerably higher on these scales range than in the mesh-code,
and shows practically no dependence on numerical resolution. This
explains why there is not much energy left to be fed into a turbu-
lent cascade that could transport it conservatively towards smaller
scales. Interestingly, there is however a second extended maximum
of the SPH dissipation power spectrum on very small scales, co-
inciding with the location of the small-scale bump in the velocity
power spectrum. This is apparently related to viscous dissipation of
some of the small-scale velocity noise in SPH due to the artificial
viscosity.

Figure 5. Convergence study for the velocity power spectrum of M ∼ 0.3
subsonic turbulence. The panel on top shows results for AREPO, from a
resolution of 643 to 5123 cells. The panel on the bottom gives the corre-
sponding results for SPH. However, even at a high resolution as high 5123

particles, no extended inertial range of turbulence can be identified in SPH.
The thin grey lines show the power-law expected for Kolmogorov’s theory.

3.5 Dependence on SPH parameter settings

Given the sobering results we have thus far obtained for subsonic
turbulence in SPH, it is an important question whether this outcome
can be significantly improved with different parameter choices for
the method. The primary numerical parameters that may strongly
affect the SPH results are the number of smoothing neighbors, and
the artificial viscosity parameterization. In fact, these are the only
aspects that can be changed easily without reverting to an entirely
different formulation of SPH, or a fundamentally different method
for particle hydrodynamics.

An increase in the number of smoothing neighbours should re-
duce the noise in SPH kernel estimates. In fact, it has been argued
that convergence of SPH requires a simultaneous increase both
of the number of simulation particles and a (slower) increase of
the number of smoothing neighbours (Rasio 2000). Unfortunately,
in practice the clumping instability present for the normal SPH
kernel shape counteracts attempts to improve the SPH estimates
through a drastic increase of the number of smoothing neighbours
(but see Read et al. 2010). Regardless, we have examined whether
an increase of the number of neighbours to Nngb = 180 or even
Nngb = 512 improves our results. To this end we have repeated
our S2 simulation with these settings.

© 0000 RAS, MNRAS 000, 000–000
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Figure 14. The volume-weighted logarithmic density PDFs for our highly
supersonic runs at M ∼ 8.4, as labeled. The PDF is averaged over two
snapshots at times t = 0.2 and t = 0.3.

number case. We compare the PDFs of moving-mesh, fixed-mesh
and SPH simulations at the 2563 resolution. The shape of all three
results is described reasonably well by a log-normal distribution.
However, the fixed-mesh simulation shows a higher probability at
the low density end and has the largest width of the distribution
for this reason. The SPH simulation tends to give higher probabil-
ity at the high density end, which is a very similar behaviour as
found in Price & Federrath (2010). The moving-mesh run has an
overall very similar distribution as the SPH run, except for being
slightly wider. To the extent that a better representation of the high-
density tail is advantageous in science applications of supersonic
turbulence (which can be argued is particularly true in studies of
star formation), the moving-mesh technique hence works at least
as well as SPH, and clearly better than a fixed-mesh technique.

5 DISCUSSION AND CONCLUSIONS

Perhaps the most important question prompted by our results is
why SPH behaves so badly in the subsonic regime. The concern
that the large subsonic noise in SPH may cause substantial accuracy
problems in the treatment of fluid instabilities has recently been
emphasized (Springel 2010; Abel 2011). Here we speculate that
this may also be the primary culprit in the larger context of estab-
lishing a fully developed turbulent cascade in the subsonic regime.
After all, it is perhaps not too surprising that successfully account-
ing for the conservation of vorticity in a set of swirling and inter-
acting eddies is a serious challenge when ordered subsonic motion
are overlayed with noise components of similar or even larger size.

We argue that the origin of this noise lies in errors of SPH’s
gradient estimate. Numerous studies have pointed out that the stan-
dard approach followed in SPH for constructing derivatives of
smoothed fluid quantities involves rather large error terms, espe-
cially for the comparatively irregular particle distributions in multi-
dimensional simulations. The problem lies in a lack of consistency
of the ordinary density estimates (which do not conserve volume,
i.e. the sum of mi/ρi is not guaranteed to add up to the total vol-
ume) and in a low order of the gradient estimate itself (e.g. Quinlan
et al. 2006; Gaburov & Nitadori 2011; Amicarelli et al. 2011). In
practice, this means that there can be pressure forces on particles
even though all individual pressure values of the particles are equal,

a point emphasized in a recent study by Abel (2011). But if this is
the case, spurious jittering motions of particles can be readily trig-
gered even for a vanishingly small large-scale pressure gradient.

In order to demonstrate this point explicitely and quantify the
typical noise in the pressure gradient estimates of SPH and AREPO,
we have carried out a simple experiment. To this end we used the
particle coordinates xi of the last snapshot of our S3 subsonic sim-
ulation run, which is representative for the pseudo-irregular particle
distribution typically encountered in SPH in this situation. We then
assigned entropies to the particles (taking their density estimate into
account) such that the pressures Pi = P (xi) of individual particles
were given by the analytic pressure profile

P (x) = P0 q x, (15)

which is a simple linear gradient in the q-direction (our results are
independent of the actual orientation of this vector). The SPH es-
timate for the pressure gradient was then inferred from the particle
acceleration aSPH computed by the SPH code as

∇P = −aSPH ρ, (16)

which is the relevant quantity that ultimately enters the discretized
equation of motion. We can then consider the relative error of these
SPH pressure gradient estimates with respect to the known analytic
gradient. We define the corresponding errors as

erel =
|∇P − P0q|

|P0q|
, eϕ =

q ·∇P
|q||∇P | = cosφ, (17)

and show them as scatter plots for a random subset of the points in
Figure 15.

For comparison, we also carried out the equivalent procedure
for the AREPO code, based on the same particle coordinates. The
resulting errors are also shown in Figure 15. AREPO clearly cal-
culates the pressure gradients highly accurately, both in magnitude
and angle. In fact, AREPO’s gradient estimate is second-order ac-
curate, independent of the distribution of points (Springel 2010),
implying that a linear gradient should be reproduced essentially to
machine precision, which we find is also the case here. In contrast,
SPH shows a huge scatter in both error measures. In fact, the mag-
nitude of the absolute error can sometimes be up to twice as large
as the value of the gradient itself, and also the angular errors are
significant. We note that these large errors occur for a rather simple
problem – a spatially constant gradient. This makes it clear that
standard SPH has comparatively low-order accuracy for smooth
flow, which appears to be the fundamental cause why it does badly
for subsonic phenomena.

We thus think that the problems of SPH in resolving subsonic
turbulence are fundamental. It is unlikely that they can be solved by
just increasing the resolution or the number of smoothing neigh-
bours, the latter is anyway problematic due to the tensile insta-
bility. Likewise, changing the artificial viscosity parameterization
does not improve the gradient estimates, and will hence not be able
to resolve the underlying problem. What appears to be needed for
better results in this subsonic regime are better gradient estimates.
Some extensions and improvements of the standard SPH formu-
lation that go into this direction have already been proposed (e.g.
Heß & Springel 2010; Abel 2011). It will remain to be seen whether
any of them provides a robust and generally applicable alternative
to standard SPH.

We should clarify that despite the large errors in gradient esti-
mates, it remains true that SPH has very good conservative proper-
ties. This feature allows it to still produce physically sensible fluid
behaviour in many situations despite the subsonic noise, especially
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AREPO can additionally employ on-the-fly refinement and
derefinement operations of its mesh, similar to adaptive mesh re-
finement (AMR) methods. We invoke this in our moving-mesh sim-
ulations to guarantee that the mass resolution is always approxi-
mately constant, as in the SPH simulations that we compare with.
To this end, cells are (de)refined if their mass deviates by more than
a factor of two from the desired target mass resolution (which is the
initial cell mass). We note however that such (de)refinement oper-
ations are only rarely needed because the Lagrangian mesh motion
already yields a nearly constant mass per cell. We also make use
of AREPO’s mesh regularization feature, where mesh-generating
points of highly distorted cells may receive an additional small ve-
locity component towards the geometric center of their cell. This
results in a more regular mesh, which reduces errors in the linear
reconstruction step.

We note that the AREPO code has recently been success-
fully used in first science applications, studying first star forma-
tion (Greif et al. 2011) and galaxy formation (Vogelsberger et al.
2011). There also already exist extensions to include magnetohy-
drodynamics (Pakmor et al. 2011), radiative transfer (Petkova &
Springel 2011), as well as treatment of the full Navier-Stokes equa-
tions (Munoz et al. 2011).

2.1.2 Smoothed particle hydrodynamics

Smoothed particle hydrodynamics (SPH) is a particle-based ap-
proach to fluid dynamics which is popular in astronomy due to its
geometric flexibility, automatic adaptivity, and good conservation
properties (see e.g. Rosswog 2009; Springel 2010, for recent re-
views). We use the simulation code GADGET-3 (last described in
Springel 2005) for our SPH simulations, which employs a “stan-
dard” formulation of SPH with fully adaptive smoothing lengths
and a simultaneous conservation of entropy and energy (Springel
& Hernquist 2002).

In some of our simulations, we also study the influence of nu-
merical parameters in SPH on our results, such as the number Nsph

of smoothing neighbours and the artificial viscosity parameteriza-
tion. In GADGET-3, the SPH smoothing lengths hi of particles are
adjusted such that (4π/3)h3

i ρi = Nsphm is always fulfilled, where
hi is the radius at which the smoothing length drops to zero, ρi is
the density estimate of the particle i, and m is the target mass res-
olution (here equal to the SPH particle masses). In our default 3D
simulations we use Nsph = 64 smoothing neighbours.

The artificial viscosity is implemented as a viscous force:

dvi

dt

����
visc

= −
�

j

mjΠij∇iW ij , (1)

where W ij is the arithmetic average of the smoothing kernels and
Πij parameterizes the viscous tensor. We use the following form
(Monaghan 1997; Springel 2005) for Πij in our default runs:

Πij = −α
2
(ci + cj − 3wij) · wij

ρij
, (2)

with wij = vij · rij/|rij | if vij · rij < 0, otherwise wij = 0. For
this definition of wij , the artificial viscosity is always repulsive, and
is non-zero only if a pair of particles approaches each other, imply-
ing that the entropy procuded by the viscosity is positive definite.

One general problem of artificial viscosity parameterizations
is that they may introduce spurious viscosity also outside of shocks,
in regions where it should in principle not be needed (e.g. Cullen
& Dehnen 2010). This can be a significant problem in shear flows,

where this effect may lead to unwanted angular momentum trans-
port. To suppress the artificial viscosity in regions of strong shear,
Balsara (1995) proposed a simple viscosity limiter in the form of an
additional multiplicative factor (fi + fj)/2 for the viscous tensor,
defined as

fi =
|∇ · v|i

|∇ · v|i + |∇× v|i
. (3)

This limiter is often used in cosmological SPH simulations and also
available in the GADGET code. In our default simulations, we have
refrained from enabling it, but we have also run comparison simu-
lations where it is used, as discussed in our results section.

2.2 Turbulent driving

In this work, we consider isothermal gas in which turbulence is in-
duced through an external stochastic forcing on large scales. The
condition of isothermality is not crucial for our study of subsonic
turbulence, but it conveniently prevents that the turbulent kinetic
energy dissipated in the flow leads to a gradual increase of the
pressure in the gas with time. Instead, the dissipated energy is sim-
ply lost from the isothermal system, so that a statistically quasi-
stationary state of developed turbulence can be reached after some
time, where on average the energy injected on large scales is lost
on smaller scales by dissipation.

Our method for calculating the acceleration field follows
closely the procedure used in Federrath et al. (2008, 2009); Fed-
errath et al. (2010) and Price & Federrath (2010). In particular, the
acceleration field is setup in Fourier space and only contains power
in a small range of low frequency modes between kmin = 6.28 and
kmax = 12.57. The relative amplitude of the forcing modes over
this small range is varied as P (k) ∝ k−5/3. Except in our run at
M ∼ 8.4, P (k) is a paraboloid centered around (kmin + kmax)/2
with kmin = 6.28 and kmax = 18.85. The phases of the Fourier
modes are drawn from an Ornstein-Uhlenbeck process and are pe-
riodically updated after a time interval ∆t. The corresponding ran-
dom sequence is given by

xt = f xt−∆t + σ
�

(1− f2) zn, (4)

where f is a decay factor given by f = exp(−∆t/ts), with ts
being the correlation length. zn is a Gaussian random variable and
σ is the variance of the Ornstein-Uhlenbeck process. The resulting
sequences have zero mean, �xt� = 0, and their correlations are
given by �xt xt+∆t� = σ2f . The frequent but correlated changes
of the acceleration field as a function of time result in a smoothly
varying turbulent driving field.

We use a purely solenoidal driving in this study, which can be
obtained by projecting out the compressive part of the acceleration
field through a Helmholtz decomposition in k-space. The projec-
tion operator is given by

â(k)i =

�
δij −

kikj
|k|2

�
â0(k)j (5)

in Fourier space. We note that solenoidal driving appears partic-
ularly appropriate for subsonic turbulence. Compressive modes
would only cause additional sound waves and only start to cou-
ple to smaller modes once non-linear steepening of these acoustic
waves becomes important. In any case, if a compressive component
was added, we would expect a somewhat broader density PDF for
a given Mach number (Federrath et al. 2008).

Finally, the acceleration field due to the driving mechanism is
calculated in position space at each particle or cell position directly
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Figure 6. Dissipation power spectra for AREPO and SPH runs at differ-
ent resolutions, compared to the corresponding shape of the velocity power
spectrum at 2563 resolution (dashed lines). For the mesh-code, the dissi-
pation actually peaks on scales where the power spectrum starts to deviate
from Kolmogorov’s self-similar scaling. In contrast, SPH shows very strong
dissipation already on larger scales, preventing the build-up of a turbulent
cascade. In addition, the dissipation is also strong on small scales, close
to the resolution limit, where the small-scale noise developing in SPH is
constantly damped away.

In the top panel of Figure 7, we compare the velocity power
spectra of these two simulations with the S1 simulation. Note that
at the resolution of 1283 employed for these tests, the S2 run with
512 neighbours is expected to have effectively the same mass- and
spatial-resolution as the S1 simulation with our default choice of 64
smoothing neighbours. Interestingly, the power spectra look indeed
very similar on large scales, i.e. there is no noticeable improvement
due to the higher number of smoothing neighbours at a fixed mass
resolution. Only the small-scale noise is reduced when the number
of neighbours is increased.

We now turn to the artificial viscosity parameterization, which
is another area where one may hope that simple changes could lead
to significant improvements in the results obtained for turbulence.
In particular, the problematic damping of the injected turbulence
energy already on large scales suggests that a reduction of the vis-
cosity may help. A lower viscosity seems also warranted because
in our subsonic regime shocks are not really expected, suggesting
that artificial viscosity may perhaps not be needed at all, or only
at a minimal level. We have hence first repeated our default sim-
ulations by enabling the so-called Balsara reduction factor for the

Figure 7. Dependence of SPH turbulence results on numerical nuisance pa-
rameters. The panel on top gives results for the velocity power spectrum
when the number of SPH smoothing neighbours is increased, from our de-
fault of 64 to 180, and finally to 512. Formally, the later run with 1283

particles has the same mass and spatial resolution as our S1 run with 643

particles, hence the latter is included as a dashed line. The bottom panel
illustrates the effect of changing the SPH viscosity parameterization. For
lower α, the velocity power on large scales goes up, but the shape of the
power spectrum does not improve. Note however that this also increases the
small scale velocity noise. Enabling the Balsara viscosity suppression fac-
tor instead has a very similar effect, which by chance turns out to be very
close to the α = 0.1 result. In addition, we show the result without artificial
viscosity (α = 0) at some fiducial time not long after the start of the cor-
responding simulation. Here the noise on small scales grows continuously.
The thin grey lines show the expected Kolmogorv power spectrum.

viscosity in the presence of strong shear. In another test, we have
instead reduced the artificial viscosity parameter by one order of
magnitude to α = 0.1. In the lower panel of Figure 7, we compare
the resulting velocity power spectra to our default result. Both of
these changes lead to an increase of the power on large scales, as
expected due to the reduced viscosity. It turns out that by chance
the Balsara switch happens to lead to an extremely similar reduc-
tion of the effective viscosity as induced by our change of α, but
this is just by accident. However, we note that the reduction of the
viscosity also boosts the small-scale SPH noise. In fact, we find that
the energy dissipated in this noise-dominated regime is essentially
invariant when the viscosity is varied. While a larger artificial vis-
cosity reduces the amplitude of the velocity noise, it also implies
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Figure 3. Visual comparison of the turbulent velocity field (top row), the density field (middle row) and the enstrophy |∇×v|2 (bottom row) in quasi-stationary

turbulence with M ∼ 0.3, simulated with different numerical techniques. Shown are thin slices through the middle of the perdiodic simulation box. From left

to right, we show our moving grid result, an equivalent calculation on a static mesh, and an SPH calculation, as labeled.

and F3). After an initial ramp up of the turbulent energy, a quasi-

stationary state is established, starting at time t ∼ 5−10. There are

however still substantial intermittent fluctuations in the global rms

Mach number, making it clear that averaging over extended periods

of time is required to obtain truly stable results for the statistical

properties of the turbulent fluid state, especially on large scales. We

note that runs carried out with different numerical resolutions give

extremely similar results to the ones shown in Fig. 1. Interestingly,

the time evolutions of the moving-mesh and the fixed-mesh results

agree very well with each other, but the terminal Mach number

reached by SPH is significantly lower. This is despite the fact that

the driving field imposes exactly the same accelerations in all the

simulations. The smaller overall kinetic energy achieved in SPH is

presumably a result of viscous damping of large-scales modes at or

close to the driving scale.

We show the cumulative injected and dissipated energy as a

function of time in Figure 2 for the same simulations. Note that

the difference between these two quantities is exactly the kinetic

energy stored in the gas at the corresponding time. Interestingly,

the mesh-based simulations do hardly dissipate any energy until

t = 5, in contrast to the SPH simulation which shows signs of

energy dissipation right from the start. This is consistent with the

impression from Figure 1 that it is harder in SPH than in the mesh-

code to set the largest eddies into motion. At around t ∼ 13, the

total cumulative dissipated energies begin to be rather similar for all

three methods, but the total injected energy of the SPH simulation

still lags behind the mesh-based runs. This is simply because the
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Reynolds numbers in SPH turbulence L3

Figure 1. Cross section slices through the midplane showing magnitude of the velocity field (top row), density (second row) and |∇ × v|2 (bottom row)
at t = 10 for SPH calculations with the PHANTOM code employing the Morris & Monaghan (1997) viscosity switch at resolutions of 643, 1283 and 2563

particles (left to right). The 2563 calculations may be compared to the corresponding panels in Fig. 3 of Bauer & Springel (2011). Estimates of the effective
Reynolds numbers are indicated for each calculation.

3 REDUCING THE VISCOSITY IN SPH

3.1 Standard approaches

Bauer & Springel (2011) do not use any viscosity switches for their
main calculations, despite the fact that most of these switches are
at least ∼ 15 years old and in widespread use. The standard vis-
cosity switch in use is the one proposed by Morris & Monaghan
(1997), where α is a time-dependent parameter that responds to a
source term proportional to −∇ · v (i.e., converging flows) and in
the absence of such terms decays to a minimum αmin, typically set
to 0.1. Already use of this switch would substantially increase the
Reynolds number, though even a factor of 10 reduction in α gives
only Re ≈ 6000 for their “S3” calculation which is still a far cry
from the Re ≈ 105 achieved by Price & Federrath (2010a).

Fig. 1 shows the results of a series of 3 calculations performed
with the PHANTOM SPH code (Price & Federrath 2010a; Lodato
& Price 2010), employing the same driving routine as described

in Price & Federrath (2010a) (adapted from Federrath et al. 2008,
2010) with the same parameters as the Bauer & Springel (2011)
calculations1 but with the Morris & Monaghan (1997) switch with
αmin = 0.05, resulting in α ≈ 0.1. The runs are performed
in a periodic box x, y, z ∈ [0, 1], using an isothermal equation
of state with a sound speed in code units of unity. Although the
Reynolds numbers achieved are evidently still lower than in the

1 The SPH version of the driving routine can be made available on re-
quest. The parameters used here are stenergy = 0.002, stdecay = 1.0,
stsolweight = 1.0, ststirmin = 6.28, ststirmax = 18.85, stdtfreq =
0.005, corresponding to the stirring energy, decay timescale, solenoidal
driving, minimum and maximum wavenumbers and the frequency with
which the stirring is updated. The driving is given a k−5/3 wavenumber
dependence in the stirring range as described in Bauer & Springel (2011)
and denoted as stspectform = 2 in the input file. The random number gen-
erator and seed will however differ from their calculations.
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Figure 1. Cross section slices through the midplane showing magnitude of the velocity field (top row), density (second row) and |∇ × v|2 (bottom row)
at t = 10 for SPH calculations with the PHANTOM code employing the Morris & Monaghan (1997) viscosity switch at resolutions of 643, 1283 and 2563

particles (left to right). The 2563 calculations may be compared to the corresponding panels in Fig. 3 of Bauer & Springel (2011). Estimates of the effective
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ABSTRACT
Accounting for the Reynolds number is critical in numerical simulations of turbulence, partic-
ularly for subsonic flow. For smoothed particle hydrodynamics (SPH) with constant artificial
viscosity coefficient α, it is shown that the effective Reynolds number in the absence of explicit
physical viscosity terms scales linearly with the Mach number – compared to mesh schemes,
where the effective Reynolds number is largely independent of the flow velocity. As a result,
SPH simulations with α = 1 will have low Reynolds numbers in the subsonic regime com-
pared to mesh codes, which may be insufficient to resolve turbulent flow. This explains the
failure of Bauer & Springel to find agreement between the moving-mesh code AREPO and the
GADGET SPH code on simulations of driven, subsonic (v ∼ 0.3cs) turbulence appropriate to the
intergalactic/intracluster medium, where it was alleged that SPH is somehow fundamentally
incapable of producing a Kolmogorov-like turbulent cascade. We show that turbulent flow with
a Kolmogorov spectrum can be easily recovered by employing standard methods for reducing
α away from shocks.

Key words: hydrodynamics – turbulence – methods: numerical – galaxies: clusters: intra-
cluster medium – intergalactic medium.

1 IN T RO D U C T I O N

Turbulence in astrophysics is of key importance for the interstel-
lar medium (ISM), intracluster medium (ICM) and intergalactic
medium (IGM). Compressible, hydrodynamic turbulence is char-
acterized by two dimensionless parameters, the Mach number
M ≡ V /cs and the Reynolds number (Stokes 1851; Reynolds
1883)

Re ≡ V L

ν
, (1)

where V is the flow velocity, L is a typical length-scale, ν is the
viscosity of the fluid and cs is the sound speed. Physically, these
parameters estimate the relative importance of each of the terms
in the Navier–Stokes equations – the Mach number specifies the
ratio of the inertial term, (v · ∇)v, to the pressure term, ∇P/ρ,
while the Reynolds number specifies the ratio of the inertial term
to the viscous dissipation term, ν∇2v. Mathematically, these two
parameters – along with the boundary conditions and driving –
entirely characterize the flow.

Given the importance of turbulence in theoretical models, it is
crucial that agreement can be found between codes used for simula-
tions of the ISM and ICM/IGM. Several comparison projects have
been published recently comparing simulations of both decaying

!E-mail: daniel.price@monash.edu

(Kitsionas et al. 2009) and driven (Price & Federrath 2010a) su-
personic turbulence relevant to molecular clouds. However, fewer
calculations appropriate to the ICM or IGM have been performed.
In a recent preprint, Bauer & Springel (2011) have set out to extend
the high Mach number comparisons to the mildly compressible,
driven, subsonic turbulence thought to be appropriate to the ICM
and IGM. In this case, the motions are comparable to or smaller than
the sound speed, turbulent motions are dissipated by viscosity, and
the flow is mainly characterized by the Reynolds number, similar
to turbulence in the laboratory. In particular, it is well known from
laboratory studies that the transition from laminar flow to fully de-
veloped turbulence only occurs once a critical Reynolds number is
reached – for example, for Poiseuille flow (water flowing in a pipe)
this is observed for Re ! 2000 (e.g. Reynolds 1895).

Since at low Mach number the Reynolds number controls not
only the transition to turbulence, but also the character of such
turbulence (e.g. the extent of the inertial range), it is critical to
specify, or at least estimate, the Reynolds number employed in
numerical simulations of turbulence in order to compare with the
physical Reynolds numbers in the problems of interest. For the
ISM, the physical Reynolds numbers are high [e.g. Elmegreen &
Scalo (2004) estimate Re ∼ 105–107 for the cold ISM] so the ap-
proach adopted has been to fix the Mach number and try to reach
high numerical Reynolds numbers by minimizing numerical dissi-
pation away from shocks. Estimates for Re in the ICM/IGM are
more difficult. Brunetti & Lazarian (2007) estimate Re ∼ 52, but

C© 2012 The Author
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Figure 2. Time-averaged k5/3-compensated power spectra from subsonic

SPH turbulence calculations using the Morris & Monaghan (1997) viscos-

ity switch at a resolution of 643, 1283 and 2563 particles, as indicated,

for which the corresponding Reynolds numbers are ∼ 1500, 3000 and

6000, respectively. The shaded regions show the 1σ errors from the time-

averaging. At the highest Reynolds numbers a Kolmogorov-like k−5/3

slope is evident at large scales.

grid-based calculations employed by Bauer & Springel (2011), it

is clear that already this is a dramatic improvement on the SPH

simulations shown in their preprint. The resulting power spectra

are shown in Fig. 2, showing the time-averaged spectrum from 191

snapshots sampled every ∆t = 0.1 between t = 6 and t = 25. The

y−axis shows the power spectrum compensated by k5/3
such that

a k−5/3
spectrum would appear horizontal. Though the spectrum

“turns over” at relatively small k at low resolution, a clear k−5/3

range is apparent in the highest resolution calculations. The resolu-

tion dependence of the high k turnover is also consistent with the

expected R−3/4
e dependence of the dissipation scale.

3.2 The state of the art

With mean motions that are around 1/3 of the sound speed and

transsonic fluctuations, one cannot simply reduce the SPH artificial

viscosity parameters arbitrarily (such as the α = 0.1 and α = 0
calculations attempted by Bauer & Springel 2011), since this term

is necessary to capture the physical dissipation that occurs due to

the non-linear steepening of waves. Such an approach may be ade-

quate for very low Mach number (i.e., incompressible) calculations

but it provides no easy answer at ∼ 0.3cs. Instead it is clear that

to achieve similar results with SPH an improved viscosity switch is

necessary in order to both capture non-linear steepening and shocks

as well as reducing the viscosity to very low values where it is not

needed. The switch proposed recently by Cullen & Dehnen (2010)

represents the current state-of-the-art in this regard, essentially a

thoroughly enhanced and improved version of the Morris & Mon-

aghan (1997) approach. In particular, they show that they are able

to simulate linear waves for over 50 periods with essentially no nu-

merical dissipation, using the same parameters as would be applied

in shock problems. Thus, with an implementation of the Cullen &

Dehnen (2010) switch it may be expected that significantly higher

Reynolds numbers are achievable in SPH.

4 DISCUSSION

Bauer & Springel (2011) argue that “large errors in SPH’s gra-

dient estimate” are responsible for the failure to reproduce a

Kolmogorov-like turbulent cascade in their SPH calculations. Fig-

ure 2 demonstrates that this argument is incorrect, since we are

able to obtain a k−5/3
spectrum using only standard SPH gradi-

ent terms and a very similar SPH neighbour number to that em-

ployed in their preprint. However, we find that the appearance of

a power-law inertial range in the power spectrum strongly depends

on the Reynolds number employed in the calculations, requiring

at least Re � 1500. This explains the failure to produce a tur-

bulent cascade in their SPH results, since the maximum Reynolds

numbers they achieve are ≈ 600. With the Morris & Monaghan

(1997) viscosity switch employed in this Letter we estimate that

we are able to achieve Re ≈ 6, 000 at 2563 particles which al-

ready brings the SPH results into much better agreement with the

grid-based results shown in their work. Indeed, both Dolag et al.

(2005) and Valdarnini (2011) have already pointed out that using

this switch could substantially improve SPH simulations of turbu-

lence in galaxy clusters.

It should be noted that Bauer & Springel (2011) do experiment

with reduced viscosity parameters in their preprint, using either a

fixed α = 0.1 or the Balsara (1995) switch and also a run with

zero viscosity (as we have already discussed in Sec. 3, it is not

clear that one can simply reduce the parameters arbitrarily, so this

approach is questionable — particularly the α = 0 calculation).

Indeed, both the α = 0.1 and Balsara-switch calculations show a

dramatic improvement in the power spectrum at large scales. The

authors dismiss this result because of a corresponding increase in

power at k � 100. However, the power at these scales is low ampli-

tude (∼ 10−4
) and thus sensitive to all manner of numerical arte-

facts (e.g. the interpolation procedure as demonstrated in Fig. 4 of

their preprint). Indeed, we do not find the upturn in power at large

k seen in their results (c.f. Fig. 2), most likely due to our improved

power spectrum estimation — here computed by interpolating the

SPH data to a 3D grid using the kernel and employing a Fast Fourier

Transform, rather than the “nearest neighbour sampling” procedure

employed in their preprint.

Finally, it is important to compare the Reynolds numbers

achievable in numerical simulations to the physical Reynolds num-

bers in the problems of interest (c.f. Sec. 1). For the cold ISM,

Re ∼ 105–107 which, though high, is not as high as is often as-

sumed, and is certainly within reach of being resolved with cur-

rently achievable resolutions (c.f. Sec. 2). This implies at the very

least that physical viscosity should be introduced into ISM turbu-

lence simulations in the near future. In the ICM/IGM, Re ∼ 52
would seem to imply laminar flow, though very high estimates for

Re (� 1010) apply in the presence of magnetic fields. Reaching

such Reynolds numbers is not presently achievable with any nu-

merical code. However, this may also imply that ultimately it is

quite incorrect to try to simulate purely hydrodynamic ICM/IGM

turbulence at high Reynolds number without taking into account

more detailed physics, such as magnetic fields.

5 CONCLUSIONS

In this Letter we have emphasized the importance of accounting for

the Reynolds number in numerical turbulence simulations, partic-

ularly in the subsonic regime where it is the main parameter con-

trolling not only whether the flow is turbulent but also the char-

acter of such turbulence. In particular differences in the Reynolds
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Also, much better viscosity switches now available 
(e.g. Cullen & Dehnen 2010)



CONCLUSIONS

•Don’t believe everything you read on astro-ph

• SPH gives comparable results to grid methods for 
turbulence studies, but more efficient only if one is 
interested in the density field / gravity is involved

• Know your Reynolds number - it defines the flow!

• Viscosity switches are the key to high Reynolds 
numbers in SPH at low Mach number - also easier to 
achieve high Re at high Mach number


