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Observed warps in accretion discs

• X-ray binaries: SS433 (Begelman et al. 2006)

• Microquasars: GROJ1655-40 (Martin et al. 2008a), V4641 Sgr (Martin et al. 

2008b)

• Protostellar discs: KH 15D (Chiang & Murray-Clay 2004)

• AGN: NGC4258 (Herrnstein et al. 1996, Papaloizou et al. 1998), Centaurus A

Standard disc theory

H

R

ν = αcsH

Shakura-Sunyaev (1973), Pringle (1981)



Warped disc theory

• define angular momentum vector L for each disc annulus

• for a Keplerian disc:

• unit vector:

• disc is warped if direction of l changes with radius

L(R) = Σ(R)
√

GMR

l(R) =
L(R)
L(R)

Theory of warp propagation

• Papaloizou & Pringle (1983):

H

R
! α : warp propagates diffusively

H

R
! α : warp propagates like a bending wave

(applies to thick and/or low viscosity discs)

(applies to thin and/or high viscosity discs)

(protostellar, AGN, microquasars...)



Diffusive warp propagation

• Define “warp viscosity” similar to disc viscosity

• work out !2 as a function of !

ν2 = α2csH

Warp diffusion: theory

• Papaloizou & Pringle (1983) found that for small amplitude warps in thin (H/R 

<< alpha) discs at low alpha:

• this has not (yet) been confirmed by numerical simulations

• Ogilvie (1999) gives higher order corrections for finite ! (but small warps)

α2 =
1
2α

+O(α2, ψ)

ν2

ν1
=

1
2α2

4(1 + 7α2)
4 + α2

+O(ψ)



3D simulations

• Solve equations of viscous gas dynamics in 3D assuming a Shakura-Sunyaev 

type viscosity:

dρ

dt
= −ρ∇ · v,

dvi

dt
= −1

ρ

∂Sij

∂xj
+ f i

pot,
fpot = −GM

r2
r̂,

Sij =
[
−P +

(
ζ − 2

3
η

)
∂vk

∂xk

]
δij + η

(
∂vi

∂xj
+

∂vj

∂xi

)
,

P = c2
s (R)ρ, cs(R) = cs,0R

−3/4,

ν = η/ρ = αcs(R)H ζ = 0

Smoothed Particle Hydrodynamics

2h

Lucy (1977), Gingold & Monaghan (1977), Monaghan (1992), Price (2004), Monaghan (2005)

ρ(ri) =
∑

j

mjW (ri − rj , h)



Viscosity in SPH

• Artificial viscosity term is known to represent Navier-Stokes viscosity 

(Monaghan 1985, Lubow 1994, Murray 1996):

" apply for both approaching and receding particles

" use vsig = cs

" do not use switches to turn viscosity on/off

" turn off non-linear beta term

" setup disc such that h/H ~ const

α ≈ 1
10

αAV 〈h〉
H

,νAV ≈ 1
10

αAVcsh,

ζAV
v ≈ 1

6
αAVcsh.

• An alternative is to implement the Navier-Stokes terms directly by computing 

two first derivatives (e.g. Flebbe et al. 1994). Advantage is control over ratio of 

shear-to-bulk viscosity.

PHANTOM

• low memory, highly efficient SPH code for non-self-gravitating problems

• uses fixed grid neighbour-finding instead of tree (much faster if density field 

reasonably uniform == true if no gravity)

• rearrangement of SPH equations so only one loop over the particles is 

required, plus efficient use of neighbour cache to speed up calculations

• factor of ~10 faster than “standard” SPH codes (Kitsionas et al. 2009)

• implements full “variable smoothing length” SPH c.f. Springel & Hernquist 

(2002), Monaghan (2002), Price & Monaghan (2004,2007)



Initial conditions

lx =






0 for R < R1

A

2

[
1 + sin

(
π

R−R0

R2 −R1

)]
for R1 < R < R2

A for R > R2

A=0.5A=0.01

Require high resolution to resolve disc scale height

Simulations: low amplitude



Simulations (high amplitude)

Comparison with theory

• Compare to a one-dimensional disc evolution with fixed diffusion parameters 

for the disc and the warp, i.e.:

∂L
∂t

=
3
R

∂

∂R

[
R1/2

Σ
∂

∂R
(ν1ΣR1/2)L

]

+
1
R

∂

∂R

[(
ν2R

2

∣∣∣∣
∂l
∂R

∣∣∣∣
2

− 3
2
ν1

)
L

]

+
1
R

∂

∂R

(
1
2
ν2R|L| ∂l

∂R

)
.



Measuring the diffusion of a warp
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Figure 3. Evolution of simulation S11. The solid lines refer to the azimuthal and vertical average of the SPH simulation, while the dashed lines show the

evolution of the corresponding initial conditions obtained by applying equations (8) and (9) for the warp, while the surface density is evolved using a viscosity

parameter α = 0.08. The left-hand panel shows the evolution of the surface density", while the right-hand panel shows the evolution of lx . The different lines

refer to t = 0 and 155 (in units of the dynamical time at R = 1).

equation (2) contains two free parameters, namely the two viscosi-

ties ν1 and ν2, and we adjust these in order to match the evolution

of the simulation. In particular, the surface density " is most sen-

sitive to the value of the viscosity ν1, while the evolution of the

component lx of the unit vector l is most sensitive to the value of

ν2. We therefore use these two quantities separately to determine

the two parameters. To be sure, the evolution of" does also depend

on ν2 (Pringle 1992). However, this effect scales quadratically with

the warp amplitude and can be generally neglected in most of our

simulations (with some exceptions, as shown below).

In practice, we determine the value of α and the value of a pa-

rameter f, which is a measure of the deviation of ν2 from the value

expected from the linear theory. Thus f is defined by

ν2

ν1
= f

2α2
. (24)

The fifth and sixth columns of Table 1 show the measured values

of α and f for all of our simulations. It can be seen that we are able

to span a range of α that goes from 0.05 to 0.28, which is roughly a

factor of 7. Only for the three largest values of α does the measured

value of f agree with the linear estimate, while for most other cases

the diffusion coefficient ν2 is smaller than predicted by linear theory.

Note that, with regard to the evaluation of the warp diffusion co-

efficient, the simulations which have an implementation of viscosity

that more closely resembles a Navier–Stokes viscosity (i.e. viscous

switch off) do not show significant differences with respect to the

corresponding ones with the viscous switch turned on. Simulations

S0 and S0b and S1 and S1b, that have the same estimated value of

α, also share the same warp diffusion coefficient. Simulations S3

and S4, which have very similar values of α, also have a similar dif-

fusion coefficient. Note that this agreement encompasses the whole

range of viscosities that we probe in the thinnest disc configuration,

extending from high values of α, for which the warp diffusion rate

agrees with the linear theory, down to lower values, where some

non-linear effects start to play a role.

Fig. 4 shows one example of our analysis, corresponding to the

case where H/R= 0.0133,α = 0.18 and ψmax = 0.026 (simulation

S2). The left-hand panel shows the evolution of ", while the right-

hand panel shows the evolution of lx . The solid lines refer to the

results of the SPH evolution at two different times, t = 0 and 465

in code units (where the unit time is the dynamical time at R = 1),

while the dashed lines show the evolution of the simple model of

equation (2). As can be seen, the evolution of the two quantities is

well reproduced by the model, therefore demonstrating numerically

for the first time the validity of the diffusive model for warp propa-

gation in this regime. In this particular case, not only does the warp

evolve diffusively, but the value of the diffusion coefficient agrees

with the expectations from the linear theory, i.e. we measure f = 1.

Fig. 5 shows the evolution of simulation S6. This simulation is

alsowellfitted by a diffusivemodel, except that in this case, although

the value of α = 0.07 is above the critical value so that diffusive

propagation is expected (in this case αc ! 0.05), the required value

of α2 ≈ 3 is significantly below the value expected from the linear

theory 1/2α ≈ 7.14. To be sure that wave-propagation effects do

not play a significant role here, we have also tried to fit the evolution

of this simulation with a wave-propagation model, as done in the

previous section. The results are shown in Fig. 6. It can be seen

that in this case a wave-propagation model (including the effects of

viscosity) does not reproduce the results of the simulation.

Most of our simulations have a low-amplitude warp, with ψ ≈
0.026. However, we have also run some simulations with ψ ∼ 1.

In the thin-disc case, these simulations are S8 and S9, for which

ψ ≈ 1.3. Simulation S8 has α = 0.26, for which the correspond-

ing low-amplitude simulations follow the linear predictions for α2
(equation 6). Simulation S9 instead has α = 0.1, for which the low-

amplitude simulation is already in the saturated regime for α2. In

both cases the diffusion coefficient is found to be smaller than the

value predicted from equation (6) and we measure f = 0.75 for S8

and f = 0.6 for S9. The results for simulation S8 thus show that

increasing the warp amplitude leads to a marginal reduction of the

diffusion coefficient. On the other hand, in the case of simulation

S9, with α = 0.1 for which a low-amplitude warp is already enough

to induce a reduction of α2 with respect to linear theory, a further

increase of ψ does not lead to a significant further reduction of α2.
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Comparison with 1/(2!) theory (Lodato & Pringle 2007)
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Figure 6. Evolution of simulation S6. The solid lines refer to the azimuthal

and vertical average of the SPH simulation, while the dashed lines show

the evolution of the corresponding initial conditions obtained by applying

equations (8) and (9), with α = 0.07. The different lines refer to t = 0 and

550 (in units of the dynamical time at R = 1).
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Figure 7. Evolution of simulation S8. The solid line shows the results of

the SPH simulations, while the dashed line shows the diffusive evolution,

according to equation (2). The two snapshots refer to t = 0 and 870 in code

units. The inflection in the surface density is caused by the effect of ν2 on

the surface density, as discussed by Pringle (1992).

that the typical uncertainty on these parameters is≈7 per cent for α
and ≈10 per cent for α2.
Fig. 8 shows the values of the diffusion coefficient for thewarp, as

obtained fromall of our thin-disc simulations, forwhich propagation

of warp occurs diffusively. The solid symbols refer to the casewhere

the viscous switch is turned off (that should be closer to a Navier–

Stokes viscosity), while the open symbols refer to the case where

the viscous switch is on. For the two simulations with the highest

α, the point refers to both cases, as the results were identical. The

circles refer to the high-amplitude simulations. As an example, we
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Figure 8. Results of the numerical simulations. The points indicate the

values of the diffusion coefficient α2 as a function of the viscosity coefficient

α. The solid symbols refer to simulations that do not use the ‘viscous switch’

and should thus have a viscositymore closely approximatingNavier–Stokes.

The open symbols do use the viscous switch. The squares refer to the small

warp amplitude case ψmax ≈ 0.026, while the circles refer to the large

amplitude case ψmax ≈ 1.3. The error bars shown represent the typical

uncertainties on the diffusion coefficients. The solid line shows the expected

value ofα2 from the linear theory. It is evident that our simulations reproduce

the expected results from linear theory for values of α > 0.16. Below this

value we find that α2 appears to saturate at a value around αmax ∼ 3–4.

also show for one point the typical uncertainties of the estimated

parameters.

It can be seen that the points follow the expected relationα2 = 1/2
α at large α, but as α decreases, the value of α2 begins to deviate

from the theoretical relation and appears to saturate at a value of

around αmax ∼ 3–4. However, perhaps surprisingly, comparison of

runs S5 and S9 shows that we do not observe any dependency of the

saturation value on the warp amplitude.

3.4 Precession

Our simulations also display some small precessional effects. This

is shown in Fig. 9, that shows the evolution of the y component of

the angular momentum of the disc, ly(R). This is initially set to be

zero (see equation 15) but it then grows due to internal precessional

torques. Such torques are not accounted for in the diffusion model

by Pringle (1992), but they are present in the full linear theory

(e.g. Ogilvie 1999). In interpreting our results we have added such

terms in our simple diffusion model, by adding a term on the right-

hand side of equation (2), in the form of (see Ogilvie 1999)

∂L

∂t

∣

∣

∣

∣

prec

= 1

R

∂

∂R

(

ν3R|L|l × ∂l

∂R

)

, (25)

where we have introduced a third coefficient ν3 related to preces-

sional effects (with a corresponding α3 = ν3/$H
2). The solid lines

in Fig. 9 show the evolution of the SPHsimulations,while the dashed

lines refer to the simple model (including precession). The two sim-

ulations shown in Fig. 9 are S1b (left-hand panel) and S1 (right-hand

panel) which have the same α and α2 but use a different implemen-

tation of viscosity, so that S1 uses the viscous switch, while S1b

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 381, 1287–1300

Implies excess

dissipation in the disc 

(higher alpha than 

nominally input value)

1
2α



What’s going wrong?

• Development of supersonic motions at low alpha giving excess dissipation 

compared to theory?

• Numerical resolution?

• Something funny with the fitting procedure used to measure alpha and 

alpha2?

• Effect of the viscosity formulation used in the SPH code?

• Is the right theory being applied?

Calibration of alpha

• replace “by-eye” fitting with repeatable, quantitative procedureWarp diffusion in thin discs 7
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Figure 3. Left: surface density profile from the SPH simulation (solid black line) and from the 1D evolution at t = 0 and t = 500 in code units, for the case
α = 0.3, using the input value (from eq. 37) (dashed green line) and the measured best fit value (dashed red line) of the disc viscosity for the calculation using
artificial viscosity to model disc viscosity at an SPH resolution of 2 million particles. We find very close agreement between the input and fitted values. Right:

Same, but using Navier-Stokes viscosity. In this case, the fit with the Σ profile is slightly better, giving smaller error bars in the fitted value of α.

slightly modified. This is important because in turn it significantly

affects the evaluation of α, as described in Section 5.1.

4.2 Fitting procedure

The main aim of this paper is to determine the relation between the

two parameters α and α2, which describe the disc viscosity and the

warp diffusion coefficient, respectively. In principle, the parameter

α should be simply determined by the input viscosity coefficient

in the SPH code as per Sec. 3.2. However, LP07 did not find a

perfect match between the nominal value ofα as expected from the
continuum limit of SPH and the α measured from the 1D surface

density evolution using eq. (5), and therefore preferred to fit both

parameters independently, to get the desired relation. In particular,

LP07 “stress that [they] do not perform an actual statistical fit of

the viscosity coefficients, but simply choose them so as to match

the evolution of the numerical simulation”. This point is discussed

further in Section 5.1.

In this paper, we have implemented a statistical fitting proce-

dure to check the calibration between the input α parameter and

the value measured from comparing the SPH and the 1D evolution

of the disc using Eq. (5). The same procedure is further used to

measure the warp diffusion coefficient α2 and the precession coef-

ficient α3. This procedure is described below. Specific results for

the calibration of α and the estimate of α2 and α3 are reported in

Sec. 5.

4.2.1 Fittting for α

The viscosity parameterα is primarily responsible for the evolution
of the disc surface density Σ. In particular, given the shape of the
surface density in our initial condition, the feature which is most

directly related to α is the decline of the peak surface density in the

inner disc. In order to obtain α we have therefore fitted the shape
of the surface density profile close to the peak as resulting from

the 1D disc evolution at a given time to the SPH data. Thus, we

have compared the data at t = 500 (in code units), and considered
an annulus of radial width equal to 0.1 each side of the maximum.

To obtain α, we have minimized the L2 norm of the difference

between the 1D evolution profile and the SPH data:

Eα =
X

i

[Σi − Σ1D(Ri)]
2, (48)

where the sum is taken over all shells (see previous section) within

a radial distance 0.1 from the maximum. The value of Σ1D at Ri

is obtained by interpolation between the closest 1D cells. The min-

imum Eα is found by using a simple Newton-Raphson scheme.

Starting from a trial value of α we iterate using:

αn+1 = αn − E
′

α(αn)
E′′

α(αn)
(49)

= αn − ε
2

»

Eα(αn + ε) − Eα(αn − ε)
Eα(αn + ε) + Eα(αn − ε) − 2Eα(αn)

–

,

where in the second line the first and the second derivatives of Eα

are approximated by their finite difference value with respect to a

small increment ε. Once a minimum is found, we make sure that it
is not a local minimum by checking that Eα is larger upon incre-

menting α by 5ε either side of the minimum. We also compute the
1−σ uncertainty on the fitted value ofα by computing the distance
from the minimum at whichEα is increased by a factor 2.

Two examples of the best fit Σ profile compared to the aver-

aged SPH profile are shown in Fig. 3. As it turns out, the best fit

profile is in fact very close to the one computed using the input

value for α, so this fitting procedure for α itself becomes unneces-
sary (see Sec. 5.1, below).

c© 2010 RAS, MNRAS 000, 1–16

Eα =
∑

i

[Σi − Σ1D(Ri)]2,

αn+1 = αn −
E

′

α(αn)
E′′

α(αn)

= αn −
ε

2

[
Eα(αn + ε)− Eα(αn − ε)

Eα(αn + ε) + Eα(αn − ε)− 2Eα(αn)

]
,



Calibration of the disc viscosity
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Figure 4. Comparison between the input value ofα and the measured value
obtained fitting the SPH data to the 1D evolution ofΣ, with the zero torque
boundary condition enforced exactly. Results are shown with triangles for

the calculations where the disc viscosity has been simulated using the SPH

artificial viscosity, whilst squares correspond to calculations where phys-

ical viscosity terms have been implemented directly. All calculations are

performed at a resolution of 2 million SPH particles, except for the green,

cyan and yellow triangles that use 20 million particles. Error bars refer to

the 1σ errors from the fitting procedure used to obtainαfit.

4.2.2 Fittting for α2 and α3

The values of α2 and α3 are obtained using a similar procedure,

though the computation of either requires, and is dependent on, an

input value for the disc viscosity α— that is, using either the nom-

inal or fitted α value.
The diffusion coefficient α2 is mostly responsible for the evo-

lution of the profile of l, and in particular, given our initial con-

ditions, it affects the evolution of lx around the warp radius at
R = R0. We therefore define the L2 norm of the difference

between the 1D evolution and the SPH evolution of lx at time
t = 1000 code units as:

Eα2
=

X

i

[li,x − l1Dx (Ri)]
2, (50)

where the sum is taken over all shells within a radial distance equal

to 3 from the warp radius. In practice, rather than fitting α2 we fit

the parameter f , defined as α2 = f/(2α). The parameter f and its
uncertainty are then obtained through minimization ofEα2

using a

scheme analogous to the one used for α.
The precession coefficient α3 affects primarily the evolution

of ly around the warp radius. Its best fit value is thus obtained from
the minimization of

Eα3
=

X

i

[li,y − l1Dy (Ri)]
2, (51)

using a scheme analogous to the one used for α and α2, and de-

pending on the input values of both of these. As for α2 the sum

is taken over all shells within a radial distance of 3 from the warp

radius.

Series A Visc.

type

Bulk

visc.?

Npart Symbols

1 0.01 AV yes 2 × 106 red triangles

2 0.05 AV yes 2 × 106 orange triangles

3 0.01 AV yes 2 × 107 green triangles

4 0.05 AV yes 2 × 107 cyan triangles

5 0.01 NS switch 2 × 106 black squares

6 0.01 NS no 2 × 106 blue squares

7 0.5 AV yes 2 × 106 magenta triangles

8 0.5 AV yes 2 × 107 yellow triangles

Table 1. Parameter settings for each of the 8 series of calculations per-

formed in this paper, where each series consists of a set of simulations

covering a range of disc viscosities α. The second column gives the ini-
tial warp amplitudeA used in Eq. (42), the third column shows whether the

disc viscosity was represented using the modified artificial viscosity term

(AV) or via a direct implementation of Navier-Stokes viscosity (NS). The

fourth column shows whether or not bulk viscosity was applied (always true

for the AV calculations). The resolution of the calculations is given in the

fifth column and the symbols used to represent each series in Figures 4, 5,

6, 8 and 13 are given in the last column.

5 RESULTS

The initial aim of this paper was to perform simulations at a res-

olution significantly higher than that employed by LP07, in order

to assess the effect of limited resolution. Having performed several

calculations with 20 million SPH particles and finding results in-

distinguishable from the lower resolution of 2 million particles, we

have instead surveyed a wide range in parameter space, perform-

ing a total of 78 simulations using 2 million particles together with

the original 8 at 20 million particles. These consist of 8 series of

simulations, each for a range of viscosity values. The parameters

for each series are given in Table 1, where we have considered the

effect of resolution (2 vs. 20 million particles), three different warp

amplitudes (A = 0.01, 0.05 and 0.5), disc viscosity formulated
either using the modified artificial viscosity (AV) or by a direct im-

plementation of Navier Stokes terms (NS), considering the latter

with zero bulk viscosity and subsequently with a small amount ap-

plied using a switch.

5.1 Calibration of the disc viscosity coefficient

The best matching values of α (here referred to as αfit) reported

in Table 1 of LP07 do not follow the expected relation given by

Eq. (37). Although, for a given 〈h〉/H , the relation between αfit

and αAV is approximately linear, the slope is shallower than ex-

pected. An accurate calibration of α is important, because in turn
it is used as an input for the evaluation and fitting of the warp dif-

fusion coefficient α2. The disagreement found in LP07 prompted

us to examine the method used to calibrate α in greater detail, re-
sulting in our implementation of the fitting procedure described in

Section 4.2 — essentially a quantitative version of the procedure

performed in LP07.

In considering this issue, we have also explored the effect of

the inner boundary condition of the 1D disc evolution on the mea-

surement ofα. Indeed, the main feature which is used for the evalu-
ation ofα is the turnover of the surface density at small radii, which
might well be affected by the specific boundary condition used. Us-

ing the same condition employed by LP07 (described in Sec. 4.1,

above), we found a similar relationship between αfit and αAV —

that is, not matching the expectations from eq. (37). Furthermore,

c© 2010 RAS, MNRAS 000, 1–16

but ONLY once boundary 

conditions on 1D code 

implemented correctly

α ≈ 1
10

αAV 〈h〉
H

,
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Results
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Ogilvie (1999)’s non-linear theory
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Figure 7. Evolution of the shell averaged profiles of lx from the SPH sim-
ulations at t = 0 and t = 500 in code units (solid black lines), for the
low viscosity case α = 0.065 and A = 0.01, compared to the results of
a 1D evolution assuming wave-like propagation with dissipation at the ap-

propriate value ofα, from Eqs. (3) and (4) (dashed red lines). The excellent
agreement explains the deviations at low α seen in Fig. 5, as been due to

the transition to the wave-like propagation regime at low viscosity.

rameter range. Indeed, when we plot the relation between α2 and

α predicted for finite values of α by Eq. (8) (long-dashed line in

Figs. 5 and 6), we recover an excellent agreement with the SPH

results for α ! 0.15 for low-amplitude warps.
We thus conclude that there is no disagreement between our

numerical results at high α and the linear theory of warp propaga-
tion, once the effects of finite α are appropriately accounted for in
the theory. The only remaining issue is a small disagreement at low

α for small amplitude warps — though much smaller than the one

found in LP07, which we discuss in the next section.

5.2.4 Low viscosity behaviour and transition to the wave-like

propagation regime

In principle, there could be two explanation for the small disagree-

ment that we find for low viscosity: a numerical one, related to

our procedure to fit the value of the diffusion coefficientα2, and a

physical one, related to an actual transition to a different propaga-

tion regime, such as the wave-like propagation regime (sec. 2).

There are good reasons to believe that both effects might play

a role for small values of the viscosity coefficient. From the numer-

ical point of view, we note that our fitting procedure is based on

matching the solution of the simple diffusion equation to the SPH

results at a given time, t = 1000 in code units, which corresponds
to 0.4α in units of the viscous time at R = 1. The viscous time is
not only a measurement of the time needed for the overall viscous

evolution of the disc to take place, but also of the time needed to

smooth out the discreteness of the particle distribution in the ini-

tial condition. We therefore might expect that, for smallα, the SPH
simulation at t = 1000 code units is still somewhat noisy, and that
it might affect the evaluation ofα2. That this is the case can already

0 0.1 0.2 0.3 0.4 0.5
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Figure 8. Relation between the warp diffusion coefficient α2 and α for

large amplitude warps. The magenta triangles show the results for A =
0.5, while the red triangles, for comparison, indicate the small amplitude
(A = 0.01) case. The solid and long-dashed lines show the1/(2α) relation
and the corrections expected for finite α, respectively. The short-dashed
line shows the expected relation based on the non-linear theory of O99,

assuming a fixed ψ = 0.55 (roughly comparable to the average ψ value

using A = 0.5). The large error bars in the high amplitude case at low
α are because the non-linear warp evolution is not well fitted by a single

value for α2 — physically manifested as a steepening of the warp profile

observed in the simulations (see Fig. 10) that is not captured by the fitted

linear profiles.

be seen from the fact that the error bars on α2 get larger at small

α. Additionally, we have also found that for smallα the results are
somewhat sensitive to the time at which the fit is performed. If the

fit is performed at earlier times, the resulting value of α2 tends to

be systematically shifted down by a small amount.

The results of the calculation for low α might also be af-

fected by the fact that warp propagation undergoes a transition to

the wave-like regime (sec. 2), expected to occur at around α "
2πH/λ ≈ 0.07, where λ is the wavelength of the perturbation

(which in our case is λ ∼ 6 in code units). In order to test this
hypothesis we compare the evolution of the SPH simulation to the

1D evolution appropriate to the wave-like regime (Eqs. 3 and 4),

including dissipation corresponding to the input value of α from

the simulation. The results of this test are shown in Fig. 7 for a low

amplitude warp with α = 0.065, from Series 1. The plot shows

the profile of the x-component of the unit vector l from the SPH

simulation at t = 0 and t = 500 in code units (solid black lines)
compared to the 1D evolution from Eqs. (3) and (4) (dashed red

lines). The fact that the profiles agree well indicates that wave-like

propagation, albeit with diffusion, can explain the deviation from

the purely diffusive propagation we have assumed when compar-

ing with Eq. (7) or Eq. (8).

Given that there is no longer any disagreement between theory

and the results of the SPH simulations, contrary to LP07, it is no

longer necessary to invoke any additional dissipation involved in

warp propagation.

c© 2010 RAS, MNRAS 000, 1–16
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Figure 9. Shell averaged profiles of lx from the SPH simulation (solid black
lines) at t = 0 and t = 1000 (in code units), compared to the corre-
sponding profiles from the diffusive evolution, for the high viscosity case

α = 0.43 and a strongly non-linear warp amplitude (A = 0.5), assuming
the warp diffusion coefficient to be a function ofα and ψ, as predicted by
O99 (dashed red lines).

5.2.5 Large amplitude warps

Having gained some confidence that the linear theory of warp prop-

agation explains satisfactorily the evolution of the SPH simulations

at low warp amplitudes, we may turn our attention to non-linear

effects.

Initially we have considered a small increase in the initialwarp

amplitude toA = 0.05 in Eq. (42). The results of these calculations
(Series 2) are shown with orange triangles in Fig. 5 and are essen-

tially indistinguishable from the A = 0.01 case (Series 1 and 5),
demonstrating that the linear theory is applicable also in this case.

The resulting values of α2 from our fitting procedure forA =
0.5 (Series 7) are shown in Fig. 8 with magenta triangles, compared
to the corresponding Series 1 forA = 0.01 (red triangles). One can
immediately see that the fitted values of α2, for small α, are much
smaller than the low amplitude case, and are characterized by a

much larger uncertainty.

At very large warp amplitudes, the linear theory of warp prop-

agation in the diffusive regime is not applicable, and it is there-

fore not surprising that, indeed, the SPH simulations in this regime

(A = 0.5) do not match either the 1/(2α) relation or the more
complete relation of Eq. (8) which is non-linear in α but assumes
linearity in the warp amplitude. O99 presents a non-linear theory

of warp propagation for warps of any amplitude. We are now in a

position to test this theory numerically.

The complicating factor is that, in the O99 theory, α2 is a

function of the warp amplitude ψ (related to A by Eq. 45, with

the maximum value given by Eq. 46). We thus cannot associate a

single value of α2 to each large amplitude simulation, as ψ is a

function of radius (Eq. 45) and furthermore decreases as a func-

tion of time as the warp diffuses. Indeed, this is the reason for the

large error bars in Fig. 8 when attempting to fit a single α2 value
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Figure 10. Shell averaged profiles of lx from the SPH simulation (black

lines) at intervals of ∆t = 500 up to t = 3500 (in code units), for the
low viscosity case α = 0.03, using 20 million particles and a strongly non-
linear warp amplitude (A = 0.5). The large warp amplitude simulations at
low α show a strong steepening effect in the warp profile because different
parts of the warp propagate at different speeds. We have been unable to

run the appropriate nonlinear solution for this case because the steepening

causes unphysical oscillations in the one dimensional code.

Figure 11.Resulting 3D disc structure from the simulation shown in Fig. 10

with a large amplitude warp in a low viscosity disc (α = 0.03), shown at
t = 1500 (in code units). The steepening of the warp profile in this case
results in a nearly complete break in the disc. At the employed resolution

of 20 million particles we are able to resolve the thin but steady stream

of material that is nevertheless still being transported inwards across the

discontinuity (just visible in the Figure).

to the lx profile, particularly at low α where in the O99 theory the
dependency of α2 on ψ is much stronger. What is possible is to

check whether the deviations expected from such non-linear theory

follow the observed trend in a general decrease of the diffusion co-

efficient. The short-dashed line in Fig. 8 shows the relationbetween

α2 and α based on the theory of O99 for a fixed value ofψ = 0.55,
computed numerically based on a routine kindly provided to us by

c© 2010 RAS, MNRAS 000, 1–16
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Figure 13. Relation between the precession coefficientα3 and the disc vis-

cosity α, for warp amplitudes A = 0.01 (red and green triangles) and
A = 0.05 (orange and cyan triangles). All calculations employ 2 million
SPH particles, except the cyan and green triangles, which use 20 million.

The solid line shows the expected precession rate in the limit of small α,
while the dashed line shows the relation between α3 and α expected for

small amplitude warps from the theory of O99.
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Figure 14. Profile of ly at t = 500 time units for the caseA = 0.5 andα =
0.43. The solid black lines refer to the SPH simulations, while the dashed
red line show the result of the evolution of the diffusion plus precession

code, with non linear warp parameter α2 and α3 computed based on O99

theory of warp propagation. For comparison, we also show with the dotted

black line the profile at t = 500 obtained from the simple 1D evolution

model assuming a constant α3 = 0.22, appropriate for this value of α in

the linear regime (ψ ! 1).

Given the large uncertainty at the lower resolution and lowest warp

amplitude (A = 0.01), error bars are shown only for theA = 0.05
and higher resolution calculations for clarity (by way of compar-

ison the error bars for the low resolution A = 0.01 calculations
are roughly a factor of two larger than for the corresponding low

resolution A = 0.05 results). The solid line shows the small am-
plitude and α ! 1 approximation α3 = 3/8 (Eq. 10), whilst the
long-dashed line gives the expected relation for small warp ampli-

tudes but to higher order in α from O99. Once again, provided the
corrections for finite α are accounted for, we obtain a very good

agreement between our numerical results and the theory, except for

the lowest values of α. The deviations seen at lowα are most likely
due to the effect of bulk viscosity in the code which affects the ly
profile more strongly than either lx or lz (simply due to the low
amplitude of ly), and is more significant when the disc viscosity is
low.

We note briefly that — by contrast with our earlier results

for both α and α2 — the calculations utilising the Navier-Stokes

implementation of viscosity (Series 5 and 6) show a strong dis-

agreement with both the modified artificial viscosity calculations

and the theoretical curves – the precession even reversing direction

for α ! 0.07. The fits for series 5 — i.e., the calculations that

show good agreement in the α2 fits — show the fit to α3 rise with

α (from negative values) and then flatten to around α3 ≈ 0.23 at
α " 0.2, in contrast to the results shown in Fig. 13. The results
for series 6 show a similar trend but with much lower fitted val-

ues. The errors to the fits are also significantly larger than for the

artificial viscosity calculations. Whilst we can only speculate as to

the reason for this disagreement, most likely it is an indication that

higher resolution is needed (compared to using the modified artifi-

cial viscosity) to evaluate the nested first derivatives (Eqs. 38 and

12) to the accuracy required in order to measure the precessional

contribution. LP07 also found the precession in their simulations to

depend strongly on details of the viscosity formulation.

Finally, let us consider the internal precession for large ampli-

tude warps (A = 0.5, Series 7). In this case, as for the evaluation of
the warp diffusion coefficient, we cannot simply associate a single

value of α3 to our simulation, as it depends on the instantaneous

value of ψ, which is a function of R and t. However, we can still
compare the profile of ly at a given time to the one expected from
the non-linear theory of O99. Once again, we stress that in this

comparison we have not fitted any parameters, as the value of α
is simply the input value in the simulation, while both α2 and α3

are a prescribed function (obtained from O99) of α, αb = 5α/3
and ψ. The profile of ly for α = 0.43 and A = 0.5 is shown in
Fig. 14 at t = 0 and t = 500 (in code units). The solid black
lines show the results of the SPH simulations while the dashed red

lines refer to the solution of the diffusion equation with added pre-

cession, where the coefficient are computed directly from the non

linear theory of O99. Note that, while in this large amplitude case

the resulting shape of ly is a more complicated function than a sim-
ple oscillating function (as in the small amplitude case), the profile

is reproduced surprisingly well by the O99 theory. To emphasize

the importance of non-linear effects in this case, we also show with

the dotted black line in Fig. 14 the profile of ly at t = 500 obtained
from the 1D evolution code neglecting the effects of non-linearity

and simply adopting a constant α3 = 0.22, that is the value of the
precession coefficient for α = 0.43 in the small amplitude limit.
One can thus clearly see that the non-linearity in the determination

of α3 is essential in order to reproduce the correct precession of the

disc.
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compare the profile of ly at a given time to the one expected from
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comparison we have not fitted any parameters, as the value of α
is simply the input value in the simulation, while both α2 and α3

are a prescribed function (obtained from O99) of α, αb = 5α/3
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lines refer to the solution of the diffusion equation with added pre-

cession, where the coefficient are computed directly from the non

linear theory of O99. Note that, while in this large amplitude case

the resulting shape of ly is a more complicated function than a sim-
ple oscillating function (as in the small amplitude case), the profile

is reproduced surprisingly well by the O99 theory. To emphasize

the importance of non-linear effects in this case, we also show with

the dotted black line in Fig. 14 the profile of ly at t = 500 obtained
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of α3 is essential in order to reproduce the correct precession of the
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So what?

• We find spectacular agreement between the 3D SPH simulations and both the 

linear and non-linear theory of warp propagation

• alpha2 = 1/(2 alpha) only true for very low viscosity discs and very low 

amplitude warps

• much slower propagation found for large amplitude warps, in agreement with 

theory

• excitation of large amplitude warps in low viscosity discs will steepen and can 

result in almost-complete disc break

• SPH is a great method to use for simulating accretion discs


