Warp propagation in thin accretion discs

Daniel Price (Monash) Giuseppe Lodato (Milan)

Warped accretion discs

An artist's impression of an accretion disk surrounding a super-massive black hole. Masers appear in the disk in front of the black hole as well as along a line where the disk is moving directly toward or away from us. This results in a characteristic triplepeaked signature as seen in the lower part of the figure.

Observed warps in accretion discs

- X-ray binaries: SS433 (Begelman et al. 2006)
- Microquasars: GROJ1655-40 (Martin et al. 2008a), V4641 Sgr (Martin et al. 2008b)
- Protostellar discs: KH 15D (Chiang & Murray-Clay 2004)
- AGN: NGC4258 (Herrnstein et al. 1996, Papaloizou et al. 1998), Centaurus A

 $\nu = \alpha c_s H$

R

ĴΗ

Standard disc theory

Shakura-Sunyaev (1973), Pringle (1981)

Warped disc theory

- define angular momentum vector L for each disc annulus
- for a Keplerian disc:

$$L(R) = \Sigma(R)\sqrt{GMR}$$

• unit vector:

$$\mathbf{l}(R) = \frac{\mathbf{L}(R)}{L(R)}$$

• disc is warped if direction of I changes with radius

Theory of warp propagation

• Papaloizou & Pringle (1983):

 $\frac{H}{R} \gtrsim \alpha \quad : \text{ warp propagates like a bending wave}$ (applies to thick and/or low viscosity discs) $\frac{H}{R} \lesssim \alpha \quad : \text{ warp propagates diffusively}$ (applies to thin and/or high viscosity discs)
(protostellar, AGN, microquasars...)

Diffusive warp propagation

• Define "warp viscosity" similar to disc viscosity

 $\nu_2 = \alpha_2 c_s H$

• work out α_2 as a function of α

Warp diffusion: theory

• Papaloizou & Pringle (1983) found that for small amplitude warps in thin (H/R << alpha) discs at low alpha:

$$\alpha_2 = \frac{1}{2\alpha} + \mathcal{O}(\alpha^2, \psi)$$

- this has not (yet) been confirmed by numerical simulations
- Ogilvie (1999) gives higher order corrections for finite α (but small warps)

$$\frac{\nu_2}{\nu_1} = \frac{1}{2\alpha^2} \frac{4(1+7\alpha^2)}{4+\alpha^2} + \mathcal{O}(\psi)$$

3D simulations

• Solve equations of viscous gas dynamics in 3D assuming a Shakura-Sunyaev type viscosity:

$$\begin{aligned} \frac{d\rho}{dt} &= -\rho \nabla \cdot \mathbf{v}, \\ \frac{dv^{i}}{dt} &= -\frac{1}{\rho} \frac{\partial S^{ij}}{\partial x^{j}} + f_{\text{pot}}^{i}, \qquad \mathbf{f}_{\text{pot}} = -\frac{GM}{r^{2}} \hat{\mathbf{r}}, \\ S^{ij} &= \left[-P + \left(\zeta - \frac{2}{3} \eta \right) \frac{\partial v^{k}}{\partial x^{k}} \right] \delta^{ij} + \eta \left(\frac{\partial v^{i}}{\partial x^{j}} + \frac{\partial v^{j}}{\partial x^{i}} \right), \\ \nu &= \eta / \rho = \alpha c_{s}(R) H \qquad \zeta = 0 \\ P &= c_{s}^{2}(R) \rho, \qquad c_{s}(R) = c_{s,0} R^{-3/4}, \end{aligned}$$

Smoothed Particle Hydrodynamics Leg (1977), Gingold & Monaghan (1977), Monaghan (1992), Price (2004), Monaghan (2005) $\begin{pmatrix} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$

Viscosity in SPH

• Artificial viscosity term is known to represent Navier-Stokes viscosity (Monaghan 1985, Lubow 1994, Murray 1996):

$$\begin{split} \nu^{\rm AV} &\approx \quad \frac{1}{10} \alpha^{\rm AV} c_{\rm s} h, \qquad \alpha \approx \frac{1}{10} \alpha^{\rm AV} \frac{\langle h \rangle}{H}, \\ \zeta_v^{\rm AV} &\approx \quad \frac{1}{6} \alpha^{\rm AV} c_{\rm s} h. \end{split}$$

- apply for both approaching and receding particles
- USE Vsig = Cs
- do not use switches to turn viscosity on/off
- ▶ turn off non-linear beta term
- setup disc such that h/H ~ const
- An alternative is to implement the Navier-Stokes terms directly by computing two first derivatives (e.g. Flebbe et al. 1994). Advantage is control over ratio of shear-to-bulk viscosity.

PHANTOM

- low memory, highly efficient SPH code for non-self-gravitating problems
- uses fixed grid neighbour-finding instead of tree (much faster if density field reasonably uniform == true if no gravity)
- rearrangement of SPH equations so only one loop over the particles is required, plus efficient use of neighbour cache to speed up calculations
- factor of ~10 faster than "standard" SPH codes (Kitsionas et al. 2009)
- implements full "variable smoothing length" SPH c.f. Springel & Hernquist (2002), Monaghan (2002), Price & Monaghan (2004,2007)

Initial conditions

$$l_x = \begin{cases} 0 & \text{for } R < R_1 \\ \frac{A}{2} \left[1 + \sin \left(\pi \frac{R - R_0}{R_2 - R_1} \right) \right] & \text{for } R_1 < R < R_2 \\ A & \text{for } R > R_2 \end{cases}$$

Require high resolution to resolve disc scale height

Simulations (high amplitude)

Comparison with theory

• Compare to a one-dimensional disc evolution with fixed diffusion parameters for the disc and the warp, i.e.:

$$\begin{aligned} \frac{\partial \mathbf{L}}{\partial t} &= \frac{3}{R} \frac{\partial}{\partial R} \left[\frac{R^{1/2}}{\Sigma} \frac{\partial}{\partial R} (\nu_1 \Sigma R^{1/2}) \mathbf{L} \right] \\ &+ \frac{1}{R} \frac{\partial}{\partial R} \left[\left(\nu_2 R^2 \left| \frac{\partial \mathbf{l}}{\partial R} \right|^2 - \frac{3}{2} \nu_1 \right) \mathbf{L} \right] \\ &+ \frac{1}{R} \frac{\partial}{\partial R} \left(\frac{1}{2} \nu_2 R |\mathbf{L}| \frac{\partial \mathbf{l}}{\partial R} \right). \end{aligned}$$

Measuring the diffusion of a warp

values of the diffusion coefficient α_2 as a function of the viscosity coefficient α . The solid symbols refer to simulations that do not use the 'viscous switch' and should thus have a viscosity more closely approximating Navier–Stokes. The open symbols do use the viscous switch. The squares refer to the small warp amplitude case $\psi_{max} \approx 0.026$, while the circles refer to the large amplitude case $\psi_{max} \approx 1.3$. The error bars shown represent the typical uncertainties on the diffusion coefficients. The solid line shows the expected value of α_2 from the linear theory. It is evident that our simulations reproduce the expected results from linear theory or values of $\alpha > 0.16$. Below this value we find that α_2 appears to saturate at a value around $\alpha_{max} \sim 3-4$.

What's going wrong?

- Development of supersonic motions at low alpha giving excess dissipation compared to theory?
- Numerical resolution?
- Something funny with the fitting procedure used to measure alpha and alpha2?
- Effect of the viscosity formulation used in the SPH code?
- Is the right theory being applied?

Calibration of alpha

• replace "by-eye" fitting with repeatable, quantitative procedure

$$E_{\alpha} = \sum_{i} [\Sigma_{i} - \Sigma^{1\mathrm{D}}(R_{i})]^{2},$$

$$\begin{aligned} \alpha_{n+1} &= \alpha_n - \frac{E'_{\alpha}(\alpha_n)}{E''_{\alpha}(\alpha_n)} \\ &= \alpha_n - \frac{\epsilon}{2} \left[\frac{E_{\alpha}(\alpha_n + \epsilon) - E_{\alpha}(\alpha_n - \epsilon)}{E_{\alpha}(\alpha_n + \epsilon) + E_{\alpha}(\alpha_n - \epsilon) - 2E_{\alpha}(\alpha_n)} \right], \end{aligned}$$

Results

Ogilvie (1999)'s non-linear theory

$+\frac{1}{r^3}\left[(\partial_r-\gamma'\cos\beta\partial_{\phi})(\mu_0r^2)\right]\partial_{\zeta}\left[v_{\theta 1}+rv_{r1}(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\right]$		
$-\left(\partial_{\zeta}\mu_{0}\right)\left(\partial_{r}-\gamma'\cos\beta\partial_{\phi}\right)\left[\frac{v_{\theta1}}{r}+v_{r1}(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\right]$		
$-\frac{1}{r}(\partial_{\zeta}\mu_{0})\partial_{\phi}\left[(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)(v_{\phi1}+rv_{r1}\gamma'\cos\beta)\right]+\Omega'\partial_{\phi}\mu_{0}$		
$+\frac{1}{r}(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)(\partial_{\phi}\mu_{0})\partial_{\zeta}(v_{\phi1}+rv_{r1}\gamma'\cos\beta)+\Omega(\beta'\sin\phi-\gamma'\sin\beta\cos\phi)\partial_{\zeta}\mu_{1}.$	(75)	
Equation (42) at $O(\epsilon^{s+2})$:		
$\rho_0 \Big(\Omega \partial_{\phi} - \frac{v_{\theta 1}}{r} \partial_{\xi} \Big) \Big[v_{\theta 2} + r(\dot{\beta} + v_{r2}\beta') \cos \phi + r(\dot{\gamma} + v_{r2}\gamma') \sin \beta \sin \phi \Big]$		
$+ \rho_0 \Big(v_{r1} \partial_r - \frac{v_{\theta 2}}{r} \partial_{\zeta} + \frac{v_{\phi 1}}{r} \partial_{\phi} \Big) \Big[v_{\theta 1} + r v_{r1} (\beta' \cos \phi + \gamma' \sin \beta \sin \phi) \Big]$		
$+\rho_1 \left(\Omega \partial_{\phi} - \frac{v_{\theta 1}}{r} \partial_{f_1}\right) \left[v_{\theta 1} + rv_{r1}(\beta' \cos \phi + \gamma' \sin \beta \sin \phi)\right] + \frac{\rho_0 v_{r1}}{r} \left[v_{\theta 1} + rv_{r1}(\beta' \cos \phi + \gamma' \sin \beta \sin \phi)\right]$		
$-\rho_0\Omega\big[(v_{\phi 1}+rv_{r1}\gamma'\cos\beta)\zeta+r(\dot{\beta}+v_{r2}\beta')\sin\phi-r(\dot{\gamma}+v_{r2}\gamma')\sin\beta\cos\phi\big]$		
$-\frac{\rho_0}{r}(v_{\phi 1}+rv_{r1}\gamma'\cos\beta)\big[r\Omega\zeta+rv_{r1}(\beta'\sin\phi-\gamma'\sin\beta\cos\phi)\big]-\rho_1\Omega\big[r\Omega\zeta+rv_{r1}(\beta'\sin\phi-\gamma'\sin\beta\cos\phi)\big]$		
$= \frac{1}{r} \partial_{\bar{i}} \left\{ p_1 - \left(\mu_{b0} + \frac{1}{3} \mu_0 \right) \left[\frac{1}{r^2} \partial_r (r^2 v_{r1}) - \frac{1}{r} \partial_{\bar{i}} v_{\theta 2} + \frac{1}{r} \partial_{\phi} v_{\phi 1} \right] + \left(\mu_{b1} + \frac{1}{3} \mu_1 \right) \frac{1}{r} \partial_{\bar{i}} v_{\theta 1} \right\}$		
$+\left[\frac{1}{r^2} + \left(\beta'\cos\phi + \gamma'\sin\beta\sin\phi\right)^2\right]\partial_{1}\left\{\mu_{0}\partial_{1}\left[v_{\ell 2} + r(\dot{\beta} + v_{\ell 2}\beta')\cos\phi + r(\dot{\gamma} + v_{\ell 2}\gamma')\sin\beta\sin\phi\right]$		
$+ \mu_1 \partial_{\hat{\delta}} \left[v_{\theta 1} + r v_{r1} (\beta' \cos \phi + \gamma' \sin \beta \sin \phi) \right] \Big\}$		
$+ (\beta' \cos \phi + \gamma' \sin \beta \sin \phi) \partial_{\zeta} \left\{ \mu_0 (\partial_r - \gamma' \cos \beta \partial_{\phi}) \left[v_{\theta 1} + r v_{r1} (\beta' \cos \phi + \gamma' \sin \beta \sin \phi) \right] \right\}$		
$+\frac{1}{r^2}(\partial_r-\gamma'\cos\beta\partial_\phi)\big\{\mu_0r^2(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\partial_{\xi}\big[v_{\theta 1}+rv_{r1}(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\big]\big\}$		
$-\frac{1}{r}(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)(\partial_{\zeta}\mu_{0})\left[v_{\theta1}+rv_{r1}(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\right] -\frac{1}{r^{3}}(\partial_{\zeta}v_{r1})(\partial_{r}-\gamma'\cos\beta\partial_{\phi})(\mu_{0}r^{2})$		
$+\frac{1}{r}(\partial_{\zeta}\mu_{0})(\partial_{r}-\gamma'\cos\beta\partial_{\phi})v_{r1}+\frac{1}{r^{2}}(\partial_{\zeta}\mu_{0})\partial_{\phi}(v_{\phi1}+rv_{r1}\gamma'\cos\beta)$		
$-\frac{1}{r^2}(\partial_{\phi}\mu_0)\partial_{\zeta}(v_{\phi 1}+rv_{r1}\gamma'\cos\beta) - (\beta'\sin\phi - \gamma'\sin\beta\cos\phi)(\beta'\cos\phi + \gamma'\sin\beta\sin\phi)\partial_{\zeta}\left[\mu_0(v_{\phi 1}+rv_{r1}\gamma'\cos\beta)\right]$		
$-r\Omega(\beta'\sin\phi-\gamma'\sin\beta\cos\phi)(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\partial_{\zeta}\mu_1 - \frac{1}{r^2}(\partial_r-\gamma'\cos\beta\partial_{\phi})[\mu_0r^3\Omega(\beta'\sin\phi-\gamma'\sin\beta\cos\phi)]$		
$-\mu_0(\beta'\sin\phi-\gamma'\sin\beta\cos\phi)\big[(r\Omega)'+(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\partial_{\hat{i}}(v_{\phi 1}+rv_{r1}\gamma'\cos\beta)\big].$	(76)	
© 1999 RAS, MNRAS 304 , 557–578		

Equation (43) at $O(\epsilon^{i+2})$: $\rho_0 \left[\Omega \hat{\rho}_{\theta} - \frac{\nabla_{\theta}}{2} \partial_{\xi} \right] \left[v_{\theta,2} - \frac{1}{2} \Omega \Gamma_{\xi}^2 + t(\dot{\gamma} + v_{i,2}\gamma' \cos \beta) - rv_{i,i}(\beta' \sin \phi - \gamma' \sin \beta \cos \phi) \Gamma_{\xi}^2 \right]$
$\rho_0 \left(\Omega \partial_{\phi} - \frac{v_{g1}}{r} \partial_{\zeta}\right) \left[v_{\phi2} - \frac{1}{2} \Omega \zeta^2 + r(\dot{\gamma} + v_{r2}\gamma' \cos\beta) - rv_{r1}(\beta' \sin\phi - \gamma' \sin\beta \cos\phi) \zeta \right]$
$+\rho_{0}\left(v_{r1}\partial_{r}-\frac{v_{\theta 2}}{r}\partial_{j}+\frac{v_{\theta 1}}{r}\partial_{\theta}\right)(v_{\theta 1}+rv_{r1}\gamma'\cos\beta)+\rho_{1}\left(\Omega\partial_{\theta}-\frac{v_{\theta 1}}{r}\partial_{j}\right)(v_{\theta 1}+rv_{r1}\gamma'\cos\beta)+\frac{\rho_{0}\kappa^{2}}{2\Omega}v_{r2}+\frac{\rho_{1}\kappa^{2}}{2\Omega}v_{r1}$
$+\frac{\rho_0}{r}v_{r1}(v_{\phi 1}+rv_{r1}\gamma'\cos\beta)+\frac{\rho_0}{r}\left[v_{\theta 1}+rv_{r1}(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\right]\left[r\Omega_{2}^{*}+rv_{r1}(\beta'\sin\phi-\gamma'\sin\beta\cos\phi)\right]$
$= -\frac{1}{r} \partial_{\phi} \left[p_0 + \left(\mu_{b0} + \frac{1}{3} \mu_0 \right) \frac{1}{r} \partial_{\zeta} v_{\mu_1} \right] + r \Omega' (\beta' \cos \phi + \gamma' \sin \beta \sin \phi) \partial_{\zeta} \mu_1$
$+\frac{1}{r^2}\partial_r\left[\mu_0r^2(r\Omega)'\right] - r\Omega'(\partial_\phi\mu_0)\gamma'\cos\beta + (\beta'\cos\phi + \gamma'\sin\beta\sin\phi)\partial_{\zeta}\left[\mu_0(\partial_r - \gamma'\cos\beta\partial_\phi)(v_{\phi 1} + rv_{r1}\gamma'\cos\beta)\right]$
$+ \frac{1}{r^2} (\partial_r - \gamma' \cos\beta \partial_\phi) \left[\mu_0 r^2 (\beta' \cos\phi + \gamma' \sin\beta \sin\phi) \partial_{\uparrow} (v_{\phi 1} + r v_{r1} \gamma' \cos\beta) \right]$
$+\left[\frac{1}{r^2}+\left(\beta'\cos\phi+\gamma'\sin\beta\sin\phi\right)^2\right]\partial_t\left\{\mu_0\partial_t\left[-\frac{1}{2}r\Omega_J^{-2}+v_{\phi 2}+r(\dot\gamma+v_{r 2}\gamma')\cos\beta-rv_{r 4}(\beta'\sin\phi-\gamma'\sin\beta\cos\phi)\zeta\right]$
$+\mu_1\partial_{\dot{\gamma}}(v_{\phi 1}+rv_{r1}\gamma'\cos\beta)\Big\}-\frac{\Omega}{r}\partial_{\dot{\gamma}}(\mu_0 r)-\frac{1}{r}(v_{\phi 1}+rv_{r1}\gamma'\cos\beta)(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\partial_{\ddot{\gamma}}\mu_0$
$+\frac{\Omega}{r}\zeta\partial_{t}\mu_{0}+\frac{1}{r}(\partial_{\phi}v_{r1})(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\partial_{t}\mu_{0}-\frac{1}{r}(\partial_{\phi}\mu_{0})(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\partial_{t}v_{r1}$
$-\frac{1}{r^2}(\partial_{\zeta}\mu_0)\partial_{\phi}\left[v_{\theta 1}+rv_{r1}(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\right]+\frac{1}{r^2}(\partial_{\phi}\mu_0)\partial_{\zeta}\left[v_{\theta 1}+rv_{r1}(\beta'\cos\phi+\gamma'\sin\beta\sin\phi)\right]$
+ $(\beta' \sin \phi - \gamma' \sin \beta \cos \phi)(\beta' \cos \phi + \gamma' \sin \beta \sin \phi)\partial_{c} \{\mu_{n} [v_{\theta_{1}} + rv_{r_{1}}(\beta' \cos \phi + \gamma' \sin \beta \sin \phi)]\}$
+ $\mu_0(\beta' \sin \phi - \gamma' \sin \beta \cos \phi)(\beta' \cos \phi + \gamma' \sin \beta \sin \phi)\partial_t [v_{\theta 1} + rv_{t1}(\beta' \cos \phi + \gamma' \sin \beta \sin \phi)]$
$-\mu_0 r \Omega(\beta' \sin \phi - \gamma' \sin \beta \cos \phi)^2. \qquad (77)$
4.4 Integrated quantities
Finally, equation (37) is also required at $O(\epsilon^{i+2})$, but only in its integrated form, ²
$\partial_T \left(\int \int \rho_0 r d\phi d\zeta \right) + \frac{1}{r} \partial_r \left[r \int \int (\rho_0 v_{r2} + \rho_1 v_{r1}) r d\phi d\zeta \right] = 0. \tag{78}$
The surface density $\Sigma(r, T)$ at leading order in ϵ is
$\Sigma = \int \rho_0 r d\zeta,$ (79)
$\Sigma = \int \rho_0 r d\zeta$, (79) and is independent of ϕ by virtue of equation (68). Other vertically integrated quantities are non-axisymmetric, however, and these will be written with tildes. The corresponding azimuthally averaged quantities, written without tildes, are defined by the operation
$\Sigma = \int \phi_0 r d\xi,$ (79) and is independent of ϕ by virtue of equation (68). Other vertically integrated quantities are non-axisymmetric, however, and these will be written with lides. The corresponding azimuthally averaged quantities, written without tildes, are defined by the operation (·) = $\frac{1}{2\pi} \int \cdot d\phi.$ (80)
$\Sigma = \int \phi_0 r d\xi,$ (79) and is independent of ϕ by virtue of equation (68). Other vertically integrated quantities are non-axisymmetric, however, and these will be written with lides. The corresponding azimuthally averaged quantities, written without tildes, are defined by the operation ($\cdot) = \frac{1}{2\pi} \int \cdot d\phi.$ (80) Thus a suitably averaged radial velocity $\hat{v}_i(r, T)$ may be defined by
$\Sigma = \int \phi_0 r d\xi,$ (79) and is independent of \$\phi\$ by virtue of equation (68). Other vertically integrated quantities are non-axisymmetric, however, and these will be written with lides. The corresponding azimuthally averaged quantities, written without tildes, are defined by the operation (·) = $\frac{1}{2\pi} \int d\phi.$ (80) Thus a suitably averaged radial velocity $\hat{v}_i(r, T)$ may be defined by $\Sigma \hat{v}_r = \mathscr{F} = (\widetilde{\mathscr{F}}),$ (81)
$\Sigma = \int \rho_0 r d\xi,$ (79) and is independent of \$\eta\$ by virtue of equation (68). Other vertically integrated quantities are non-axisymmetric, however, and these will be written with tides. The corresponding azimuthally averaged quantities, written without tides, are defined by the operation (·) = $\frac{1}{2\pi} \int \cdot d\phi.$ (80) Thus an ultiply averaged radial velocity $\hat{v}_i(r, T)$ may be defined by $\Sigma \hat{v}_i = \hat{\mathcal{F}} = (\hat{\mathcal{F}}).$ (81)
$\begin{split} \Xi &= \int_{\mu} \rho_r d\xi, \qquad (79) \\ \text{and is independent of ϕ by virtue of equation (68). Other vertically integrated quantities are non-axisymmetric, however, and these will be written with iddes. The corresponding azimuthally averaged quantities, written without tildes, are defined by the operation (\cdot) = \frac{1}{2\pi} \int \cdot d\Phi, \qquad (80) \\ \text{Thus a suitably averaged radial velocity $\eta, (r, T)$ may be defined by $\Sigma \eta_r = (\vec{x}), \qquad (81)$ where ψ here V and W here V and W here V here V are W and W here V here W here V here W
$\begin{split} \Sigma &= \int \phi_0 r d\xi, (79) \\ \text{and is independent of ϕ by virtue of equation (68). Other vertically integrated quantities are non-axisymmetric, however, and these will be written with dids. The corresponding azimuthally averaged quantities, written without tildes, are defined by the operation (\cdot) = \frac{1}{2\pi} \int \cdot d\phi, (80) \\ \text{Thus a suitably averaged radial velocity $\bar{v}_i(r, T)$ may be defined by $\Sigma \Bar{v}_i = \bar{x}^{-1}(\bar{x}^{-1}), $$ (81) where $$Wehre $$Wehre $$Wehre $$Wehre $$Wether $
$\begin{split} \Sigma &= \int \rho_0 r_0 d_1^*, (79) \\ \text{and is independent of ϕ by virtue of equation (68). Other vertically integrated quantities are non-axisymmetric, however, and these will be written with lides. The corresponding azimuthally averaged quantities, written without tides, are defined by the operation (()) = \frac{1}{2\pi} \int \cdot d\phi. (80) Thus a suitably averaged radial velocity \theta_i(r, T) may be defined by \Sigma \theta_i = \sigma^2 = (\tilde{\sigma}^2). (81) where \tilde{\sigma}^2 = \int (\phi_i v_{i2} + \rho_i v_{i1}) r d_1^* (82) is the radial mass flux at O(e^{i+3}).3 Then equation (78), divided by 2\pi, reads \partial_T \Sigma + \frac{1}{2} \partial_i (\Sigma \Omega_i) = 0, (83)$
$\begin{split} \Sigma &= \int \rho_0 r^4 \xi, (79) \\ \text{and is independent of ϕ by virtue of equation (68). Other vertically integrated quantities are non-axisymmetric, however, and these will be written with lides. The corresponding azimuthally averaged quantities, written without tildes, are defined by the operation (*) = \frac{1}{2\pi} \int \cdot d\phi. (80) Thus a suitably averaged radial velocity \hat{v}_i(r, T) may be defined by \Sigma \hat{v}_i = \hat{\sigma} = (\hat{\sigma}^2), (81) where \hat{\sigma} = \int (\phi_0 v_{22} + \rho_1 v_{11}) r d\xi^2 (82) is the radial mass flux at O(\epsilon^{i+3}). Then equation (78), divided by 2\pi, reads \partial_r \Sigma + \frac{1}{r^2} \rho_i(r \Sigma_r) = 0. (83) which agrees with equation (2). Two more definitions will be useful. A suitably averaged kinematic viscosity \hat{v}_i(r, T) may be defined by$
$\begin{split} \Sigma &= \int \rho_0 r d\xi, \qquad (79) \\ \text{and is independent of ϕ by virtue of equation (68). Other vertically integrated quantities are non-axisymmetric, however, and these will be written with index. The corresponding azimuthally averaged quantities, written without tides, are defined by the operation (()) = \frac{1}{2\pi} \int \cdot d\Phi, \qquad (80)Thus a suitably averaged radial velocity \theta_i(r, T) may be defined by \Sigma \theta_r = \mathscr{F} = (\mathscr{F}), \qquad (81) where \mathscr{F} = \int (\rho_0 v_0 + \rho_1 v_1) r d\Gamma (82)is the radial mass flux at O(e^{\pm 1})^3. Then equation (78), divided by 2\pi, reads\partial_T \Sigma + \frac{1}{2} \partial_i O(\Sigma_0) = 0, \qquad (83) which agrees with equation (2). Two more definitions will be useful. A suitably averaged kinematic viscosity \widetilde{r}(r, T) may be defined by \mathcal{P} = \mathscr{F} = (\widetilde{r}) (84)$

Effect of warp amplitude

Figure 8. Relation between the warp diffusion coefficient α_2 and α for large amplitude warps. The magenta triangles show the results for A = 0.5, while the red triangles, for comparison, indicate the small amplitude (A = 0.01) case. The solid and long-dashed lines show the $1/(2\alpha)$ relation and the corrections expected for finite α , respectively. The short-dashed line shows the expected relation based on the non-linear theory of O99, assuming a fixed $\psi = 0.55$ (roughly comparable to the average ψ value

Figure 10. Shell averaged profiles of l_z from the SPH simulation (black lines) at intervals of $\Delta t = 500$ up to t = 3500 (incode units), for the low viacosity case $\alpha = 0.03$, using 20 million particles and a strongly nonlinear wara applicable (A = 0.5). The large wara applicable simulations at low α show a strong steepening effect in the warp profile because different parts of the warp propagate a different specific We have been malle to run the appropriate nonlinear solution for this case because the steepening causes unbrivised a colliditions in the one dimensional code.

Precession with non-linear warps

Figure 14. Profile of l_y at t = 500 time units for the case A = 0.5 and $\alpha = 0.43$. The solid black lines refer to the SPH simulations, while the dashed red line show the result of the evolution of the diffusion plus precession code, with non linear warp parameter α_2 and α_3 computed based on O99 theory of warp propagation. For comparison, we also show with the dotted black line the profile at t = 500 obtained from the simple 1D evolution

So what?

- We find spectacular agreement between the 3D SPH simulations and both the linear and non-linear theory of warp propagation
- alpha2 = 1/(2 alpha) only true for very low viscosity discs and very low amplitude warps
- much slower propagation found for large amplitude warps, in agreement with theory
- excitation of large amplitude warps in low viscosity discs will steepen and can result in almost-complete disc break
- SPH is a great method to use for simulating accretion discs