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ABSTRACT

In this paper we revisit the issue of the propagation of warisin and viscous accretion
discs. In this regime warps are know to propagate diffugjweith a diffusion coefficient ap-
proximately inversely proportional to the disc viscosRyevious numerical investigations of
this problem (Lodato & Pringle 2007) did not find a good agreetitbetween the numerical
results and the predictions of the analytic theories of vipmgpagation, both in the linear and
in the non-linear case. Here, we take advantage of a newyrlemory and highly efficient
Smoothed Particle Hydrodynamics (SPH) code to run a largef sery high resolution sim-
ulations (up to 20 million SPH particles) of warp propagationplementing an isotropic disc
viscosity in different ways, to investigate the origin okttiscrepancy between the theory
and the numerical results. We identify the cause of the éEmcy in an incorrect calibration
of disc viscosity in Lodato & Pringle (2007). Our new and iroped analysis now shows a
remarkable agreement with the analytic theory both in thedi and in the non-linear regime,
in terms of warp diffusion coefficient and precession ratis worth noting that the resulting
diffusion coefficient is inversely proportional to the digiscosity only for small amplitude
warps and small values of the discoefficient ¢ < 0.1). For non-linear warps, the diffusion
coefficient is a function of both radius and time, and is digantly smaller than the stan-
dard value. Warped accretion discs are present in manyxisnfeom protostellar discs to
accretion discs around supermassive black holes. In dilcages, the exact value of the warp
diffusion coefficient may strongly affect the evolution betsystem and therefore its careful
evaluation is critical in order to correctly estimate thetsyn dynamics.
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1 INTRODUCTION its very ability to grow rapidly (King & Pringle 2006; King &tl.
2008).

Warped accretion discs may occur across a wide variety of-ast The torques which produce the warp can be very different.

physical systems, from the large scales of accretion dismsnd For protostellar discs, they include tidal interactionshwa com-

supermassive black holes (SMBH), down to the small scales of panion star (Larwood et al. 1996; Martin et al. 2009), andaafyn

planet forming discs. ical effects during the formation of the disc, which mighteat

the relative orientation of the stellar spin and the planetabits
(Bate et al. 2009). For accretion discs around black holeseth
are additional torques arising from the general relaiwisense-
Thirring precession around a spinning black hole (BardedPe&
terson 1975; Scheuer & Feiler 1996; King et al. 2005; Lodato &
Pringle 2006; Martin et al. 2007; Perego et al. 2009), anft sel
induced warping caused by radiation pressure (Pringle 1986
cently, some attention has also been given to the processof d
Warps are also found in the thin accretion discs in Active Warping and black hole spin alignment in the case of supesivias
Galactic Nuclei (AGN), as in the case of NGC 4258 (Herrmstein black hole binaries (Dotti et al. 2009). In all such cases, dio-
et al. 1996; Papaloizou et al. 1998). The dynamics of warged a lution of the system is strongly dependent on the speed athwhi
cretion can play a fundamental role in these cases, as itrirrég- warping disturbances can propagate in the disc.
ulates the spin history of the growing SMBH and, as a consezgje Analytic theories of warp propagation have been discussed e

Observationally, warps are found in galactic binary system
such as the hyperaccreting X-ray binary SS433 (Begelmah et a
2006) and the X-ray binary Her X-1 (Wijers & Pringle 1999)dan
several microquasars, including GRO J1655-40 (Martin.&XG8)
and V4641 Sgr (Martin et al. 2008). On the much less energetic
side, a warped protostellar disc is found around the yousugkdtl
15D (Chiang & Murray-Clay 2004).
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2 Lodato & Price

tensively in the past (Papaloizou & Pringle 1983; Pringl8Z®a-
paloizou & Lin 1995; Ogilvie 1999, 2000) (see Section 2). 3&e
theories predict that while for thick discs warps shouldpaigate

as dispersive waves, with a velocity of the order of half thersl
speed in the disc, in the limit of thin and viscous discs tteppga-
tion is diffusive, with a diffusion coefficient inversely ggortional

to the disc viscosity (Papaloizou & Pringle 1983). Numdr&im-
ulations of warp propagation in the thick disc case have lpegh
formed by Nelson & Papaloizou (1999) and Nelson & Papaloizou
(2000).

Numerical simulations of warp propagation for thin and vis-
cous discs are much more challenging, because in order peibyo
catch the warp dynamics it is essential to accurately resblky ver-
tical structure of the disc, which for very thin discs can féalilt.

A first attempt at testing the analytical theory with numatisim-
ulations in the thin disc regime has been performed by Lodato
Pringle (2007) (hereafter LPQ7), using SPH. The resultsROL
showed some unexpected results: while for large valueseadidc
viscosity the warp diffusion coefficient appeared to scaleisely
with viscosity, as predicted analytically, such behaviaas not
found at low viscositiesalready for small warp amplitude#n this
case, the diffusion coefficient appeared to be much smaberthe-
oretically predicted, implying (as discussed extensishi P07)
some additional dissipation. Additionally, the internaégession
induced by the warp and predicted analytically was founddo b
strongly dependent on the specific implementation of visgasd
was not found to match the theoretical expectations.

LPOQ7 discuss different possible explanations for such dis-
agreement. On the one hand, it is quite possible that theekmi
numerical resolution of their simulations might have aiéetctheir
results. On the other hand, strong supersonic motions veeredf
in the LPO7 simulations, which might result into shocks ia th-
sulting flow and thus provide the required additional diasgm.

In this paper, we want to systematically address all theessu
left open by LPO7, by checking both the numerical aspects®f t
problem and the physical effects involved.

With regards to the numerical aspects, first of all we haved use
a different SPH code with respect to LP07, therefore valdadne
code against the other. Secondly, we have checked numedinal
vergence by running simulations using 20 million partictbat is a
factor of ten larger than LP07 (note that such simulatioesaanong
the largest SPH simulations of accretion discs performeathte).
Since some of the effects reported by LP07 appeared to depend
the viscosity formulation, we have here tested two diffensos-
sible implementations of disc viscosity. Finally, we havedified
our analysis procedure, so as to obtain a more quantitaiie-e
ation of the uncertainties in the measured parameters.der @o
test the physical effects which might determine the LPO1ltes
we have paid attention to shocks, which were argued by LPO7 to
be responsible for the additional dissipation. We have ke the
importance of shocks by running simulations with differavels
of bulk viscosity — varied independently of the shear visiyos-
which is directly connected with shock dissipation.

The paper is organised as follows. In section 2 we discuss the
basic features of the analytic theory of warp propagatiobdth
the linear and non-linear regime. In section 3 we detail thaeri-
cal method that we have used to simulate the system, ingutim
different implementations of disc viscosity that we usesdnation 4
we describe the procedure we have used to analyse our raedlts
extract from the simulations the warp diffusion parametirsec-
tion 5 we present and discuss our main results for the walyssitiin

and precession in both the linear and non-linear regimalliyinn
section 6 we draw our conclusions.

2 ANALYTIC THEORIES OF WARP PROPAGATION

We consider here, as in LP07, the propagation of warps inkain
plerian accretion discs, rotating with angular velodityR), with
surface density(R) and angular momentum per unit afe&R).
HereR should be interpreted as a ‘spherical’ coordinate. Thel loca
direction ofLL can be oriented arbitrarily in space, and the unit vec-
tor1(R) = L(R)/L(R) defines its direction. If the disc is rotating
around a central point madd, then its rotation is Keplerian, with
Q=,/GM/R? andL(R) = ¥(R)VGMR.

The disc is warped whenever the direction identified lby
changes with radius. The warp amplitude may be charactevise
ing the dimensionless parameterwhere
Ol(R)

ik ‘ )

The disc thickness il = ¢/, wherecs is the sound speed,
and is the scale over which density and pressure change liodde
z direction. The disc aspect ratio4$/ R, and we shall assume that
H/R< 1.

We use the standard Shakura & Sunyaev (1973) prescription
for the disc viscosity, assumed here to be a standard, isotropic,
Navier-Stokes viscosity:

w=R‘

v =acsH = aH>. 2)

Warping disturbances can propagate in accretion discsan tw
different regimes, depending on the relative importanqare$sure
forces and viscous forces. If the disc is sufficiently thislich that
H/R > a, then the warp propagates as a dispersive wave (Pa-
paloizou & Lin 1995). The equations of motion for a wave in the
case where the disc is Keplerian and nearly inviscid are ¢iauk
Ogilvie 2000; Lubow et al. 2002)

5,01 9G
RO =GR ®
0G |

whereG is the disc internal torque in the horizontal plane (only).
Note that these equations are valid only in the linear appration

for small warps, and that no general non-linear theory femthve-
like regime exists as yet (but see Ogilvie 2006).

Here, we are mostly interested in the case where the disc is
thin and viscous, such thaf /R < «. In this case, the warp propa-
gates diffusively (Papaloizou & Pringle 1983), and can haraxi-
mately described by the equation (Pringle 1992)

IL 30 [RV 0
= Eﬁ{ S ﬁ(ylle/Q)L]
19 S|P 3
+ E@ <V2R @ — §U1> L (5)
10 (1 ol

In this equation, the terms proportionalito describe the standard
viscous evolution of a thin and flat disc. For small amplitugeps,
11 = v (and thusa; = «), but for large amplitudes; can be
affected by the warp. The terms proportionabtoarise whenever
the disc is warped and1/0R| # 0. According to Equation (5) the
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warp diffuses with a diffusion coefficiemt,. By analogy with the
viscosity prescription (Eg. (2)) we can define a second patam
a2 SO that

2
Vs = aocsH = aoQQH”.

(6)

Itis clear that the nature of the evolution of a warped admnet
disc is determined mainly by the relative valuesxaindas. In the
case of small warp amplitude; < H/R, and for viscosity such
that H/R < a < 1, Papaloizou & Pringle (1983) have found the
following relation between the two coefficieatanda:

1
= 52;7 (7)

and therefore that the warp diffusion coefficieniigerselypropor-
tional to the size of the viscosity. Ogilvie (1999) (hereaf©99)
extends these approximate analytic results by use of anpesim
expansion in terms of the small quantitf/ R, but retaining the as-
sumption of an isotropic (Navier-Stokes) viscosity. Bysthieans
he is able to take account of larger valuesxadnd). In the limit
of a small amplitude warpy/( < 1), 099 finds

Q2

V2

1 4(1+7a%)

e ®)

v 202
which includes higher order correctionsdn 099 also computes
the relation between andas for an arbitrarily large warp ampli-
tude, for which there is no simple analytical expressiort,that
can be computed numerically. In order to analyse our resugts
will also make use of these numerical relations (see Sec. 5).
Finally, it should be noted that the full non-linear theory o
099 also includes some precessional torques, which arecrot a
counted for in the diffusion model by Pringle (1992), beeatiey
arise at higher order ia. In interpreting our results, in some cases,
we have added such terms in our simple diffusion model, bingdd
a term on the right-hand side of equation (5), in the form ek(s

Ogilvie 1999)
o1
OR )’

where we have introduced a third coefficientrelated to preces-
sional effects (with a correspondings = v3/QH?). The non-
linear theory of 099 also provides an expression for the mlepe
dence ofas on o and o). In the limit of a small amplitude warp
(v < 1) and to lowest non-zero order in, the precession coeffi-
cient is given by (099)

IL
ot

19
~ROR

prec

9)

<V3R|L|1 X

a3 — 3/8 (10)

Taking account of large values of, but still for small amplitude
warps, the expected relation is given by (cf. Ogilvie & DuB@§1,
Eg. 12)

3(1 — 2a2)

20+ -

a3 =
For non-linear warp amplitudes, higher order correctionsdtha
andz are given by 099.

1 Note that this is given incorrectly as 3/4 in Papaloizou &ngle (1983)
and correspondingly in LPO7.

2 The reader should note that 099 uses a slightly differeratioot, defin-
ing the coefficients usin@1 = —3a1/2, Q2 = a2/2 andQs3 = as.
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3 NUMERICAL METHOD

We have performed a series of three-dimensional SPH siiontat
of warped discs similar, though more extensive than, thase p
formed by LP07. SPH is a Lagrangian scheme for solving tha-equ
tions of hydrodynamics in which fluid quantities and theirizze
tives are computed on a set 8f particles that follow the fluid mo-
tion (see Price 2004 or Monaghan 2005 for recent reviews).

In this paper we have used timeiANTOM code, developed
by D. Price (see Price & Federrath 2010 for another recent ap-
plication). PHANTOM is a low-memory, highly efficient SPH code
optimised for studying non-self-gravitating problemseTdode is
made very efficient by using a simple neighbour finding scheme
based on a fixed (in this case, cylindrical) grid and linkestsliof
particles. In particular, the absence of overheads agsdaidth the
tree-code for computing gravitational forces as well agotpti-
misations means that the code is significantly more effidiean
the Benz et al. (1990) / Bate (1995)-derived code previoashy
ployed by LPO7.

The initial aim of usingPHANTOM was, given the concerns in
LPO7, to be able to employ a much higher resolution in thewsalc
lations. Whilst in the end we found this unnecessary (see Bec
we have instead used our increased computing ability toeguav
much wider parameter space than that explored by LP0O7,dnclu
ing a wide range of viscosity parameters, two different ety
formulations and three different warp amplitudes.

3.1 Navier-Stokes equations

In this paper we compute the evolution of a viscous accretisa
by solving the Navier-Stokes equations for a viscous, cesgible
hydrodynamic gas in an external potential, given by

d
L= ey, (12)
dv’ 198% i

dt = 7; O +fpot7 (13)

where the potential corresponds to the gravitational férom a
central star or black hole of madg at the origin, i.e.,

GM .
fpot = -2 b (14)
and the stress tensor is given by the usual expression
” 2\ o] ot !
g | _ _Zz 1]
59 = |-P+ (- 3n) 5|07 +n (554 55). @

wheren and( are the shear and bulk viscosity coefficients respec-
tively. Note that the kinematic shear viscosityis related to the
shear viscosity) by v = n/p and similarly one may define the
volume viscosity(, = ¢/p. In the case of constant viscosity coef-
ficients, the equations can be simplified to the vector form

VP v? V(V-
A O\ A )M
p p p

dv

7 (16)

(¢35

The pressure is related to the density via a locally isothérm
equation of state

+ fpot~

P =c(R)p, 17)

where the sound speed is a prescribed function of (spherical)
radiusRk = /x2 + y? + 22, given by

cs(R) = csoR 7Y, (18)
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wheregq is given in Section 3.3 and the normalisatiey, deter-
mines the disc thickness.

In the Shakura & Sunyaev (1973)parametrisation for the
disc viscosity, the kinematic viscosity coefficient is givey Eq.
(2). We consider two different methods for implementing Nav
Stokes viscosity in SPH, firstly based on a modification taseal
artificial viscosity term (similar to that employed by LP@#f)d sec-
ondly based on a direct evaluation of the derivatives in &) (13)
respectively (see Sec. 3.2.4). The procedure used in thefarase
is described in Sec. 3.2.3, settin@nd( to zero in Eq. 15. For the
latter case we simply specify in (15) from the nominally input
value fora using

(R)
Q(R)’

wherec,(R) is specified according to Eq. (18) and we assume a
Keplerian rotation profil€2 = /G M/R3. The corrections to Ke-
plerian rotation due to the pressure gradient are of off&tR)?,
which for the thin discs considered in this paper are veryllsma
(~107%).

v(R) =

(19)

3.2 SPH
3.2.1 Hydrodynamics

PHANTOM implements the full variable smoothing length SPH for-
mulation developed by Price & Monaghan (2004) and Price &
Monaghan (2007), whereby the smoothing lengthand density,

p, are mutually dependent via the density sum (for partigle

Pa = ZmbWab(ha)y (20)
b
which is an exact solution to (12), and the relation
m 1/3
ha - hfac (_a) ’ (21)
Pa

wherem, is the particle mass and/,, = W (|ra — rsl, ha) is
the SPH smoothing kernel (see e.g. Monaghan 1992; Price 2004
Monaghan 2005 for details). This results in a resolution &dapts
to the local particle number density. Equations (20) ang &#
iterated self-consistently using a Newton-Raphson metsde-
scribed in Price & Monaghan (2007), where in this paper weshav
usedhs,. = 1.2, giving approximately 58 neighbours per particle
in a smooth distribution.

The equations of motion (13) take the form

R

+f];i)ot7

where(2 is a dimensionless quantity related to the smoothing length
gradients (see Price & Monaghan 2007 for details) and tlesstr
ij _ o AV _
sy = { (Patal) + (ca =
vl

tensor is given by
) 5]
+  7Na - .
K (817?1 )

The¢?V term in (23) is the artificial viscosity (discussed be-
low) which is introduced in SPH in order to capture shocks @od
a lesser extent) to prevent interpenetration of partitiesvever, it
can be shown (see below) that the artificial viscosity cqoasgs

ij S
5 VaWab(ha) + 52

dvl _ S
002 07

.

Véwab(hb):| )

(22)

2 Ov¥

oxk

ovl,
ozl

(23)

directly to a Navier-Stokes type term and can thus be useti, wi
minor adjustment of the parameters, to directly represbysipal
viscous diffusion (in doing so one would obviously discard te-
maining terms in Eq. 23, i.e., settiqg= n = 0). The disadvantage
of doing so is that the resultant viscosity coefficient cetssdf both
shear and bulk components of viscosity, whereas for a desuith
cosity parameterisation (2) should consist of shear vigcosly.

The remaining part of the SPH algorithm is the time inte-
gration algorithm, for which we use a standard leapfrog sehe
equivalent to the velocity Verlet method. For efficiency vesign
individual timesteps, set in factors of 2 from a nominal naim
timestep, such that only a subset of the particles is moveth@n
shortest timestep. With individual timesteps many of thaser-
vation properties of the leapfrog algorithm are only apprately
satisfied, however the scheme is significantly more efficient

3.2.2 Artificial viscosity

The artificial viscosity formulation irrHANTOM follows that of
Monaghan (1997), with the averaging in the density and $igma
locity changed slightly in order to more efficiently calag@ahe
termsin (22). We use

|

wherev,, = v, — v and the viscosity is only applied for ap-
proaching particles\u - tap < 0, i.e., converging flows). The
signal velocity for hydrodynamics is given by

AV
a

1 AV ~ ~
305" Pasig,a|Vab - Tabl,  Vab - Tap <O

0 Vab * flab 2 0 (24)

Usig,a — Cs,a T+ ﬂAvlvab . IA'ably (25)

where in generaB®V = 2. The 84V term in the signal velocity
provides a non-linear term that was originally introducegrtevent
particle penetration in high Mach number shocks (see e.q1-Mo
aghan 1989).

For shock capturing — where the aim is to provide as little
dissipation as possible whilst resolving shock structureBHAN-
TOM implements the Morris & Monaghan (1997) switch to reduce
dissipation away from shocks, in which the dissipation peater
o™V is evolved according to a source and decay equation

d aAV
da

AV
a

AV

— o
=+ S,

Ta = ha/(0Cs) (26)

Ta
wheres = 0.1, S = max(0, —V-v), amin = 0.05 and in general
one would enforcev,,,q.. = 1.0.

3.2.3 Disc viscosity using the artificial viscosity term

It has been known for quite some time (e.g. Artymowicz & Lubow
1994; Murray 1996) that the artificial viscosity terms in S€4th be
understood straightforwardly as numerical represemntataf sec-
ond derivatives of the velocity. This is because the stahgesce-
dure for evaluating second derivatives in SPH is to use augiat
formulation based on only the first derivative of the SPH kérn
For example the Laplacian for a scalar quantitis represented by
(Brookshaw 1985; Price 2004; Monaghan 2005)

flab . Va Wab

; (27
[7ab]

VA, =2 (A, - Ay)
PR

which is more clearly expressed by writing the kernel gratas
VaWab = Tap Fap, Qiving
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Figure 1. 3D structure of the warped accretion disc from a represeatat
20 million particle calculation in the large warp amplituclesse A = 0.5).

Fab

|7”ab|.

ViA=-2%" %(Aa — A (28)
b

For a vector quantity the corresponding expressions are
(Espafiol & Revenga 2003; Monaghan 2005)

F
VA = 23 (AL - A, 29

d Pb( b)lrabl (29)

my [, ok NN Fap

VIV-A) = =S (65 £ 9)(Aup - Fap)Fap — Aap| -2
(V-A) > [+ D (B fun)bn = A
(30)

whered¥ = n i.e., the number of spatial dimensions.

Warp diffusion in thin discs 5

(i) Viscosity should be applied for both approaching andedec
ing particles,

(i) The 82V term in the signal velocity should be dropped such
thatvsig = cs,

(i) ¢V should be multiplied by a factdr/|r|, similar to the
Monaghan (1992) artificial viscosity scheme, and

(iv) The Morris & Monaghan (1997) switch should not be used
i.e.,a™ should be treated as a constant.

With these conditions the resultant ‘artificial viscosity & disc’ is
given by

1 R h
(ILL‘V = EOCAVPaCs,a|Vab : rab|m7 (35)
giving
AV i AV
v ~ 10a csh, (36)
1
Vo~ Za™enh. (37)

This is essentially the approach adopted by LP0O7 and sexaagr
SPH accretion disc calculations (e.g. Artymowicz & Lubov®49
Murray 1996), giving, from Eq. (2),

10 H’
where(h) is the azimuthally averaged (or, for a warped disc, shell
averaged) smoothing length. The additional complicatibemwus-
ing a spatially variable smoothing length, addressed by7l O
that in order to obtain a disc evolution corresponding tonalei,
uniform value ofa thoughout the disc, it is necessary to setup the

disc with a surface density profile such ta} /H =~ const. This

(38)

The above expressions mean that it is possible to give clear g giscussed in Sec. 3.3. below.

interpretation to the artificial viscosity terms, since éxample in
three dimensions we have, from (29) and (30),

m . F,
_E _b(Aab'rab)—b
P

1 1,
=-V(V-A — V7 A.
|T'ab| ( )+10

5 31)

For non-constant coefficients the expressions are sinfiliafy
& Monaghan 1999; Monaghan 2005), but with an average of the
coefficients on the particles, for example

V- (kVA)==>"

b

mp

Fab
Ko + Kp)(Aqg — A
pb( b)( b)lrabl

: (32)

where Cleary & Monaghan (1999) give alternative averagirgg p
cedures more appropriate when the coefficients are diszants.
Thus, for the artificial viscosity terms presented abovec(Se
3.2.2), we have
av 1
v ~ —
10
AV o 1

(33)

AV
vsig|rab|7

AV
EOL
Note that the factofr.s| in the Monaghan (1997) formulation of
viscosity used irrHANTOM differs slightly from the factor. that
would result from using the older Monaghan (1992) formuolati
The difference is only slight because by definition withie #er-
nel radius|rqs|/h < 2, but use of the Monaghan (1997) version
avoids the need to account for divergences in the denonmingdten
|7’ab| — 0.

In order to use the artificial viscosity to represent a Shakur
Sunyaev (1973) disc viscosity, we therefore require sévaigor
changes from the formulation appropriate for shocks giveBec.
3.2.2. These changes are:

(34)

Usig |T'ab | .

© 2010 RAS, MNRASDOQ, 1-16

The disadvantage of using the artificial viscosity term fo-re
resent physical viscosity is that one inevitably ends upwitarge
and unwanted coefficient of bulk viscosity (Eq. 37). For @ disn-
ulation this is not so disadvantageous since in geriéral’ is not
large, so although the coefficient is large, the term to wiiich
applied is small. However given that at least some of theadiewis
from the analytic theory found in LPO7 could possibly be expdd
by excess dissipation, it is desirable to perform simufetithat ei-
ther have no explicit bulk component or where the bulk viggas
carefully controlled as would be the case when applied tolshim
the case of the usual artificial viscosity (Sec. 3.2.3).

3.2.4 Navier-Stokes viscosity implemented via two first
derivatives

A straightforward alternative to using the artificial vistty term
to model physical viscosity is simply to evaluate the term&q.
(23) directly. This is essentially the method proposed bsbbe
et al. (1994). In this paper we evaluate the gradient teringuke
standard variable-smoothing-length gradient operateengoy

8Wab(h(z)

oz,

81)2 1 i i
- Mp(Vp — Vg
axﬂ paQa Xb: b( b )

where the coefficients of viscosity are set as discusseddn$Se.
Using this method one can in principle use zero bulk visgpbif
setting the bulk coefficient to zero and turning off any asiéfi vis-
cosity terms. The danger with doing so is that any shocksateat
present will not be treated appropriately and also thaetienoth-
ing to prevent particle interpenetration in the SPH schehtels
any such calculations should be treated with the apprepdegree

; 39)
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of caution. A better approach, and our default when usirgftir
mulation, is to set the physical bulk coefficient to zero iB)(Dut
to apply a small and carefully controlled amountafificial vis-
cosity to correctly dissipate shocks and approachinggestising
the switches described in Sec. 3.2.2. The resulting coefficf
bulk viscosity in this case is, however, much lower than \ddag
applied when using the artificial viscosity to mimic a dissogsity
(see Sec. 3.2.3, above).

3.2.5 Navier-Stokes viscosity using direct second deviest

A further alternative, not considered in this paper, wouddtd di-
rectly evaluate the second derivative terms resulting frloengra-
dient of the stress tensor as in Eq. (16), using the standgrd r
resentation of second derivatives in SPH given by Eqgs. (2€) a
(30). Indeed this forms the basis of the ‘dissipative phatity-
namics’ scheme of Espafiol & Revenga (2003). The terms i thi
case are obviously similar to the formulation using artfiaiis-
cosity discussed above, except that the shear and bulk cents
can be set separately. The disadvantage is that the totalaang
momentum is no longer conserved because the dissipatioot is n
applied along the line of sight joining the particles (meanihat
> Mura X dv,/dt # 0). How serious a limitation this presents in
practice for disc simulations has not been clarified, thatigiould

be worthy of further investigation.

3.2.6 Azimuthal averaging of SPH results

In order to compare the results of the 3D SPH simulations with
the simple diffusion equation (5) it is necessary to compute
azimuthally-averaged disc quantities from the SPH sinnuiat
We perform this averaging by dividing the simulation domaii-
formly in R from Ri, t0 Rous in N = 350 spherical shells, with
radial widthA = (Rout — Rin)/N. The disc surface density in
shell is then given by the total mass divided by the disc surface
corresponding to each shell, i.e.,

no— Zj m;
Com((Ri+ A/2)2 — (R — A/2)7]

where the sum is performed over all particles in the shelé @
erage angular momentum is computed as:

(40)

. Zj m;r; X Vi
==
where N; is the number of particles in shell Finally, the local
direction of the angular momentum vector can be computedjusi

3]
Examples of the resulting one-dimensional disc profileshosvn
in Figures 3, 7, 9, 10, 12 and 14. The above procedure for compu

ing the disc surface density has also been implemented asuade
in SPLASH(Price 2007).

Ji (41)

L;

(42)

3.3 Initial conditions

Initial conditions are identical to those in LP07. We useeadits
in which the gravitational constad = 1, the central point mass
M = 1 and the time unit is such that at a radiis= 1 (in code
units) the dynamical time i@~ = 1. We place the gas particles in
Keplerian orbits in the gravitational potential of a poinass with

M = 1 (in code units). The gas particles are removed from the
calculation inside a radiu® = 0.5 (in code units). We distribute
the particles using a Monte Carlo placement method suclttibat
disc has a prescribed initial surface density profile, asritesd
below. The particles are distributed inso as to attain a Gaussian
density profile in the vertical direction, with thickness = ¢, /.
The random particle placement, whilst simple, means thateso
settling of the disc occurs during the first few dynamicalegmof
the simulation.

The orbit of each particle is tilted such that the componehts
the unit vectod are given by

0 for R < Ry
_ . R— Ro
l. = 2 {1+SIH(WR27R1)] for Ri < R < Ry (43)
A for R > Ry
ly =0, (44)
lz: Vl—l%, (45)

whereR; = 3.5 and R = 6.5 in code units, and?p = (R1 +
R»)/2 = 5. The warp amplitude) is then

ol ROl
v=Fr ‘ oR| 1. oR (46)
the maximum of which is attained & =~ R, and is given by

ﬂ'Ro

Ymax A 5 —

A A
R2) /1= (4/2)? 2'62,/1 —(A)2)? “

A three dimensional rendering of the resulting warped disc
from one of our high resolution (20 million particle) calatibns is
shown in Figure 1, for the case of a high amplitude watp=£ 0.5).

A cross section of the disc in a 2 million particle simulatioith

a low amplitude warp4 = 0.01) is shown in Figure 2, showing
the slight bend induced in the disc profile. The initial shapthe
warp is also plotted in Fig. 1 of LPO7 and is shown by the lines
corresponding te = 0 in Figures 7 and 9 of this paper.

The disc extends fromki, = 0.5 to Rout = 10, with a surface
density profile X2, given by

S(R) = SoR? (1 - @) .

The parametep is set top = 3/2, as in LP07, such that, giving
g = 3/4 in Eq. (18), the disc is uniformly resolved, in the sense
that the smoothing length « p~/ is proportional to the disc
thicknessH « R*/*, as described in LP07.

We choose the normalisation of the sound speed such that the
aspect ratio of the disc &, = 5 is H/R = 0.0133, corresponding
to an aspect ratio ak = 1 (in code units) ofH/R = 0.02, in
order to model a thin disc, where warps propagate primatrithe
diffusive regime (see Section 2).

(48)

4 ANALYSIS
4.1 1D Disc evolution

We compare the time evolution &f andl from the SPH simulation
with the one resulting from Equation (5). This is solved gsitan-
dard finite difference methods, which are detailed in Par{@p92)
and LPOQ7, but with a different implementation of the zerayter
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Figure 2. Cross section of the disc in the SPH calculations for a lowlange warp (A = 0.01) at a resolution of 2 million particles.

boundary condition at the inner edge. While in Pringle ()92
LPO7 the zero torque condition is implemented in an appraiém
way, by artificially removing mass from the innermost cefior-
der to keep close to zero, in this paper we directly enfoite= 0
at the innermost cell. The two conditions are largely edaiva
but the shape of the surface density profile in the inner dische
slightly modified. This is important because in turn it sfgrantly
affects the evaluation af, as described in Section 5.1.

4.2 Fitting procedure

The main aim of this paper is to determine the relation betwvtre
two parameters: andaz, which describe the disc viscosity and the
warp diffusion coefficient, respectively. In principlegtparameter
« should be simply determined by the input viscosity coeffitie
in the SPH code as per Sec. 3.2. However, LPO7 did not find a
perfect match between the nominal valuexais expected from the
continuum limit of SPH and the. measured from the 1D surface
density evolution using Eq. (5), and therefore preferrefittooth
parameters independently, to get the desired relatioratticplar,
LPO7 “stress that [they] do not perform an actual statistical fit o
the viscosity coefficients, but simply choose them so as tohma
the evolution of the numerical simulationThis point is discussed
further in Section 5.1.

In this paper, we have implemented a statistical fitting eroc
dure to check the calibration between the inpuparameter and
the value measured from comparing the SPH and the 1D ewolutio
of the disc using 5. The same procedure is further used toureas
the warp diffusion coefficient» and the precession coefficiamns.
This procedure is described below. Specific results for #ibm-
tion of o and the estimate ef, andas are reported in Sec. 5.

4.2.1 Fittting fora

The viscosity parameter is primarily responsible for the evolution
of the disc surface densiy. In particular, given the shape of the
surface density in our initial condition, the feature whishmost
directly related tax is the decline of the peak surface density in the
inner disc. In order to obtain we have therefore fitted the shape
of the surface density profile close to the peak as resultiog f
the 1D disc evolution at a given time to the SPH data. Thus, we
have compared the datata& 500 (in code units), and considered
an annulus of radial width equal to 0.1 each side of the maximu
To obtaina, we have minimized thd.» norm of the difference
between the 1D evolution profile and the SPH data:
Eo =) [5—SP(R)P, (49)

7
where the sum is taken over all shells (see previous sedtiibhin
a radial distance 0.1 from the maximum. The valueZoP at R;
is obtained by interpolation between the closest 1D celig. fin-
imum E, is found by using a simple Newton-Raphson scheme.
Starting from a trial value ofv we iterate using:

E/

«@
o — Lalan)

7 (o) (50)

An41
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€

2

{ Eo(an +¢€) — Ea(an —¢€) }
Eo(an +€) + Ea(an —€) —2Eq(an) |’

where in the second line the first and the second derivativés,o
are approximated by their finite difference value with respge a
small increment. Once a minimum is found, we make sure that it
is not a local minimum by checking th#,, is larger upon incre-
mentinga by 5e¢ either side of the minimum. We also compute the
1— o uncertainty on the fitted value efby computing the distance
from the minimum at whicl¥,, is increased by a factor 2.

An example of the best fiE profile compared to the averaged
SPH profile is shown in Fig. 3. As it turns out, the best fit peofil
is in fact very close to the one computed using the input védue
a, so this fitting procedure fat itself becomes unnecessary (see
Sec. 5.1, below).

Qn —

4.2.2 Fittting forae and acs

The values ofv, and a3 are obtained using a similar procedure,
though the computation of either requires, and is depermtgran
input value for the disc viscosity — that is, using either the nom-
inal or fitteda value.

The diffusion coefficientvs is mostly responsible for the evo-
lution of the profile ofl, and in particular, given our initial con-
ditions, it affects the evolution of, around the warp radius at
R = Ro. We therefore define thé, norm of the difference
between the 1D evolution and the SPH evolutioni.pfat time
t = 1000 code units as:

Bay =Y i — 12" (R, (51)
where the sum is taken over all shells within a radial distagual
to 3 from the warp radius. In practice, rather than fittingwe fit
the parametey, defined agv> = f/(2a). The parametef and its
uncertainty are then obtained through minimizatioriaf, using a
scheme analogous to the one useddfor

The precession coefficients affects primarily the evolution
of [, around the warp radius. Its best fit value is thus obtainem fro
the minimization of

Eoy = Z[li,y - Z;D(Ri)]27

(52)

using a scheme analogous to the one usedfand «., and de-
pending on the input values of both of these. As derthe sum
is taken over all shells within a radial distance of 3 from teep
radius.

5 RESULTS

The initial aim of this paper was to perform simulations aes-r
olution significantly higher than that employed by LP07, nder

to assess the effect of limited resolution. Having perfairseveral
calculations with 20 million SPH particles and finding resuh-
distinguishable from the lower resolution of 2 million peles, we
have instead surveyed a wide range in parameter spacermerfo
ing a total of 78 simulations using 2 million particles tdget with
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2x107 —

2x107¢ =

0 2 4 6 8 10

Figure 3. Left: surface density profile from the SPH simulation (sdildck line) and from the 1D evolution at= 0 and¢ = 500 in code units, for the case
a = 0.3, using the input value (from Eq. 38) (dashed green line) hadreasured best fit value (dashed red line) of the disc vigdosthe calculation using
artificial viscosity to model disc viscosity at an SPH resiolu of 2 million particles. We find very close agreement begw the input and fitted values. Right:
Same, but using Navier-Stokes viscosity. In this case, thtfi the X profile is slightly better, giving smaller error bars in thieefil value ofo.

Series A Visc.  Bulk Npart Symbols
type visc.?
1 0.01 AV yes 2 x 109  red triangles
2 0.05 AV yes 2 x 10  orange triangles
3 0.01 AV yes 2 x 107  green triangles
4 0.05 AV yes 2 x 107 cyan triangles
5 0.01 NS no 2 x 109  black squares
6 0.01 NS switch 2 x 106  blue squares
7 0.5 AV yes 2 x 105  magenta triangles
8 0.5 AV yes 2 x 107 yellow triangles

Table 1. Parameter settings for each of the 8 series of calculatiens p
formed in this paper, where each series consists of a semuflaions
covering a range of disc viscosities The second column gives the ini-
tial warp amplitudeA used in Eq. (43), the third column shows whether the
disc viscosity was represented using the modified artifiggdosity term
(AV) or via a direct implementation of Navier-Stokes vistpgNS). The
fourth column shows whether or not bulk viscosity was agp{@ways true
for the AV calculations). The resolution of the calculagois given in the
fifth column and the symbols used to represent each seriggumes 4, 5,

6, 8 and 13 are given in the last column.

the original 8 at 20 million particles. These consist of Seseof
simulations, each for a range of viscosity values. The patara
for each series are given in Table 1, where we have considieeed
effect of resolution (2 vs. 20 million particles), threefdient warp
amplitudes 4 = 0.01, 0.05 and0.5), disc viscosity formulated
either using the modified artificial viscosity (AV) or by a @it im-
plementation of Navier Stokes terms (NS), considering #tesi
with zero bulk viscosity and subsequently with a small ant@ym
plied using a switch.

5.1 Calibration of the disc viscosity coefficient

The best matching values of (here referred to ass:) reported

in Table 1 of LPO7 do not follow the expected relation given by
Eqg. (38). Although, for a giverdh)/H, the relation betweens,
and o™V is approximately linear, the slope is shallower than ex-
pected. An accurate calibration afis important, because in turn
it is used as an input for the evaluation and fitting of the wgifp
fusion coefficientos. The disagreement found in LPO7 prompted
us to examine the method used to calibrata greater detail, re-
sulting in our implementation of the fitting procedure désed in
Section 4.2 — essentially a quantitative version of the doce
performed in LPO7.

In considering this issue, we have also explored the effect o
the inner boundary condition of the 1D disc evolution on tream
surement ofv. Indeed, the main feature which is used for the evalu-
ation ofa is the turnover of the surface density at small radii, which
might well be affected by the specific boundary conditiortugés-
ing the same condition employed by LP0O7 (described in Ség¢. 4.
above), we found a similar relationship between anda®Y —
that is, not matching the expectations from Eq. (38). Furtioee,
we found that the calculations using a Navier-Stokes viscatso
did not agree with the measured values. However, when tte zer
torque boundary condition was enforced exactly (see Sg);.the
disagreement was removed. This is demonstrated in Fig. ghwh
shows the best fit values: versus the input value af calculated
using Eqg. (38). Results are shown with triangles for theudalc
tions where the disc viscosity has been simulated using Bi¢ S
artificial viscosity, whilst squares correspond to caltioless where
Navier-Stokes viscosity terms have been implemented ttjredl
calculations are performed at a resolution of 2 million SRt p
ticles, except for the green and cyan triangles that use Hdmi
particles. The error bars show the &rrors from the fitting proce-
dure.
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Figure 4. Comparison between the input valuecond the measured value
obtained fitting the SPH data to the 1D evolutiorthfwith the zero torque
boundary condition enforced exactly. Results are showh triingles for
the calculations where the disc viscosity has been sintilagéng the SPH
artificial viscosity, whilst squares correspond to caltialss where phys-
ical viscosity terms have been implemented directly. Alcakations are
performed at a resolution of 2 million SPH particles, exdeptthe green,
cyan and yellow triangles that use 20 million particles.oEbars refer to
the 1o errors from the fitting procedure used to obtaig .

As one can see from Fig. 4, the general agreement is very
good. In other words, the procedure used by LP0O7 to simultane
ously fita andas is no longer necessary and henceforth we simply
fit the single parameter, using the input value fat.

Also worth noting from Fig. 4 is that, whilst the error bars
ar smaller using the Navier-Stokes viscosity (squares) -e-tdu
an improved agreement of the profileXdfear the inner boundary
(see right panel of Fig. 3) —, there appears to be a small exties
sipation that occurs for low input. In the case of Series 5 (black
squares), this may be naturally attributed to the small arhofi
artificial viscosity we have applied. However, for Seriesb@ué
squares), using zero artificial viscosity paradoxicallyufes in an
evengreaterdissipation. We attribute this to the increased random-
ness of the particle distribution arising when no bulk vitois
present. A similar effect is seen in several other SPH sitiaulg,
e.g. in Price & Federrath (2010) whetV is too low.

5.2 Results for the warp diffusion coefficient

The results of the fitting procedure for the warp diffusioreftio
cientas are shown in Fig. 5, for Series 1 to 5 discussed above. The
solid line in the figure shows the simple relatiop = 1/(2«) ex-
pected in the linear regime of warp propagation discusse&kiy

tion 2 (Papaloizou & Pringle 1983). What is most strikinghatt

the numerical results do not appear to matchlth@q«) relation in
almostanyregime. In particular, at high, the measured values of
a2 lie much above the simple/(2«) relation, while at lowx they

lie slightly below it. This is contrary to the result shownliR07,
where agreement was found at highand a much larger disagree-
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ment was found at loww. The origin of the discrepancy between
our results and those of LPQ7 lies in the more accurate ev@iua
of the disc viscosityy discussed above and the resultant effect on
the fit for acz.

The natural question is therefore: why do the new, more accu-
rate results not agree with the standard theory?

Initially, we will discuss only the simulations with a small
warp amplitudeA = 0.01. The effect of finite warp amplitude is
discussed later in Section 5.2.5

5.2.1 Effect of resolution

Our first attempt to reconcile the simulation with the thewrgs
to check for resolution effects. In particular, these aia thiscs,
and the vertical scale-height is only moderately resohmdaply
1.6 smoothing lengths) at a resolution of 2 million partic(see
Fig. 2). LP0O7 also mention the possibility of resolutioneeffs in
their simulations (which have the same resolution of 2 onillpar-
ticles) but nevertheless demonstrate that the verticaijeprofile

is very well reproduced (see Fig. 2 of LP07), and hence argate t
such effects should be negligible. We have therefore peedr6
calculations at the higher resolution of 20 million pael(four
with A = 0.01 and two withA = 0.05), for which the vertical
scale-height is resolved with 3.5 smoothing lengths. The results
of these higher resolution simulations are shown with greseah
cyan triangles in Fig. 5 and show no significant differencthwé-
spect to the lower resolution case. Note that the calibmatiox
for these calculations, shown in Fig. 4 is very similar to 2heil-
lion particle case, despite the very different smoothimgths. We
therefore conclude that resolution effects are not to bl&on¢he
discrepancy.

5.2.2 Effect of viscosity formulation

The results of LP0O7 showed strong disagreement with thelatdn
theory at lowa. LPO7 argue that a discrepancy between their re-
sults and the standard theory at lawmight arise because of en-
hanced dissipation due to the presence of supersonic rscediah
hence shocks. With the recalibration®@fiscussed above the dis-
agreement at low is significantly reduced and, as we show later,
can now be explained by the transition to the wave-like pgagian
regime.

Nevertheless, when using the SPH atrtificial viscosity te rep
resent disc viscosity, one inevitably ends up with a larg& tais-
cosity coefficient (see Section 3.2.3, Eq. 37), which codchpps
explain the excess dissipation invoked by LP07. In ordehteck
whether bulk viscosity affects the magnitude of the warfudibn
coefficient, we have implemented a full Navier-Stokes \&#tgpas
described in Section 3.

The results of the calculations using the Navier-Stokesogs
ity and zero bulk viscosity and the artificial viscosity setzero are
shown in Fig. 6 (blue squares), and indeed appear to shomi#sig
icant effect, lowering the measured valuesxefat low «. But, as
discussed in great detail in LPQ7, this implias even greater ex-
cess dissipationThus, paradoxically, by removing bulk viscosity
we have apparentlincreasedthe amount of dissipation present in
the simulation. However, some caution is required heregsin as
discussed in section 3.2.4 — one should be very careful atooot
pletely removing all bulk viscosity from SPH simulationénce
it plays a necessary role in preventing particle interpeien,
as well as providing physical dissipation in shocks, if dtware
present.
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Figure 5. Relation between the warp diffusion coefficient and the disc viscosity, for warp amplitudesA = 0.01 (black squares, red and green triangles)
andA = 0.05 (orange and cyan triangles). Squares use a direct impletr@nbf the Navier-Stokes terms, whilst triangles use tRel @rtificial viscosity to
represent the disc viscosity. All calculations employ 2lionil SPH particles, except the cyan and green trianglesciwige 20 million. The solid line shows
the simpleas = 1/(2a) relation from Papaloizou & Pringle (1983). The long-daslied includes the non-linear corrections due to finite valoéa for
small amplitude warps (Eqg. 8).

We have therefore also computed a series of simulations with simply a numerical artefact. What is worse, the recalibratf «

Navier-Stokes shear viscosity, but with a small amount tificial discussed in Section 5.1 puts us in a worse position than L&07
viscosity, applied only for approaching particles and gsirswitch we now disagree with the linear theory at both lamd highvalues

to reduce its amplitude away from shocks (black squaresgs. Ei of «, contrary to the results of LPO7, where the results appeared
and 6). Note that the effective bulk viscosity coefficienthis case agree at highv. In our case, the results are also more significant,
is much smaller (at least a factor of 5) that that presenténstm- because we have much better statistics (86 simulations ax@dp
ulations that use artificial viscosity to represent discosity (i.e. to the 10 shown in Fig. 8 of LP07), spanning a wider range infall
the red triangles in Fig. 5). Despite the very small chandhervis- the parameters, a2 and the warp amplitude.

cosity formulation, the results of this series of simulatid¢series 5,
black squares in Fig. 5) are in very good agreement with those
sented previously (series 1, red triangles). This leads asriclude
that the dramatic effect produced in Fig. 6 by removing althef
bulk viscosity, is most likely a numerical artefact. Thisteength-
ened by the results already discussed in Fig. 4, also shavatg
the simulations with zero bulk viscosity show a higher giation,
that can be attributed to the increased randomness of thielpar
distribution when no bulk viscosity is present.

Clearly, though, thev values we are using here at not small,
and therefore it may well be expected that the nomingR«) re-
lation is not appropriate, particularly at the highend of our pa-
rameter range. Indeed, when we plot the relation betweeand
« predicted for finite values of by Eq. (8) (long-dashed line in
Figs. 5 and 6), we recover an excellent agreement with the SPH
results fora 2 0.15 for low-amplitude warps.

We thus conclude that there is no disagreement between our
numerical results at high and the linear theory of warp propaga-
tion, once the effects of finita are appropriately accounted for in
Having investigated the effect of both resolution and véstyofor- the theory. The only remaining issue is a small disagreemtdatv
mulation, we may dispense with the possibility that the glise- « for small amplitude warps — though much smaller than the one
ment between the SPH simulations and the simple linearyhieor  found in LPO7, which we discuss in the next section.

5.2.3 Are we looking at the right theory?

© 2010 RAS, MNRASDOQ, 1-16
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Figure 6. As in Fig. 5, but comparing only the two series using Navier-
Stokes viscosity, with (black sugares) and without (blueasgs) a small
amount of artificial bulk viscosity. Despite the nominalbyler input vis-
cosity, the calculations with zero bulk viscosity paradaXy show a larger
dissipation, as evidenced by the lower magnitude of the éfgsion co-
efficient aa. We attribute this to the danger of using zero bulk viscosity
SPH.

5.2.4 Low viscosity behaviour and transition to the wake-li
propagation regime

In principle, there could be two explanations for the rermgn
small disagreement that we find for low viscosity: a numeices,
related to our procedure to fit the value of the diffusion fiorfnt
az, and a physical one, related to an actual transition to ardifft
propagation regime, such as the wave-like propagatiome¢gec.
2).

There are good reasons to believe that both effects migit pla
a role for small values of the viscosity coefficient. From tioener-
ical point of view, we note that our fitting procedure is based
matching the solution of the simple diffusion equation te 8PH
results at a given time,= 1000 in code units, which corresponds
to 0.4« in units of the viscous time & = 1. The viscous time is
not only a measurement of the time needed for the overalbuisc
evolution of the disc to take place, but also of the time ndede
smooth out the discreteness of the particle distributiothéini-
tial condition. We therefore might expect that, for smalthe SPH
simulation at = 1000 code units is still somewhat noisy, and that
it might affect the evaluation af,. That this is the case can already
be seen from the fact that the error barscanget larger at small
«. Additionally, we have also found that for smalithe results are
somewhat sensitive to the time at which the fit is performethd
fit is performed at earlier times, the resulting valuengftends to
be systematically shifted down by a small amount.

The results of the calculation for low might also be af-
fected by the fact that warp propagation undergoes a trangib
the wave-like regime (sec. 2), which, for small warp amplis, is
expected to occur at around < 27 H /X = 0.07, where) is the
wavelength of the perturbation (which in our case is 6 in code
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Figure 7. Evolution of the shell averaged profiles lgf from the SPH sim-
ulations att = 0 and¢ = 500 in code units (solid black lines), for the
low viscosity casex = 0.065 and A = 0.01, compared to the results of
a 1D evolution assuming wave-like propagation with dissgpaat the ap-
propriate value ok, from Egs. (3) and (4) (dashed red lines). The excellent
agreement explains the deviations at lavwseen in Fig. 5, as been due to
the transition to the wave-like propagation regime at loscusity.

units). In order to test this hypothesis we compare the ¢oolwf
the SPH simulation to the 1D evolution appropriate to theaevav
like regime (Egs. 3 and 4), including dissipation correstiog to
the input value ofx from the simulation. The results of this test are
shown in Fig. 7 for a low amplitude warp withh = 0.065, from
Series 1. The plot shows the profile of thecomponent of the unit
vectorl from the SPH simulation at = 0 andt = 500 in code
units (solid black lines) compared to the 1D evolution fromsE
(3) and (4) (dashed red lines). The fact that the profileseage|
indicates that wave-like propagation, albeit with diffusj can ex-
plain the deviation from the purely diffusive propagatioe have
assumed when comparing with Eq. (7) or Eq. (8).

Given that there is no longer any disagreement betweenytheor
and the results of the SPH simulations, contrary to LP0% itd
longer necessary to invoke any additional dissipation lirea in
warp propagation.

5.2.5 Large amplitude warps

Having gained some confidence that the linear theory of warp-p
agation explains satisfactorily the evolution of the SPHdations
at low warp amplitudes, we may turn our attention to nondme
effects.

Initially we have considered a small increase in the initiatp
amplitude toA = 0.05 in Eq. (43). The results of these calculations
(Series 2) are shown with orange triangles in Fig. 5 and avenes
tially indistinguishable from thed = 0.01 case (Series 1 and 5),
demonstrating that the linear theory is applicable alsbimdase.

The resulting values o from our fitting procedure for the
A = 0.5 case (Series 7) are shown in Fig. 8 with magenta trian-
gles, compared to the corresponding Series 140 0.01 (red
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Figure 8. Relation between the warp diffusion coefficient and « for
large amplitude warps. The magenta triangles show thetseful A =

0.5, while the red triangles, for comparison, indicate the $malplitude

(A = 0.01) case. The solid and long-dashed lines showith@«) relation
and the corrections expected for finite respectively. The short-dashed
line shows the expected relation based on the non-linearythef 099,
assuming a fixed) = 0.55 (roughly comparable to the averagevalue
using A = 0.5). The large error bars in the high amplitude case at low
« are because the non-linear warp evolution is not well fittegd Isingle
value forap — physically manifested as a steepening of the warp profile
observed in the simulations (see Fig. 10) that is not cagtbyethe fitted
linear profiles.

triangles). One can immediately see that the fitted values ofor

small o, are much smaller than the low amplitude case, and are

characterized by a much larger uncertainty.

At very large warp amplitudes, the linear theory of warp prop
agation in the diffusive regime is not applicable, and ithere-
fore not surprising that, indeed, the SPH simulations ia thgime
(A = 0.5) do not match either thé/(2«a) relation or the more
complete relation of Eqg. (8) which is non-lineardnbut assumes
linearity in the warp amplitude. O99 presents a non-linbaoty
of warp propagation for warps of any amplitude. We are now in a
position to test this theory numerically.

The complicating factor is that, in the 099 theawy,is a func-
tion of the warp amplitude (related toA by Eq. 46, with the max-

Figure 9. Shell averaged profiles &f from the SPH simulation (solid black
lines) att = 0 andt = 1000 (in code units), compared to the corre-
sponding profiles from the diffusive evolution, for the higiscosity case
a = 0.43 and a strongly non-linear warp amplitudg & 0.5), assuming
the warp diffusion coefficient to be a function afand, as predicted by
099 (dashed red lines).

Gordon Ogilvie. We can indeed see that the non-linear theoeg
reproduce qualitatively the observed trend.

As an additional test of the theory, we have also evolved the
standard equation for diffusive evolution (Eg. 5), where diffu-
sion coefficientsy; (now different froma) and ce are computed
at each radius and at each timestep, based on Ogilvie'sinear!|
theory. In this case, we do not have any free parameter to fi:
the nominal value of the viscosity coefficient, and and o, are
prescribed functions ak and+ which we compute at each radius
and time by evaluation of the relevant integrals in 099 ushrey
routine provided. The resulting profiles &f are shown in Fig. 9
for the case whera = 0.43. The black solid lines show the results
of the SPH simulations at= 0 andt = 1000 (in code units), while
the red dashed line show the corresponding profiles comaed
Eqg. (5). The agreement of the non-linear theory with the S&H r
sults is excellent. Note that the warp diffusion coefficierthe the-
ory of 099 depends also on the amount of bulk viscosity ptdeen
the disc. Indeed, in order to get the good match shown in Fig. 9
we have computed the warp diffusion coefficient assuminglia bu
viscosity with magnitudew, = 5a/3, as expected from the SPH

imum value given by Eq. 47). We thus cannot associate a single formalism (see sect. 3.2.2).

value ofas to each large amplitude simulation, @ds a function

of radius (Eq. 46) and furthermore decreases as a functiimef
as the warp diffuses. Indeed, this is the reason for the lenge
bars in Fig. 8 when attempting to fit a single value to thd,. pro-
file, particularly at lowa where in the O99 theory the dependency
of az onv is much stronger. What is possible is to check whether
the deviations expected from such non-linear theory follog/ob-
served trend, i.e. a general decrease value of the diffuieffi-
cient. The short-dashed line in Fig. 8 shows the relatiomwéen
a2 anda based on the theory of 099 for a fixed value/of= 0.55,
computed numerically based on a routine kindly providedstoyw

At low disc viscosities (smalk), the simulations show a
steepening effect in the warp profile — the physical resulllibf
ferent parts of the warp propagating at different speedsfikde
that the steepening becomes stronger as the disc viscesity i
duced (evident from the increase in the error bars seen irBFig
a — 0) and in the limit of extremely small viscosity can result in
a near-complete break in the disc. This is demonstratedgnlf
which shows the equivalent of Fig. 9 for a low viscosity céeu
tion (« = 0.03) shown at intervals of = 500 in code units and
evolved as far as = 3500. A three dimensional rendering of the
disc structure is shown in Fig. 11 &t= 1500 in code units. De-
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Figure 10. Shell averaged profiles @f, from the SPH simulation (black
lines) at intervals ofAt = 500 up tot = 3500 (in code units), for the
low viscosity casex = 0.03, using 20 million particles and a strongly non-
linear warp amplitude4 = 0.5). The large warp amplitude simulations at
low o show a strong steepening effect in the warp profile becaditezetit
parts of the warp propagate at different speeds. A compavigth the non-
linear theory is more difficult in this case because the ptedi diffusion
parameter for the disc can become negative, causing urgalhygsicillations

in the one-dimensional code.

spite the apparent break the calculations are able to esotkin
but steady stream of material continuing to accrete actusslis-
continuity, indicating that the disc regions remain coriedeven
in this extreme case.

The simulation results in this case are more difficult to com-
pare with theory because of the development of large unpdlysi
oscillations around the warp in the one dimensional codés iBh
not unexpected from the non-linear theory, since in thismeghe
evolution of the disc is not well described by a diffusion atijon.

In particular, 099 (Eq. 141) shows that
1 3p?

ol =a— ——,

24 « (53)

and thus for largeb (more specifically, whegy > +/24«, which is
the case here) the effective viscosity becomes negatiggesting
that diffusion is no longer an appropriate description. Mthior
small amplitude warps one expects a transition to the wikee-|
regime at lowa (based on the dispersion relation derived from the
linear wave equations, Egs. (3)-(4)), it is not clear froradty at
which value ofa the transition occurs for large amplitude warps,
and indeed whether such a transition occurs at dlliff sufficiently
large (Ogilvie, private communication). Furthermore codations
by Ogilvie (2006) based on the evolution of a one-dimendinoa-
linear Schrodinger equation for inviscid, Keplerian disuggest
that wave-like propagation should not have a steepenimgtefbr
an isothermal equation of state (more specifically, if thiatzatic
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Figure 11.Resulting 3D disc structure from the simulation shown in E@
with a large amplitude warp in a low viscosity dise & 0.03), shown at

t = 1500 (in code units). The steepening of the warp profile in thisecas
results in a nearly complete break in the disc. At the emplagsolution

of 20 million particles we are able to resolve the thin butdie stream
of material that is nevertheless still being transportesglaimls across the
discontinuity (just visible in the Figure, as indicated hg farrow).

5.3 Precession

The last remaining piece of the theory which needs to beddste
the one related to precession. As mentioned in sect. 2, thignéu
ory of warp propagation presented in O99 predicts also thequrce
of internal precessional torques. These can be accountedtfon
the simple diffusion model of Pringle (1992) (Eq. 5) by adgan
appropriate additional term (Eq. 9). We have included secms$
and fitted the value of the corresponding new parameteto the
SPH data. In this case, the disc property which relates tegson
and that we use to perform the fit is the profile of theomponent
of the angular momentum in the digg¢

Figure 12 shows the profiles éf att = 1000 code units
(solid black lines) and the corresponding solution of thféudion
equation with added precessional term, using the fittecevalias
(dashed red lines). The left panel refersato= 0.43 and an SPH
resolution of 2 million particles, while the right plot regetoa =
0.46 and an SPH resolution of 20 million particles. Note that the
amplitude of the induced precession — and therefore of theeva
of I, — is small, and therefore the SPH data are quite noisy for
ly, especially at low SPH resolution. This implies a rathegéar
uncertainty in the fitted value afs.

The resulting values ofis as a function ofx are plotted in
Figure 13 for Series 1 to 4 (that is, for the small amplitudeesa
with disc viscosity modelled through the artificial visdgsierm).
Given the large uncertainty at the lower resolution and kiwearp
amplitude @ = 0.01), error bars are shown only for the = 0.05
and higher resolution calculations for clarity (by way ofrguar-
ison the error bars for the low resolutioh = 0.01 calculations
are roughly a factor of two larger than for the correspondowg
resolutionA = 0.05 results). The solid line shows the small am-
plitude anda < 1 approximationas = 3/8 (Eq. 10), whilst the
long-dashed line gives the expected relation for small vaanpli-
tudes but to higher order in (Eq. 11). Once again, provided the
corrections for finiten are accounted for, we obtain a very good
agreement between our numerical results and the theompefar

indexy < 3), suggesting that the steepening we observe is indeed athe lowest values ak. The deviations seen at loware most likely

diffusive rather than wave-like effect, though it is hard®certain
in the absence of a full non-linear theory for wave-like @ogtion.
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due to the effect of bulk viscosity in the code which affettsi,
profile more strongly than eithdr, or I, (simply due to the low
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Figure 12.Left: Profile ofl, att = 1000 (in code units) for thex = 0.43 case. The solid black line shows the SPH results at a regolafi2 million particles.
The dashed red line shows the expected profile from the @ifiyslus precession equation with the fitted valuexgf Right: Profile ofl,, at¢ = 1000 code
units for thea: = 0.46 case, at an SPH resolution of 20 million particles (linestheesame as for the left panel).

amplitude ofl,), and is more significant when the disc viscosity is
low.

We note briefly that — by contrast with our earlier results
for both @ and o, — the calculations utilising the Navier-Stokes
implementation of viscosity (Series 5 and 6) show a strorgg di
agreement with both the modified artificial viscosity cadtidns
and the theoretical curves — the precession even reversexidn
for a < 0.07. The fits for series 6 — i.e., the calculations that
show good agreement in the fits — show the fit taxs rise with
a (from negative values) and then flatten to around~ 0.23 at
a 2 0.2, in contrast to the results shown in Fig. 13. The results
for series 5 show a similar trend but with much lower fitted-val
ues. The errors to the fits are also significantly larger ttoarite
artificial viscosity calculations. Whilst we can only spkxte as to
the reason for this disagreement, most likely it is an intiticethat
higher resolution is needed (compared to using the modifi&d a
cial viscosity) to evaluate the nested first derivativess(E39 and
13) to the accuracy required in order to measure the pregessi
contribution. LPO7 also found the precession in their satiahs to
depend strongly on details of the viscosity formulation.

Finally, let us consider the internal precession for lamggla
tude warps 4 = 0.5, Series 7). In this case, as for the evaluation of
the warp diffusion coefficient, we cannot simply associasingle
value of s to our simulation, as it depends on the instantaneous
value of, which is a function ofR and¢. However, we can still
compare the profile of, at a given time to the one expected from
the non-linear theory of 099. Once again, we stress thatif th
comparison we have not fitted any parameters, as the valuésof
simply the input value in the simulation, while bath and«s are
a prescribed function (obtained from 099)®@fa, = 5/3 and
. The profile ofl, for « = 0.43 andA = 0.5 is shown in Fig. 14
att = 0 andt = 500 (in code units). The solid black lines show
the results of the SPH simulations while the dashed red liees
fer to the solution of the diffusion equation with added ®gion,

where the coefficients are computed directly from the noadin
theory of 099. Note that, while in this large amplitude cdsere-
sulting shape ot, is a more complicated function than a simple
oscillating function (as in the small amplitude case), thefife is
reproduced surprisingly well by the 099 theory. To emplatie
importance of non-linear effects in this case, we also shatvilve
dotted black line in Fig. 14 the profile @f at¢ = 500 obtained
from the 1D evolution code neglecting the effects of nordirity
and simply adopting a constant = 0.22, that is the value of the
precession coefficient far = 0.43 in the small amplitude limit.
One can thus clearly see that the non-linearity in the detetion
of a3 is essential in order to reproduce the correct precessitreof
disc.

6 CONCLUSIONS

In this paper we have numerically tested the non-linear gyap
tion of warps in thin and viscous accretion discs. To this, enel
have run very high resolution SPH simulations of warped exccr
tion discs, extending the previous work of LPQO7 to cover almuc
wider region of the parameter space. In some simulationfiave
increased the numerical resolution with respect to LPO7 digqu
ten times as many particles. We have also checked the effaebo
different implementation of the disc viscosity.

Our new and improved results correct upon the previous re-
sults of LP07, who had found a disagreement between their-sim
lations and the analytical theories of warp propagationtf@rcon-
trary, our results are in spectacular agreement with thelinear
theory of warp propagation of 099. Some specific featurehisf t
theory, confirmed by our simulations, are worth recalling:

(i) For moderate values af > 0.1, the warp diffusion coeffi-
cientv, is not proportional tal/«, wherec is the disc viscosity
coefficient, but follows the slightly more complex relatjdty. (8).

© 2010 RAS, MNRASDOQ, 1-16
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Figure 13.Relation between the precession coefficieptand the disc vis-
cosity «, for warp amplitudesA = 0.01 (red and green triangles) and
A = 0.05 (orange and cyan triangles). All calculations employ 2 iomill
SPH particles, except the cyan and green triangles, whiet2Qamillion.
The solid line shows the expected precession rate in the dfrsmall o,
while the dashed line shows the relation betwegnand « expected for
small amplitude warps from the theory of 099 (Eq. 11).

The ‘standard’l/« behaviour is only recovered for smaller values
of « and for small amplitude warp®ote that a value af ~ 0.1 is
expected based on observations of accreting binary syst€img

et al. 2007).

(ii) For large amplitude warps, the relation betweerandv is
much flatter than thé /« relation, corresponding to a more uni-
form (with respect to the disc viscosity) but also much IdBsient
diffusion of the warp at lonx compared to the linear case. Our
simulations, which are characterised by a warp ampliide 1
are reasonably well described by an almost constant 2.5.

(iii) In general, for non-linear warps, the warp diffusiooetfi-
cient is a function of the warp amplitude, which is itself adtion
of position and time. For a proper calculation of the warplevo
tion in a simple 1D diffusion code it is essential to includels
dependence. We stress that this can and should be done iragpy w
diffusion code.

(iv) The non-linear theory also predicts the appearancatef-
nal precessional torques. Also such torques are well dextiy
the non-linear theory of 099 and can be easily included in Hd-m
els by the simple addition of an extra term in the evolutionagmpn,
as discussed in the text.

(v) For large warp amplitudes and small viscosity ¥ /24)
the evolution of the system is not well described by a simgfe-d
sion equation and a full numerical approach is thus needsddh
cases.
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Figure 14.Profile ofl, att = 500 time units for the casé = 0.5 anda =
0.43. The solid black lines refer to the SPH simulations, while tlashed
red line show the result of the evolution of the diffusion plorecession
code, with non linear warp parametes andas computed based on 099
theory of warp propagation. For comparison, we also show thi¢ dotted
black line the profile at = 500 obtained from the simple 1D evolution
model assuming a constang = 0.22, appropriate for this value af in
the linear regimey < 1).

the above results refer to warp propagation in a disc whese vi
cosity is a standard Navier-Stokes viscosity, and in paldicto
the case where it is isotropic. Accretion disc viscosity éney-
ally thought to be due to turbulence driven by some disc bty
such as the magneto-rotational instability (Balbus & Hawil891)

or gravitational instabilities (Lodato & Rice 2004; Loda2607).

In such cases, it is not obvious that the induced transparbeale-
scribed in terms of an isotropic viscosity coefficient, anche of
the above results, in particular concerning the preceaki@nms
(LPO7), might be affected.
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