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ABSTRACT

In this paper we revisit the issue of the propagation of warpsin thin and viscous accretion
discs. In this regime warps are know to propagate diffusively, with a diffusion coefficient ap-
proximately inversely proportional to the disc viscosity.Previous numerical investigations of
this problem (Lodato & Pringle 2007) did not find a good agreement between the numerical
results and the predictions of the analytic theories of warppropagation, both in the linear and
in the non-linear case. Here, we take advantage of a new, low-memory and highly efficient
Smoothed Particle Hydrodynamics (SPH) code to run a large set of very high resolution sim-
ulations (up to 20 million SPH particles) of warp propagation, implementing an isotropic disc
viscosity in different ways, to investigate the origin of the discrepancy between the theory
and the numerical results. We identify the cause of the discrepancy in an incorrect calibration
of disc viscosity in Lodato & Pringle (2007). Our new and improved analysis now shows a
remarkable agreement with the analytic theory both in the linear and in the non-linear regime,
in terms of warp diffusion coefficient and precession rate. It is worth noting that the resulting
diffusion coefficient is inversely proportional to the discviscosity only for small amplitude
warps and small values of the discα coefficient (α . 0.1). For non-linear warps, the diffusion
coefficient is a function of both radius and time, and is significantly smaller than the stan-
dard value. Warped accretion discs are present in many contexts, from protostellar discs to
accretion discs around supermassive black holes. In all such cases, the exact value of the warp
diffusion coefficient may strongly affect the evolution of the system and therefore its careful
evaluation is critical in order to correctly estimate the system dynamics.
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1 INTRODUCTION

Warped accretion discs may occur across a wide variety of astro-
physical systems, from the large scales of accretion discs around
supermassive black holes (SMBH), down to the small scales of
planet forming discs.

Observationally, warps are found in galactic binary systems,
such as the hyperaccreting X-ray binary SS433 (Begelman et al.
2006) and the X-ray binary Her X-1 (Wijers & Pringle 1999), and in
several microquasars, including GRO J1655-40 (Martin et al. 2008)
and V4641 Sgr (Martin et al. 2008). On the much less energetic
side, a warped protostellar disc is found around the young star KH
15D (Chiang & Murray-Clay 2004).

Warps are also found in the thin accretion discs in Active
Galactic Nuclei (AGN), as in the case of NGC 4258 (Herrnstein
et al. 1996; Papaloizou et al. 1998). The dynamics of warped ac-
cretion can play a fundamental role in these cases, as it in turn reg-
ulates the spin history of the growing SMBH and, as a consequence,

its very ability to grow rapidly (King & Pringle 2006; King etal.
2008).

The torques which produce the warp can be very different.
For protostellar discs, they include tidal interactions with a com-
panion star (Larwood et al. 1996; Martin et al. 2009), and dynam-
ical effects during the formation of the disc, which might affect
the relative orientation of the stellar spin and the planetary orbits
(Bate et al. 2009). For accretion discs around black holes there
are additional torques arising from the general relativistic Lense-
Thirring precession around a spinning black hole (Bardeen &Pet-
terson 1975; Scheuer & Feiler 1996; King et al. 2005; Lodato &
Pringle 2006; Martin et al. 2007; Perego et al. 2009), and self-
induced warping caused by radiation pressure (Pringle 1996). Re-
cently, some attention has also been given to the process of disc
warping and black hole spin alignment in the case of supermassive
black hole binaries (Dotti et al. 2009). In all such cases, the evo-
lution of the system is strongly dependent on the speed at which
warping disturbances can propagate in the disc.

Analytic theories of warp propagation have been discussed ex-
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tensively in the past (Papaloizou & Pringle 1983; Pringle 1992; Pa-
paloizou & Lin 1995; Ogilvie 1999, 2000) (see Section 2). These
theories predict that while for thick discs warps should propagate
as dispersive waves, with a velocity of the order of half the sound
speed in the disc, in the limit of thin and viscous discs the propaga-
tion is diffusive, with a diffusion coefficient inversely proportional
to the disc viscosity (Papaloizou & Pringle 1983). Numerical sim-
ulations of warp propagation in the thick disc case have beenper-
formed by Nelson & Papaloizou (1999) and Nelson & Papaloizou
(2000).

Numerical simulations of warp propagation for thin and vis-
cous discs are much more challenging, because in order to properly
catch the warp dynamics it is essential to accurately resolve the ver-
tical structure of the disc, which for very thin discs can be difficult.
A first attempt at testing the analytical theory with numerical sim-
ulations in the thin disc regime has been performed by Lodato&
Pringle (2007) (hereafter LP07), using SPH. The results of LP07
showed some unexpected results: while for large values of the disc
viscosity the warp diffusion coefficient appeared to scale inversely
with viscosity, as predicted analytically, such behaviourwas not
found at low viscosities,already for small warp amplitudes. In this
case, the diffusion coefficient appeared to be much smaller than the-
oretically predicted, implying (as discussed extensivelyby LP07)
some additional dissipation. Additionally, the internal precession
induced by the warp and predicted analytically was found to be
strongly dependent on the specific implementation of viscosity and
was not found to match the theoretical expectations.

LP07 discuss different possible explanations for such dis-
agreement. On the one hand, it is quite possible that the limited
numerical resolution of their simulations might have affected their
results. On the other hand, strong supersonic motions were found
in the LP07 simulations, which might result into shocks in the re-
sulting flow and thus provide the required additional dissipation.

In this paper, we want to systematically address all the issues
left open by LP07, by checking both the numerical aspects of the
problem and the physical effects involved.

With regards to the numerical aspects, first of all we have used
a different SPH code with respect to LP07, therefore validating one
code against the other. Secondly, we have checked numericalcon-
vergence by running simulations using 20 million particles, that is a
factor of ten larger than LP07 (note that such simulations are among
the largest SPH simulations of accretion discs performed todate).
Since some of the effects reported by LP07 appeared to dependon
the viscosity formulation, we have here tested two different pos-
sible implementations of disc viscosity. Finally, we have modified
our analysis procedure, so as to obtain a more quantitative evalu-
ation of the uncertainties in the measured parameters. In order to
test the physical effects which might determine the LP07 results,
we have paid attention to shocks, which were argued by LP07 to
be responsible for the additional dissipation. We have checked the
importance of shocks by running simulations with differentlevels
of bulk viscosity — varied independently of the shear viscosity —
which is directly connected with shock dissipation.

The paper is organised as follows. In section 2 we discuss the
basic features of the analytic theory of warp propagation inboth
the linear and non-linear regime. In section 3 we detail the numeri-
cal method that we have used to simulate the system, including the
different implementations of disc viscosity that we use. Insection 4
we describe the procedure we have used to analyse our resultsand
extract from the simulations the warp diffusion parameters. In sec-
tion 5 we present and discuss our main results for the warp diffusion

and precession in both the linear and non-linear regime. Finally, in
section 6 we draw our conclusions.

2 ANALYTIC THEORIES OF WARP PROPAGATION

We consider here, as in LP07, the propagation of warps in thinKe-
plerian accretion discs, rotating with angular velocityΩ(R), with
surface densityΣ(R) and angular momentum per unit areaL(R).
HereR should be interpreted as a ‘spherical’ coordinate. The local
direction ofL can be oriented arbitrarily in space, and the unit vec-
tor l(R) = L(R)/L(R) defines its direction. If the disc is rotating
around a central point massM , then its rotation is Keplerian, with
Ω =

p

GM/R3 andL(R) = Σ(R)
√
GMR.

The disc is warped whenever the direction identified byl

changes with radius. The warp amplitude may be characterised us-
ing the dimensionless parameterψ, where

ψ = R

˛

˛

˛

˛

∂l(R)

∂R

˛

˛

˛

˛

. (1)

The disc thickness isH = cs/Ω, wherecs is the sound speed,
and is the scale over which density and pressure change in thelocal
z direction. The disc aspect ratio isH/R, and we shall assume that
H/R≪ 1.

We use the standard Shakura & Sunyaev (1973) prescription
for the disc viscosityν, assumed here to be a standard, isotropic,
Navier-Stokes viscosity:

ν = αcsH = αΩH2. (2)

Warping disturbances can propagate in accretion discs in two
different regimes, depending on the relative importance ofpressure
forces and viscous forces. If the disc is sufficiently thick,such that
H/R > α, then the warp propagates as a dispersive wave (Pa-
paloizou & Lin 1995). The equations of motion for a wave in the
case where the disc is Keplerian and nearly inviscid are (Lubow &
Ogilvie 2000; Lubow et al. 2002)

ΣR3Ω
∂l

∂t
=
∂G

∂R
(3)

∂G

∂t
+ αΩG = ΣR3Ω

c2s
4

∂l

∂R
, (4)

whereG is the disc internal torque in the horizontal plane (only).
Note that these equations are valid only in the linear approximation
for small warps, and that no general non-linear theory for the wave-
like regime exists as yet (but see Ogilvie 2006).

Here, we are mostly interested in the case where the disc is
thin and viscous, such thatH/R < α. In this case, the warp propa-
gates diffusively (Papaloizou & Pringle 1983), and can be approxi-
mately described by the equation (Pringle 1992)
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ν2R|L| ∂l

∂R

«

.

In this equation, the terms proportional toν1 describe the standard
viscous evolution of a thin and flat disc. For small amplitudewarps,
ν1 = ν (and thusα1 = α), but for large amplitudesν1 can be
affected by the warp. The terms proportional toν2 arise whenever
the disc is warped and|∂l/∂R| 6= 0. According to Equation (5) the
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warp diffuses with a diffusion coefficientν2. By analogy with the
viscosity prescription (Eq. (2)) we can define a second parameter
α2 so that

ν2 = α2csH = α2ΩH
2. (6)

It is clear that the nature of the evolution of a warped accretion
disc is determined mainly by the relative values ofα andα2. In the
case of small warp amplitude,ψ ≪ H/R, and for viscosity such
thatH/R . α ≪ 1, Papaloizou & Pringle (1983) have found the
following relation between the two coefficientα andα2:

α2 =
1

2α
, (7)

and therefore that the warp diffusion coefficient isinverselypropor-
tional to the size of the viscosity. Ogilvie (1999) (hereafter O99)
extends these approximate analytic results by use of an asymptotic
expansion in terms of the small quantityH/R, but retaining the as-
sumption of an isotropic (Navier-Stokes) viscosity. By this means
he is able to take account of larger values ofα andψ. In the limit
of a small amplitude warp (ψ ≪ 1), O99 finds

ν2
ν1

=
1

2α2

4(1 + 7α2)

4 + α2
, (8)

which includes higher order corrections inα. O99 also computes
the relation betweenα andα2 for an arbitrarily large warp ampli-
tude, for which there is no simple analytical expression, but that
can be computed numerically. In order to analyse our resultswe
will also make use of these numerical relations (see Sec. 5).

Finally, it should be noted that the full non-linear theory of
O99 also includes some precessional torques, which are not ac-
counted for in the diffusion model by Pringle (1992), because they
arise at higher order inα. In interpreting our results, in some cases,
we have added such terms in our simple diffusion model, by adding
a term on the right-hand side of equation (5), in the form of (see
Ogilvie 1999)

∂L

∂t

˛

˛

˛

˛

prec

=
1

R

∂

∂R

„

ν3R|L|l × ∂l

∂R

«

, (9)

where we have introduced a third coefficientν3 related to preces-
sional effects (with a correspondingα3 = ν3/ΩH

2). The non-
linear theory of O99 also provides an expression for the depen-
dence ofα3 onα and onψ. In the limit of a small amplitude warp
(ψ ≪ 1) and to lowest non-zero order inα, the precession coeffi-
cient is given by (O99)1

α3 = 3/8. (10)

Taking account of large values ofα, but still for small amplitude
warps, the expected relation is given by (cf. Ogilvie & Dubus2001,
Eq. 12)

α3 =
3(1 − 2α2)

2(4 + α2)
. (11)

For non-linear warp amplitudes, higher order corrections in bothα
andψ are given by O99.2

1 Note that this is given incorrectly as 3/4 in Papaloizou & Pringle (1983)
and correspondingly in LP07.
2 The reader should note that O99 uses a slightly different notation, defin-
ing the coefficients usingQ1 ≡ −3α1/2,Q2 ≡ α2/2 andQ3 ≡ α3.

3 NUMERICAL METHOD

We have performed a series of three-dimensional SPH simulations
of warped discs similar, though more extensive than, those per-
formed by LP07. SPH is a Lagrangian scheme for solving the equa-
tions of hydrodynamics in which fluid quantities and their deriva-
tives are computed on a set ofN particles that follow the fluid mo-
tion (see Price 2004 or Monaghan 2005 for recent reviews).

In this paper we have used thePHANTOM code, developed
by D. Price (see Price & Federrath 2010 for another recent ap-
plication). PHANTOM is a low-memory, highly efficient SPH code
optimised for studying non-self-gravitating problems. The code is
made very efficient by using a simple neighbour finding scheme
based on a fixed (in this case, cylindrical) grid and linked lists of
particles. In particular, the absence of overheads associated with the
tree-code for computing gravitational forces as well as other opti-
misations means that the code is significantly more efficientthan
the Benz et al. (1990) / Bate (1995)-derived code previouslyem-
ployed by LP07.

The initial aim of usingPHANTOM was, given the concerns in
LP07, to be able to employ a much higher resolution in the calcu-
lations. Whilst in the end we found this unnecessary (see Sec. 5),
we have instead used our increased computing ability to survey a
much wider parameter space than that explored by LP07, includ-
ing a wide range of viscosity parameters, two different viscosity
formulations and three different warp amplitudes.

3.1 Navier-Stokes equations

In this paper we compute the evolution of a viscous accretiondisc
by solving the Navier-Stokes equations for a viscous, compressible
hydrodynamic gas in an external potential, given by

dρ

dt
= −ρ∇ · v, (12)

dvi

dt
= −1

ρ

∂Sij

∂xj
+ f i

pot, (13)

where the potential corresponds to the gravitational forcefrom a
central star or black hole of massM at the origin, i.e.,

fpot = −GM
r2

r̂, (14)

and the stress tensor is given by the usual expression

Sij =

»

−P +

„

ζ − 2

3
η

«

∂vk

∂xk

–

δij + η

„

∂vi

∂xj
+
∂vj

∂xi

«

, (15)

whereη andζ are the shear and bulk viscosity coefficients respec-
tively. Note that the kinematic shear viscosityν is related to the
shear viscosityη by ν = η/ρ and similarly one may define the
volume viscosityζv = ζ/ρ. In the case of constant viscosity coef-
ficients, the equations can be simplified to the vector form

dv

dt
= −∇P

ρ
+
η∇2

v

ρ
+
“

ζ +
η

3

” ∇(∇ · v)

ρ
+ fpot. (16)

The pressure is related to the density via a locally isothermal
equation of state

P = c2s (R)ρ, (17)

where the sound speedcs is a prescribed function of (spherical)
radiusR ≡

p

x2 + y2 + z2, given by

cs(R) = cs,0R
−q, (18)
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whereq is given in Section 3.3 and the normalisationcs,0 deter-
mines the disc thickness.

In the Shakura & Sunyaev (1973)α-parametrisation for the
disc viscosity, the kinematic viscosity coefficient is given by Eq.
(2). We consider two different methods for implementing Navier-
Stokes viscosity in SPH, firstly based on a modification to theusual
artificial viscosity term (similar to that employed by LP07)and sec-
ondly based on a direct evaluation of the derivatives in (15)and (13)
respectively (see Sec. 3.2.4). The procedure used in the former case
is described in Sec. 3.2.3, settingη andζ to zero in Eq. 15. For the
latter case we simply specifyν in (15) from the nominally input
value forα using

ν(R) = α
c2s (R)

Ω(R)
, (19)

wherecs(R) is specified according to Eq. (18) and we assume a
Keplerian rotation profileΩ =

p

GM/R3. The corrections to Ke-
plerian rotation due to the pressure gradient are of order(H/R)2,
which for the thin discs considered in this paper are very small
(∼ 10−4).

3.2 SPH

3.2.1 Hydrodynamics

PHANTOM implements the full variable smoothing length SPH for-
mulation developed by Price & Monaghan (2004) and Price &
Monaghan (2007), whereby the smoothing length,h, and density,
ρ, are mutually dependent via the density sum (for particlea)

ρa =
X

b

mbWab(ha), (20)

which is an exact solution to (12), and the relation

ha = hfac

„

ma

ρa

«1/3

, (21)

wherema is the particle mass andWab ≡ W (|ra − rb|, ha) is
the SPH smoothing kernel (see e.g. Monaghan 1992; Price 2004;
Monaghan 2005 for details). This results in a resolution that adapts
to the local particle number density. Equations (20) and (21) are
iterated self-consistently using a Newton-Raphson methodas de-
scribed in Price & Monaghan (2007), where in this paper we have
usedhfac = 1.2, giving approximately 58 neighbours per particle
in a smooth distribution.

The equations of motion (13) take the form

dvi
a

dt
= −

X

b

mb

"

Sij
a

Ωaρ2
a

∇j
aWab(ha) +

Sij
b

Ωbρ2
b

∇j
aWab(hb)

#

,

+f i
pot, (22)

whereΩ is a dimensionless quantity related to the smoothing length
gradients (see Price & Monaghan 2007 for details) and the stress
tensor is given by

Sij
a =

»

−
“

Pa + qAV
a

”

+

„

ζa − 2

3
ηa

«

∂vk
a

∂xk
a

–

δij

+ ηa

„

∂vi
a

∂xj
a

+
∂vj

a

∂xi
a

«

. (23)

TheqAV term in (23) is the artificial viscosity (discussed be-
low) which is introduced in SPH in order to capture shocks and(to
a lesser extent) to prevent interpenetration of particles.However, it
can be shown (see below) that the artificial viscosity corresponds

directly to a Navier-Stokes type term and can thus be used, with
minor adjustment of the parameters, to directly represent physical
viscous diffusion (in doing so one would obviously discard the re-
maining terms in Eq. 23, i.e., settingζ = η = 0). The disadvantage
of doing so is that the resultant viscosity coefficient consists of both
shear and bulk components of viscosity, whereas for a disc the vis-
cosity parameterisation (2) should consist of shear viscosity only.

The remaining part of the SPH algorithm is the time inte-
gration algorithm, for which we use a standard leapfrog scheme
equivalent to the velocity Verlet method. For efficiency we assign
individual timesteps, set in factors of 2 from a nominal maximum
timestep, such that only a subset of the particles is moved onthe
shortest timestep. With individual timesteps many of the conser-
vation properties of the leapfrog algorithm are only approximately
satisfied, however the scheme is significantly more efficient.

3.2.2 Artificial viscosity

The artificial viscosity formulation inPHANTOM follows that of
Monaghan (1997), with the averaging in the density and signal ve-
locity changed slightly in order to more efficiently calculate the
terms in (22). We use

qAV
a =



1
2
αAV

a ρavsig,a|vab · r̂ab|, vab · r̂ab < 0
0 vab · r̂ab > 0

(24)

wherevab ≡ va − vb and the viscosity is only applied for ap-
proaching particles (vab · r̂ab < 0, i.e., converging flows). The
signal velocity for hydrodynamics is given by

vsig,a = cs,a + βAV|vab · r̂ab|, (25)

where in generalβAV = 2. TheβAV term in the signal velocity
provides a non-linear term that was originally introduced to prevent
particle penetration in high Mach number shocks (see e.g. Mon-
aghan 1989).

For shock capturing — where the aim is to provide as little
dissipation as possible whilst resolving shock structures— PHAN-
TOM implements the Morris & Monaghan (1997) switch to reduce
dissipation away from shocks, in which the dissipation parameter
αAV is evolved according to a source and decay equation

dαAV
a

dt
= −α

AV
a − αAV

min

τa
+ Sa, τa = ha/(σcs) (26)

whereσ = 0.1, S = max(0,−∇·v),αmin = 0.05 and in general
one would enforceαmax = 1.0.

3.2.3 Disc viscosity using the artificial viscosity term

It has been known for quite some time (e.g. Artymowicz & Lubow
1994; Murray 1996) that the artificial viscosity terms in SPHcan be
understood straightforwardly as numerical representations of sec-
ond derivatives of the velocity. This is because the standard proce-
dure for evaluating second derivatives in SPH is to use an integral
formulation based on only the first derivative of the SPH kernel.
For example the Laplacian for a scalar quantityA is represented by
(Brookshaw 1985; Price 2004; Monaghan 2005)

∇2Aa = −2
X

b

mb

ρb
(Aa − Ab)

r̂ab · ∇aWab

|rab|
, (27)

which is more clearly expressed by writing the kernel gradient as
∇aWab ≡ r̂abFab, giving
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Figure 1. 3D structure of the warped accretion disc from a representative
20 million particle calculation in the large warp amplitudecase (A = 0.5).

∇2A = −2
X

b

mb

ρb
(Aa − Ab)

Fab

|rab|
. (28)

For a vector quantity the corresponding expressions are
(Español & Revenga 2003; Monaghan 2005)

∇2
A = −2

X

b

mb

ρb
(Aa −Ab)

Fab

|rab|
, (29)

∇(∇ · A) = −
X

b

mb

ρb

h

(δk
k + 2)(Aab · r̂ab)r̂ab − Aab

i Fab

|rab|
,

(30)

whereδk
k ≡ n i.e., the number of spatial dimensions.

The above expressions mean that it is possible to give clear
interpretation to the artificial viscosity terms, since forexample in
three dimensions we have, from (29) and (30),

−
X

b

mb

ρb
(Aab · r̂ab)

Fab

|rab|
=

1

5
∇(∇ · A) +

1

10
∇2

A. (31)

For non-constant coefficients the expressions are similar (Cleary
& Monaghan 1999; Monaghan 2005), but with an average of the
coefficients on the particles, for example

∇ · (κ∇A) = −
X

b

mb

ρb
(κa + κb)(Aa − Ab)

Fab

|rab|
, (32)

where Cleary & Monaghan (1999) give alternative averaging pro-
cedures more appropriate when the coefficients are discontinuous.

Thus, for the artificial viscosity terms presented above (Sec.
3.2.2), we have

νAV ≈ 1

10
αAVvsig|rab|, (33)

ζAV
v ≈ 1

6
αAVvsig|rab|. (34)

Note that the factor|rab| in the Monaghan (1997) formulation of
viscosity used inPHANTOM differs slightly from the factorh that
would result from using the older Monaghan (1992) formulation.
The difference is only slight because by definition within the ker-
nel radius|rab|/h 6 2, but use of the Monaghan (1997) version
avoids the need to account for divergences in the denominator when
|rab| → 0.

In order to use the artificial viscosity to represent a Shakura &
Sunyaev (1973) disc viscosity, we therefore require several minor
changes from the formulation appropriate for shocks given in Sec.
3.2.2. These changes are:

(i) Viscosity should be applied for both approaching and reced-
ing particles,

(ii) The βAV term in the signal velocity should be dropped such
thatvsig = cs,

(iii) qAV should be multiplied by a factorh/|rab|, similar to the
Monaghan (1992) artificial viscosity scheme, and

(iv) The Morris & Monaghan (1997) switch should not be used
i.e.,αAV should be treated as a constant.

With these conditions the resultant ‘artificial viscosity for a disc’ is
given by

qAV
a =

1

2
αAVρacs,a|vab · r̂ab|

h

|rab|
, (35)

giving

νAV ≈ 1

10
αAVcsh, (36)

ζAV
v ≈ 1

6
αAVcsh. (37)

This is essentially the approach adopted by LP07 and severalearlier
SPH accretion disc calculations (e.g. Artymowicz & Lubow 1994;
Murray 1996), giving, from Eq. (2),

α ≈ 1

10
αAV 〈h〉

H
, (38)

where〈h〉 is the azimuthally averaged (or, for a warped disc, shell
averaged) smoothing length. The additional complication when us-
ing a spatially variable smoothing length, addressed by LP07, is
that in order to obtain a disc evolution corresponding to a single,
uniform value ofα thoughout the disc, it is necessary to setup the
disc with a surface density profile such that〈h〉/H ≈ const. This
is discussed in Sec. 3.3, below.

The disadvantage of using the artificial viscosity term to rep-
resent physical viscosity is that one inevitably ends up with a large
and unwanted coefficient of bulk viscosity (Eq. 37). For a disc sim-
ulation this is not so disadvantageous since in general∇ · v is not
large, so although the coefficient is large, the term to whichit is
applied is small. However given that at least some of the deviations
from the analytic theory found in LP07 could possibly be explained
by excess dissipation, it is desirable to perform simulations that ei-
ther have no explicit bulk component or where the bulk viscosity is
carefully controlled as would be the case when applied to shocks in
the case of the usual artificial viscosity (Sec. 3.2.3).

3.2.4 Navier-Stokes viscosity implemented via two first
derivatives

A straightforward alternative to using the artificial viscosity term
to model physical viscosity is simply to evaluate the terms in Eq.
(23) directly. This is essentially the method proposed by Flebbe
et al. (1994). In this paper we evaluate the gradient terms using the
standard variable-smoothing-length gradient operator, given by

∂vi
a

∂xj
a

=
1

ρaΩa

X

b

mb(v
i
b − vi

a)
∂Wab(ha)

∂xj
a

, (39)

where the coefficients of viscosity are set as discussed in Sec. 3.1.
Using this method one can in principle use zero bulk viscosity, by
setting the bulk coefficient to zero and turning off any artificial vis-
cosity terms. The danger with doing so is that any shocks thatare
present will not be treated appropriately and also that there is noth-
ing to prevent particle interpenetration in the SPH scheme.Thus
any such calculations should be treated with the appropriate degree
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of caution. A better approach, and our default when using this for-
mulation, is to set the physical bulk coefficient to zero in (23), but
to apply a small and carefully controlled amount ofartificial vis-
cosity to correctly dissipate shocks and approaching particles using
the switches described in Sec. 3.2.2. The resulting coefficient of
bulk viscosity in this case is, however, much lower than would be
applied when using the artificial viscosity to mimic a disc viscosity
(see Sec. 3.2.3, above).

3.2.5 Navier-Stokes viscosity using direct second derivatives

A further alternative, not considered in this paper, would be to di-
rectly evaluate the second derivative terms resulting fromthe gra-
dient of the stress tensor as in Eq. (16), using the standard rep-
resentation of second derivatives in SPH given by Eqs. (29) and
(30). Indeed this forms the basis of the ‘dissipative particle dy-
namics’ scheme of Español & Revenga (2003). The terms in this
case are obviously similar to the formulation using artificial vis-
cosity discussed above, except that the shear and bulk components
can be set separately. The disadvantage is that the total angular
momentum is no longer conserved because the dissipation is not
applied along the line of sight joining the particles (meaning that
P

b mbra×dva/dt 6= 0). How serious a limitation this presents in
practice for disc simulations has not been clarified, thoughit would
be worthy of further investigation.

3.2.6 Azimuthal averaging of SPH results

In order to compare the results of the 3D SPH simulations with
the simple diffusion equation (5) it is necessary to compute
azimuthally-averaged disc quantities from the SPH simulations.
We perform this averaging by dividing the simulation domainuni-
formly in R from Rin to Rout in N = 350 spherical shells, with
radial width∆ = (Rout − Rin)/N . The disc surface density in
shell i is then given by the total mass divided by the disc surface
corresponding to each shell, i.e.,

Σi =

P

j mj

π[(Ri + ∆/2)2 − (Ri − ∆/2)2]
, (40)

where the sum is performed over all particles in the shell. The av-
erage angular momentum is computed as:

Ji =

P

j mjrj × vj

Ni
, (41)

whereNi is the number of particles in shelli. Finally, the local
direction of the angular momentum vector can be computed using

li =
Ji

|Ji|
. (42)

Examples of the resulting one-dimensional disc profiles areshown
in Figures 3, 7, 9, 10, 12 and 14. The above procedure for comput-
ing the disc surface density has also been implemented as a feature
in SPLASH(Price 2007).

3.3 Initial conditions

Initial conditions are identical to those in LP07. We use code units
in which the gravitational constantG = 1, the central point mass
M = 1 and the time unit is such that at a radiusR = 1 (in code
units) the dynamical time isΩ−1 = 1. We place the gas particles in
Keplerian orbits in the gravitational potential of a point mass with

M = 1 (in code units). The gas particles are removed from the
calculation inside a radiusR = 0.5 (in code units). We distribute
the particles using a Monte Carlo placement method such thatthe
disc has a prescribed initial surface density profile, as described
below. The particles are distributed inz so as to attain a Gaussian
density profile in the vertical direction, with thicknessH = cs/Ω.
The random particle placement, whilst simple, means that some
settling of the disc occurs during the first few dynamical times of
the simulation.

The orbit of each particle is tilted such that the componentsof
the unit vectorl are given by

lx =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

0 for R < R1

A

2

»

1 + sin

„

π
R−R0

R2 −R1

«–

for R1 < R < R2

A for R > R2

(43)

ly = 0, (44)

lz =
p

1 − l2x, (45)

whereR1 = 3.5 andR2 = 6.5 in code units, andR0 = (R1 +
R2)/2 = 5. The warp amplitudeψ is then

ψ = R

˛

˛

˛

˛

∂l

∂R

˛

˛

˛

˛

=
R

lz

∂lx
∂R

(46)

the maximum of which is attained atR ≈ R0 and is given by

ψmax ≈ πR0

2(R1 −R2)

A
p

1 − (A/2)2
= 2.62

A
p

1 − (A/2)2
(47)

A three dimensional rendering of the resulting warped disc
from one of our high resolution (20 million particle) calculations is
shown in Figure 1, for the case of a high amplitude warp (A = 0.5).
A cross section of the disc in a 2 million particle simulationwith
a low amplitude warp (A = 0.01) is shown in Figure 2, showing
the slight bend induced in the disc profile. The initial shapeof the
warp is also plotted in Fig. 1 of LP07 and is shown by the lines
corresponding tot = 0 in Figures 7 and 9 of this paper.

The disc extends fromRin = 0.5 toRout = 10, with a surface
density profile,Σ, given by

Σ(R) = Σ0R
−p

 

1 −
r

R0

R

!

. (48)

The parameterp is set top = 3/2, as in LP07, such that, giving
q = 3/4 in Eq. (18), the disc is uniformly resolved, in the sense
that the smoothing lengthh ∝ ρ−1/3 is proportional to the disc
thicknessH ∝ R3/4, as described in LP07.

We choose the normalisation of the sound speed such that the
aspect ratio of the disc atR0 = 5 isH/R = 0.0133, corresponding
to an aspect ratio atR = 1 (in code units) ofH/R = 0.02, in
order to model a thin disc, where warps propagate primarily in the
diffusive regime (see Section 2).

4 ANALYSIS

4.1 1D Disc evolution

We compare the time evolution ofΣ andl from the SPH simulation
with the one resulting from Equation (5). This is solved using stan-
dard finite difference methods, which are detailed in Pringle (1992)
and LP07, but with a different implementation of the zero torque
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Figure 2. Cross section of the disc in the SPH calculations for a low amplitude warp (A = 0.01) at a resolution of 2 million particles.

boundary condition at the inner edge. While in Pringle (1992) and
LP07 the zero torque condition is implemented in an approximate
way, by artificially removing mass from the innermost cells in or-
der to keepΣ close to zero, in this paper we directly enforceΣ = 0
at the innermost cell. The two conditions are largely equivalent,
but the shape of the surface density profile in the inner disc can be
slightly modified. This is important because in turn it significantly
affects the evaluation ofα, as described in Section 5.1.

4.2 Fitting procedure

The main aim of this paper is to determine the relation between the
two parametersα andα2, which describe the disc viscosity and the
warp diffusion coefficient, respectively. In principle, the parameter
α should be simply determined by the input viscosity coefficient
in the SPH code as per Sec. 3.2. However, LP07 did not find a
perfect match between the nominal value ofα as expected from the
continuum limit of SPH and theα measured from the 1D surface
density evolution using Eq. (5), and therefore preferred tofit both
parameters independently, to get the desired relation. In particular,
LP07 “stress that [they] do not perform an actual statistical fit of
the viscosity coefficients, but simply choose them so as to match
the evolution of the numerical simulation”. This point is discussed
further in Section 5.1.

In this paper, we have implemented a statistical fitting proce-
dure to check the calibration between the inputα parameter and
the value measured from comparing the SPH and the 1D evolution
of the disc using 5. The same procedure is further used to measure
the warp diffusion coefficientα2 and the precession coefficientα3.
This procedure is described below. Specific results for the calibra-
tion of α and the estimate ofα2 andα3 are reported in Sec. 5.

4.2.1 Fittting forα

The viscosity parameterα is primarily responsible for the evolution
of the disc surface densityΣ. In particular, given the shape of the
surface density in our initial condition, the feature whichis most
directly related toα is the decline of the peak surface density in the
inner disc. In order to obtainα we have therefore fitted the shape
of the surface density profile close to the peak as resulting from
the 1D disc evolution at a given time to the SPH data. Thus, we
have compared the data att = 500 (in code units), and considered
an annulus of radial width equal to 0.1 each side of the maximum.
To obtainα, we have minimized theL2 norm of the difference
between the 1D evolution profile and the SPH data:

Eα =
X

i

[Σi − Σ1D(Ri)]
2, (49)

where the sum is taken over all shells (see previous section)within
a radial distance 0.1 from the maximum. The value ofΣ1D atRi

is obtained by interpolation between the closest 1D cells. The min-
imum Eα is found by using a simple Newton-Raphson scheme.
Starting from a trial value ofα we iterate using:

αn+1 = αn − E
′

α(αn)

E′′

α(αn)
(50)

= αn − ǫ

2

»

Eα(αn + ǫ) − Eα(αn − ǫ)

Eα(αn + ǫ) +Eα(αn − ǫ) − 2Eα(αn)

–

,

where in the second line the first and the second derivatives of Eα

are approximated by their finite difference value with respect to a
small incrementǫ. Once a minimum is found, we make sure that it
is not a local minimum by checking thatEα is larger upon incre-
mentingα by 5ǫ either side of the minimum. We also compute the
1−σ uncertainty on the fitted value ofα by computing the distance
from the minimum at whichEα is increased by a factor 2.

An example of the best fitΣ profile compared to the averaged
SPH profile is shown in Fig. 3. As it turns out, the best fit profile
is in fact very close to the one computed using the input valuefor
α, so this fitting procedure forα itself becomes unnecessary (see
Sec. 5.1, below).

4.2.2 Fittting forα2 andα3

The values ofα2 andα3 are obtained using a similar procedure,
though the computation of either requires, and is dependenton, an
input value for the disc viscosityα — that is, using either the nom-
inal or fittedα value.

The diffusion coefficientα2 is mostly responsible for the evo-
lution of the profile ofl, and in particular, given our initial con-
ditions, it affects the evolution oflx around the warp radius at
R = R0. We therefore define theL2 norm of the difference
between the 1D evolution and the SPH evolution oflx at time
t = 1000 code units as:

Eα2
=
X

i

[li,x − l1Dx (Ri)]
2, (51)

where the sum is taken over all shells within a radial distance equal
to 3 from the warp radius. In practice, rather than fittingα2 we fit
the parameterf , defined asα2 = f/(2α). The parameterf and its
uncertainty are then obtained through minimization ofEα2

using a
scheme analogous to the one used forα.

The precession coefficientα3 affects primarily the evolution
of ly around the warp radius. Its best fit value is thus obtained from
the minimization of

Eα3
=
X

i

[li,y − l1Dy (Ri)]
2, (52)

using a scheme analogous to the one used forα andα2, and de-
pending on the input values of both of these. As forα2 the sum
is taken over all shells within a radial distance of 3 from thewarp
radius.

5 RESULTS

The initial aim of this paper was to perform simulations at a res-
olution significantly higher than that employed by LP07, in order
to assess the effect of limited resolution. Having performed several
calculations with 20 million SPH particles and finding results in-
distinguishable from the lower resolution of 2 million particles, we
have instead surveyed a wide range in parameter space, perform-
ing a total of 78 simulations using 2 million particles together with
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Figure 3. Left: surface density profile from the SPH simulation (solidblack line) and from the 1D evolution att = 0 andt = 500 in code units, for the case
α = 0.3, using the input value (from Eq. 38) (dashed green line) and the measured best fit value (dashed red line) of the disc viscosity for the calculation using
artificial viscosity to model disc viscosity at an SPH resolution of 2 million particles. We find very close agreement between the input and fitted values. Right:
Same, but using Navier-Stokes viscosity. In this case, the fit with theΣ profile is slightly better, giving smaller error bars in the fitted value ofα.

Series A Visc.
type

Bulk
visc.?

Npart Symbols

1 0.01 AV yes 2 × 106 red triangles
2 0.05 AV yes 2 × 106 orange triangles
3 0.01 AV yes 2 × 107 green triangles
4 0.05 AV yes 2 × 107 cyan triangles
5 0.01 NS no 2 × 106 black squares
6 0.01 NS switch 2 × 106 blue squares
7 0.5 AV yes 2 × 106 magenta triangles
8 0.5 AV yes 2 × 107 yellow triangles

Table 1. Parameter settings for each of the 8 series of calculations per-
formed in this paper, where each series consists of a set of simulations
covering a range of disc viscositiesα. The second column gives the ini-
tial warp amplitudeA used in Eq. (43), the third column shows whether the
disc viscosity was represented using the modified artificialviscosity term
(AV) or via a direct implementation of Navier-Stokes viscosity (NS). The
fourth column shows whether or not bulk viscosity was applied (always true
for the AV calculations). The resolution of the calculations is given in the
fifth column and the symbols used to represent each series in Figures 4, 5,
6, 8 and 13 are given in the last column.

the original 8 at 20 million particles. These consist of 8 series of
simulations, each for a range of viscosity values. The parameters
for each series are given in Table 1, where we have consideredthe
effect of resolution (2 vs. 20 million particles), three different warp
amplitudes (A = 0.01, 0.05 and0.5), disc viscosity formulated
either using the modified artificial viscosity (AV) or by a direct im-
plementation of Navier Stokes terms (NS), considering the latter
with zero bulk viscosity and subsequently with a small amount ap-
plied using a switch.

5.1 Calibration of the disc viscosity coefficient

The best matching values ofα (here referred to asαfit) reported
in Table 1 of LP07 do not follow the expected relation given by
Eq. (38). Although, for a given〈h〉/H , the relation betweenαfit

andαAV is approximately linear, the slope is shallower than ex-
pected. An accurate calibration ofα is important, because in turn
it is used as an input for the evaluation and fitting of the warpdif-
fusion coefficientα2. The disagreement found in LP07 prompted
us to examine the method used to calibrateα in greater detail, re-
sulting in our implementation of the fitting procedure described in
Section 4.2 — essentially a quantitative version of the procedure
performed in LP07.

In considering this issue, we have also explored the effect of
the inner boundary condition of the 1D disc evolution on the mea-
surement ofα. Indeed, the main feature which is used for the evalu-
ation ofα is the turnover of the surface density at small radii, which
might well be affected by the specific boundary condition used. Us-
ing the same condition employed by LP07 (described in Sec. 4.1,
above), we found a similar relationship betweenαfit andαAV —
that is, not matching the expectations from Eq. (38). Furthermore,
we found that the calculations using a Navier-Stokes viscosity also
did not agree with the measured values. However, when the zero
torque boundary condition was enforced exactly (see Sec. 4.1), the
disagreement was removed. This is demonstrated in Fig. 4, which
shows the best fit valueαfit versus the input value ofα calculated
using Eq. (38). Results are shown with triangles for the calcula-
tions where the disc viscosity has been simulated using the SPH
artificial viscosity, whilst squares correspond to calculations where
Navier-Stokes viscosity terms have been implemented directly. All
calculations are performed at a resolution of 2 million SPH par-
ticles, except for the green and cyan triangles that use 20 million
particles. The error bars show the 1σ errors from the fitting proce-
dure.
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Figure 4.Comparison between the input value ofα and the measured value
obtained fitting the SPH data to the 1D evolution ofΣ, with the zero torque
boundary condition enforced exactly. Results are shown with triangles for
the calculations where the disc viscosity has been simulated using the SPH
artificial viscosity, whilst squares correspond to calculations where phys-
ical viscosity terms have been implemented directly. All calculations are
performed at a resolution of 2 million SPH particles, exceptfor the green,
cyan and yellow triangles that use 20 million particles. Error bars refer to
the 1σ errors from the fitting procedure used to obtainαfit.

As one can see from Fig. 4, the general agreement is very
good. In other words, the procedure used by LP07 to simultane-
ously fitα andα2 is no longer necessary and henceforth we simply
fit the single parameterα2 using the input value forα.

Also worth noting from Fig. 4 is that, whilst the error bars
ar smaller using the Navier-Stokes viscosity (squares) — due to
an improved agreement of the profile ofΣ near the inner boundary
(see right panel of Fig. 3) —, there appears to be a small excess dis-
sipation that occurs for low inputα. In the case of Series 5 (black
squares), this may be naturally attributed to the small amount of
artificial viscosity we have applied. However, for Series 6 (blue
squares), using zero artificial viscosity paradoxically results in an
evengreaterdissipation. We attribute this to the increased random-
ness of the particle distribution arising when no bulk viscosity is
present. A similar effect is seen in several other SPH simulations,
e.g. in Price & Federrath (2010) whenβAV is too low.

5.2 Results for the warp diffusion coefficient

The results of the fitting procedure for the warp diffusion coeffi-
cientα2 are shown in Fig. 5, for Series 1 to 5 discussed above. The
solid line in the figure shows the simple relationα2 = 1/(2α) ex-
pected in the linear regime of warp propagation discussed inSec-
tion 2 (Papaloizou & Pringle 1983). What is most striking is that
the numerical results do not appear to match the1/(2α) relation in
almostanyregime. In particular, at highα, the measured values of
α2 lie much above the simple1/(2α) relation, while at lowα they
lie slightly below it. This is contrary to the result shown inLP07,
where agreement was found at highα, and a much larger disagree-

ment was found at lowα. The origin of the discrepancy between
our results and those of LP07 lies in the more accurate evaluation
of the disc viscosityα discussed above and the resultant effect on
the fit forα2.

The natural question is therefore: why do the new, more accu-
rate results not agree with the standard theory?

Initially, we will discuss only the simulations with a small
warp amplitudeA = 0.01. The effect of finite warp amplitude is
discussed later in Section 5.2.5

5.2.1 Effect of resolution

Our first attempt to reconcile the simulation with the theorywas
to check for resolution effects. In particular, these are thin discs,
and the vertical scale-height is only moderately resolved (by only
1.6 smoothing lengths) at a resolution of 2 million particles (see
Fig. 2). LP07 also mention the possibility of resolution effects in
their simulations (which have the same resolution of 2 million par-
ticles) but nevertheless demonstrate that the vertical density profile
is very well reproduced (see Fig. 2 of LP07), and hence argue that
such effects should be negligible. We have therefore performed 6
calculations at the higher resolution of 20 million particles (four
with A = 0.01 and two withA = 0.05), for which the vertical
scale-height is resolved with∼ 3.5 smoothing lengths. The results
of these higher resolution simulations are shown with greenand
cyan triangles in Fig. 5 and show no significant difference with re-
spect to the lower resolution case. Note that the calibration of α
for these calculations, shown in Fig. 4 is very similar to the2 mil-
lion particle case, despite the very different smoothing lengths. We
therefore conclude that resolution effects are not to blamefor the
discrepancy.

5.2.2 Effect of viscosity formulation

The results of LP07 showed strong disagreement with the standard
theory at lowα. LP07 argue that a discrepancy between their re-
sults and the standard theory at lowα might arise because of en-
hanced dissipation due to the presence of supersonic motions and
hence shocks. With the recalibration ofα discussed above the dis-
agreement at lowα is significantly reduced and, as we show later,
can now be explained by the transition to the wave-like propagation
regime.

Nevertheless, when using the SPH artificial viscosity to rep-
resent disc viscosity, one inevitably ends up with a large bulk vis-
cosity coefficient (see Section 3.2.3, Eq. 37), which could perhaps
explain the excess dissipation invoked by LP07. In order to check
whether bulk viscosity affects the magnitude of the warp diffusion
coefficient, we have implemented a full Navier-Stokes viscosity, as
described in Section 3.

The results of the calculations using the Navier-Stokes viscos-
ity and zero bulk viscosity and the artificial viscosity set to zero are
shown in Fig. 6 (blue squares), and indeed appear to show a signif-
icant effect, lowering the measured values ofα2 at lowα. But, as
discussed in great detail in LP07, this impliesan even greater ex-
cess dissipation. Thus, paradoxically, by removing bulk viscosity
we have apparentlyincreasedthe amount of dissipation present in
the simulation. However, some caution is required here, since — as
discussed in section 3.2.4 — one should be very careful aboutcom-
pletely removing all bulk viscosity from SPH simulations, since
it plays a necessary role in preventing particle interpenetration,
as well as providing physical dissipation in shocks, if shocks are
present.
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Figure 5. Relation between the warp diffusion coefficientα2 and the disc viscosityα, for warp amplitudesA = 0.01 (black squares, red and green triangles)
andA = 0.05 (orange and cyan triangles). Squares use a direct implementation of the Navier-Stokes terms, whilst triangles use the SPH artificial viscosity to
represent the disc viscosity. All calculations employ 2 million SPH particles, except the cyan and green triangles, which use 20 million. The solid line shows
the simpleα2 = 1/(2α) relation from Papaloizou & Pringle (1983). The long-dashedline includes the non-linear corrections due to finite values ofα for
small amplitude warps (Eq. 8).

We have therefore also computed a series of simulations with
Navier-Stokes shear viscosity, but with a small amount of artificial
viscosity, applied only for approaching particles and using a switch
to reduce its amplitude away from shocks (black squares in Figs. 5
and 6). Note that the effective bulk viscosity coefficient inthis case
is much smaller (at least a factor of 5) that that present in the sim-
ulations that use artificial viscosity to represent disc viscosity (i.e.
the red triangles in Fig. 5). Despite the very small change inthe vis-
cosity formulation, the results of this series of simulations (series 5,
black squares in Fig. 5) are in very good agreement with thosepre-
sented previously (series 1, red triangles). This leads us to conclude
that the dramatic effect produced in Fig. 6 by removing all ofthe
bulk viscosity, is most likely a numerical artefact. This isstrength-
ened by the results already discussed in Fig. 4, also showingthat
the simulations with zero bulk viscosity show a higher dissipation,
that can be attributed to the increased randomness of the particle
distribution when no bulk viscosity is present.

5.2.3 Are we looking at the right theory?

Having investigated the effect of both resolution and viscosity for-
mulation, we may dispense with the possibility that the disagree-
ment between the SPH simulations and the simple linear theory is

simply a numerical artefact. What is worse, the recalibration ofα
discussed in Section 5.1 puts us in a worse position than LP07, as
we now disagree with the linear theory at both lowand highvalues
of α, contrary to the results of LP07, where the results appearedto
agree at highα. In our case, the results are also more significant,
because we have much better statistics (86 simulations compared
to the 10 shown in Fig. 8 of LP07), spanning a wider range in allof
the parametersα, α2 and the warp amplitude.

Clearly, though, theα values we are using here at not small,
and therefore it may well be expected that the nominal1/(2α) re-
lation is not appropriate, particularly at the high-α end of our pa-
rameter range. Indeed, when we plot the relation betweenα2 and
α predicted for finite values ofα by Eq. (8) (long-dashed line in
Figs. 5 and 6), we recover an excellent agreement with the SPH
results forα & 0.15 for low-amplitude warps.

We thus conclude that there is no disagreement between our
numerical results at highα and the linear theory of warp propaga-
tion, once the effects of finiteα are appropriately accounted for in
the theory. The only remaining issue is a small disagreementat low
α for small amplitude warps — though much smaller than the one
found in LP07, which we discuss in the next section.
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Figure 6. As in Fig. 5, but comparing only the two series using Navier-
Stokes viscosity, with (black suqares) and without (blue squares) a small
amount of artificial bulk viscosity. Despite the nominally lower input vis-
cosity, the calculations with zero bulk viscosity paradoxically show a larger
dissipation, as evidenced by the lower magnitude of the warpdiffusion co-
efficientα2. We attribute this to the danger of using zero bulk viscosityin
SPH.

5.2.4 Low viscosity behaviour and transition to the wave-like
propagation regime

In principle, there could be two explanations for the remaining
small disagreement that we find for low viscosity: a numerical one,
related to our procedure to fit the value of the diffusion coefficient
α2, and a physical one, related to an actual transition to a different
propagation regime, such as the wave-like propagation regime (sec.
2).

There are good reasons to believe that both effects might play
a role for small values of the viscosity coefficient. From thenumer-
ical point of view, we note that our fitting procedure is basedon
matching the solution of the simple diffusion equation to the SPH
results at a given time,t = 1000 in code units, which corresponds
to 0.4α in units of the viscous time atR = 1. The viscous time is
not only a measurement of the time needed for the overall viscous
evolution of the disc to take place, but also of the time needed to
smooth out the discreteness of the particle distribution inthe ini-
tial condition. We therefore might expect that, for smallα, the SPH
simulation att = 1000 code units is still somewhat noisy, and that
it might affect the evaluation ofα2. That this is the case can already
be seen from the fact that the error bars onα2 get larger at small
α. Additionally, we have also found that for smallα the results are
somewhat sensitive to the time at which the fit is performed. If the
fit is performed at earlier times, the resulting value ofα2 tends to
be systematically shifted down by a small amount.

The results of the calculation for lowα might also be af-
fected by the fact that warp propagation undergoes a transition to
the wave-like regime (sec. 2), which, for small warp amplitudes, is
expected to occur at aroundα . 2πH/λ ≈ 0.07, whereλ is the
wavelength of the perturbation (which in our case isλ ∼ 6 in code
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Figure 7. Evolution of the shell averaged profiles oflx from the SPH sim-
ulations att = 0 and t = 500 in code units (solid black lines), for the
low viscosity caseα = 0.065 andA = 0.01, compared to the results of
a 1D evolution assuming wave-like propagation with dissipation at the ap-
propriate value ofα, from Eqs. (3) and (4) (dashed red lines). The excellent
agreement explains the deviations at lowα seen in Fig. 5, as been due to
the transition to the wave-like propagation regime at low viscosity.

units). In order to test this hypothesis we compare the evolution of
the SPH simulation to the 1D evolution appropriate to the wave-
like regime (Eqs. 3 and 4), including dissipation corresponding to
the input value ofα from the simulation. The results of this test are
shown in Fig. 7 for a low amplitude warp withα = 0.065, from
Series 1. The plot shows the profile of thex-component of the unit
vector l from the SPH simulation att = 0 andt = 500 in code
units (solid black lines) compared to the 1D evolution from Eqs.
(3) and (4) (dashed red lines). The fact that the profiles agree well
indicates that wave-like propagation, albeit with diffusion, can ex-
plain the deviation from the purely diffusive propagation we have
assumed when comparing with Eq. (7) or Eq. (8).

Given that there is no longer any disagreement between theory
and the results of the SPH simulations, contrary to LP07, it is no
longer necessary to invoke any additional dissipation involved in
warp propagation.

5.2.5 Large amplitude warps

Having gained some confidence that the linear theory of warp prop-
agation explains satisfactorily the evolution of the SPH simulations
at low warp amplitudes, we may turn our attention to non-linear
effects.

Initially we have considered a small increase in the initialwarp
amplitude toA = 0.05 in Eq. (43). The results of these calculations
(Series 2) are shown with orange triangles in Fig. 5 and are essen-
tially indistinguishable from theA = 0.01 case (Series 1 and 5),
demonstrating that the linear theory is applicable also in this case.

The resulting values ofα2 from our fitting procedure for the
A = 0.5 case (Series 7) are shown in Fig. 8 with magenta trian-
gles, compared to the corresponding Series 1 forA = 0.01 (red
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Figure 8. Relation between the warp diffusion coefficientα2 andα for
large amplitude warps. The magenta triangles show the results for A =
0.5, while the red triangles, for comparison, indicate the small amplitude
(A = 0.01) case. The solid and long-dashed lines show the1/(2α) relation
and the corrections expected for finiteα, respectively. The short-dashed
line shows the expected relation based on the non-linear theory of O99,
assuming a fixedψ = 0.55 (roughly comparable to the averageψ value
usingA = 0.5). The large error bars in the high amplitude case at low
α are because the non-linear warp evolution is not well fitted by a single
value forα2 — physically manifested as a steepening of the warp profile
observed in the simulations (see Fig. 10) that is not captured by the fitted
linear profiles.

triangles). One can immediately see that the fitted values ofα2, for
small α, are much smaller than the low amplitude case, and are
characterized by a much larger uncertainty.

At very large warp amplitudes, the linear theory of warp prop-
agation in the diffusive regime is not applicable, and it is there-
fore not surprising that, indeed, the SPH simulations in this regime
(A = 0.5) do not match either the1/(2α) relation or the more
complete relation of Eq. (8) which is non-linear inα but assumes
linearity in the warp amplitude. O99 presents a non-linear theory
of warp propagation for warps of any amplitude. We are now in a
position to test this theory numerically.

The complicating factor is that, in the O99 theory,α2 is a func-
tion of the warp amplitudeψ (related toA by Eq. 46, with the max-
imum value given by Eq. 47). We thus cannot associate a single
value ofα2 to each large amplitude simulation, asψ is a function
of radius (Eq. 46) and furthermore decreases as a function oftime
as the warp diffuses. Indeed, this is the reason for the largeerror
bars in Fig. 8 when attempting to fit a singleα2 value to thelx pro-
file, particularly at lowα where in the O99 theory the dependency
of α2 onψ is much stronger. What is possible is to check whether
the deviations expected from such non-linear theory followthe ob-
served trend, i.e. a general decrease value of the diffusioncoeffi-
cient. The short-dashed line in Fig. 8 shows the relation between
α2 andα based on the theory of O99 for a fixed value ofψ = 0.55,
computed numerically based on a routine kindly provided to us by
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Figure 9.Shell averaged profiles oflx from the SPH simulation (solid black
lines) at t = 0 and t = 1000 (in code units), compared to the corre-
sponding profiles from the diffusive evolution, for the highviscosity case
α = 0.43 and a strongly non-linear warp amplitude (A = 0.5), assuming
the warp diffusion coefficient to be a function ofα andψ, as predicted by
O99 (dashed red lines).

Gordon Ogilvie. We can indeed see that the non-linear theorydoes
reproduce qualitatively the observed trend.

As an additional test of the theory, we have also evolved the
standard equation for diffusive evolution (Eq. 5), where the diffu-
sion coefficientsα1 (now different fromα) andα2 are computed
at each radius and at each timestep, based on Ogilvie’s non-linear
theory. In this case, we do not have any free parameter to fit:α is
the nominal value of the viscosity coefficient, andα1 andα2 are
prescribed functions ofα andψ which we compute at each radius
and time by evaluation of the relevant integrals in O99 usingthe
routine provided. The resulting profiles oflx are shown in Fig. 9
for the case whereα = 0.43. The black solid lines show the results
of the SPH simulations att = 0 andt = 1000 (in code units), while
the red dashed line show the corresponding profiles computedfrom
Eq. (5). The agreement of the non-linear theory with the SPH re-
sults is excellent. Note that the warp diffusion coefficientin the the-
ory of O99 depends also on the amount of bulk viscosity present in
the disc. Indeed, in order to get the good match shown in Fig. 9
we have computed the warp diffusion coefficient assuming a bulk
viscosity with magnitudeαb = 5α/3, as expected from the SPH
formalism (see sect. 3.2.2).

At low disc viscosities (smallα), the simulations show a
steepening effect in the warp profile — the physical result ofdif-
ferent parts of the warp propagating at different speeds. Wefind
that the steepening becomes stronger as the disc viscosity is re-
duced (evident from the increase in the error bars seen in Fig. 8 as
α → 0) and in the limit of extremely small viscosity can result in
a near-complete break in the disc. This is demonstrated in Fig. 10
which shows the equivalent of Fig. 9 for a low viscosity calcula-
tion (α = 0.03) shown at intervals oft = 500 in code units and
evolved as far ast = 3500. A three dimensional rendering of the
disc structure is shown in Fig. 11 att = 1500 in code units. De-
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Figure 10. Shell averaged profiles oflx from the SPH simulation (black
lines) at intervals of∆t = 500 up to t = 3500 (in code units), for the
low viscosity caseα = 0.03, using 20 million particles and a strongly non-
linear warp amplitude (A = 0.5). The large warp amplitude simulations at
low α show a strong steepening effect in the warp profile because different
parts of the warp propagate at different speeds. A comparison with the non-
linear theory is more difficult in this case because the predicted diffusion
parameter for the disc can become negative, causing unphysical oscillations
in the one-dimensional code.

spite the apparent break the calculations are able to resolve a thin
but steady stream of material continuing to accrete across the dis-
continuity, indicating that the disc regions remain connected even
in this extreme case.

The simulation results in this case are more difficult to com-
pare with theory because of the development of large unphysical
oscillations around the warp in the one dimensional code. This is
not unexpected from the non-linear theory, since in this regime the
evolution of the disc is not well described by a diffusion equation.
In particular, O99 (Eq. 141) shows that

α1 = α− 1

24

ψ2

α
, (53)

and thus for largeψ (more specifically, whenψ >
√

24α, which is
the case here) the effective viscosity becomes negative, suggesting
that diffusion is no longer an appropriate description. Whilst for
small amplitude warps one expects a transition to the wave-like
regime at lowα (based on the dispersion relation derived from the
linear wave equations, Eqs. (3)-(4)), it is not clear from theory at
which value ofα the transition occurs for large amplitude warps,
and indeed whether such a transition occurs at all ifψ is sufficiently
large (Ogilvie, private communication). Furthermore, calculations
by Ogilvie (2006) based on the evolution of a one-dimensional non-
linear Schrödinger equation for inviscid, Keplerian discs suggest
that wave-like propagation should not have a steepening effect for
an isothermal equation of state (more specifically, if the adiabatic
indexγ < 3), suggesting that the steepening we observe is indeed a
diffusive rather than wave-like effect, though it is hard tobe certain
in the absence of a full non-linear theory for wave-like propagation.

Figure 11.Resulting 3D disc structure from the simulation shown in Fig. 10
with a large amplitude warp in a low viscosity disc (α = 0.03), shown at
t = 1500 (in code units). The steepening of the warp profile in this case
results in a nearly complete break in the disc. At the employed resolution
of 20 million particles we are able to resolve the thin but steady stream
of material that is nevertheless still being transported inwards across the
discontinuity (just visible in the Figure, as indicated by the arrow).

5.3 Precession

The last remaining piece of the theory which needs to be tested is
the one related to precession. As mentioned in sect. 2, the full the-
ory of warp propagation presented in O99 predicts also the presence
of internal precessional torques. These can be accounted for within
the simple diffusion model of Pringle (1992) (Eq. 5) by adding an
appropriate additional term (Eq. 9). We have included such terms
and fitted the value of the corresponding new parameterα3 to the
SPH data. In this case, the disc property which relates to precession
and that we use to perform the fit is the profile of they-component
of the angular momentum in the discly .

Figure 12 shows the profiles ofly at t = 1000 code units
(solid black lines) and the corresponding solution of the diffusion
equation with added precessional term, using the fitted value ofα3

(dashed red lines). The left panel refers toα = 0.43 and an SPH
resolution of 2 million particles, while the right plot refers toα =
0.46 and an SPH resolution of 20 million particles. Note that the
amplitude of the induced precession — and therefore of the value
of ly — is small, and therefore the SPH data are quite noisy for
ly, especially at low SPH resolution. This implies a rather large
uncertainty in the fitted value ofα3.

The resulting values ofα3 as a function ofα are plotted in
Figure 13 for Series 1 to 4 (that is, for the small amplitude cases
with disc viscosity modelled through the artificial viscosity term).
Given the large uncertainty at the lower resolution and lowest warp
amplitude (A = 0.01), error bars are shown only for theA = 0.05
and higher resolution calculations for clarity (by way of compar-
ison the error bars for the low resolutionA = 0.01 calculations
are roughly a factor of two larger than for the correspondinglow
resolutionA = 0.05 results). The solid line shows the small am-
plitude andα ≪ 1 approximationα3 = 3/8 (Eq. 10), whilst the
long-dashed line gives the expected relation for small warpampli-
tudes but to higher order inα (Eq. 11). Once again, provided the
corrections for finiteα are accounted for, we obtain a very good
agreement between our numerical results and the theory, except for
the lowest values ofα. The deviations seen at lowα are most likely
due to the effect of bulk viscosity in the code which affects the ly
profile more strongly than eitherlx or lz (simply due to the low
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Figure 12.Left: Profile ofly att = 1000 (in code units) for theα = 0.43 case. The solid black line shows the SPH results at a resolution of 2 million particles.
The dashed red line shows the expected profile from the diffusion plus precession equation with the fitted value ofα3. Right: Profile ofly at t = 1000 code
units for theα = 0.46 case, at an SPH resolution of 20 million particles (lines arethe same as for the left panel).

amplitude ofly), and is more significant when the disc viscosity is
low.

We note briefly that — by contrast with our earlier results
for bothα andα2 — the calculations utilising the Navier-Stokes
implementation of viscosity (Series 5 and 6) show a strong dis-
agreement with both the modified artificial viscosity calculations
and the theoretical curves – the precession even reversing direction
for α . 0.07. The fits for series 6 — i.e., the calculations that
show good agreement in theα2 fits — show the fit toα3 rise with
α (from negative values) and then flatten to aroundα3 ≈ 0.23 at
α & 0.2, in contrast to the results shown in Fig. 13. The results
for series 5 show a similar trend but with much lower fitted val-
ues. The errors to the fits are also significantly larger than for the
artificial viscosity calculations. Whilst we can only speculate as to
the reason for this disagreement, most likely it is an indication that
higher resolution is needed (compared to using the modified artifi-
cial viscosity) to evaluate the nested first derivatives (Eqs. 39 and
13) to the accuracy required in order to measure the precessional
contribution. LP07 also found the precession in their simulations to
depend strongly on details of the viscosity formulation.

Finally, let us consider the internal precession for large ampli-
tude warps (A = 0.5, Series 7). In this case, as for the evaluation of
the warp diffusion coefficient, we cannot simply associate asingle
value ofα3 to our simulation, as it depends on the instantaneous
value ofψ, which is a function ofR andt. However, we can still
compare the profile ofly at a given time to the one expected from
the non-linear theory of O99. Once again, we stress that in this
comparison we have not fitted any parameters, as the value ofα is
simply the input value in the simulation, while bothα2 andα3 are
a prescribed function (obtained from O99) ofα, αb = 5α/3 and
ψ. The profile ofly for α = 0.43 andA = 0.5 is shown in Fig. 14
at t = 0 andt = 500 (in code units). The solid black lines show
the results of the SPH simulations while the dashed red linesre-
fer to the solution of the diffusion equation with added precession,

where the coefficients are computed directly from the non linear
theory of O99. Note that, while in this large amplitude case the re-
sulting shape ofly is a more complicated function than a simple
oscillating function (as in the small amplitude case), the profile is
reproduced surprisingly well by the O99 theory. To emphasize the
importance of non-linear effects in this case, we also show with the
dotted black line in Fig. 14 the profile ofly at t = 500 obtained
from the 1D evolution code neglecting the effects of non-linearity
and simply adopting a constantα3 = 0.22, that is the value of the
precession coefficient forα = 0.43 in the small amplitude limit.
One can thus clearly see that the non-linearity in the determination
of α3 is essential in order to reproduce the correct precession ofthe
disc.

6 CONCLUSIONS

In this paper we have numerically tested the non-linear propaga-
tion of warps in thin and viscous accretion discs. To this end, we
have run very high resolution SPH simulations of warped accre-
tion discs, extending the previous work of LP07 to cover a much
wider region of the parameter space. In some simulations, wehave
increased the numerical resolution with respect to LP07 by using
ten times as many particles. We have also checked the effect of two
different implementation of the disc viscosity.

Our new and improved results correct upon the previous re-
sults of LP07, who had found a disagreement between their simu-
lations and the analytical theories of warp propagation. Onthe con-
trary, our results are in spectacular agreement with the non-linear
theory of warp propagation of O99. Some specific features of this
theory, confirmed by our simulations, are worth recalling:

(i) For moderate values ofα & 0.1, the warp diffusion coeffi-
cient ν2 is not proportional to1/α, whereα is the disc viscosity
coefficient, but follows the slightly more complex relation, Eq. (8).
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Figure 13.Relation between the precession coefficientα3 and the disc vis-
cosity α, for warp amplitudesA = 0.01 (red and green triangles) and
A = 0.05 (orange and cyan triangles). All calculations employ 2 million
SPH particles, except the cyan and green triangles, which use 20 million.
The solid line shows the expected precession rate in the limit of smallα,
while the dashed line shows the relation betweenα3 andα expected for
small amplitude warps from the theory of O99 (Eq. 11).

The ‘standard’1/α behaviour is only recovered for smaller values
of α and for small amplitude warps. Note that a value ofα ≈ 0.1 is
expected based on observations of accreting binary systems(King
et al. 2007).

(ii) For large amplitude warps, the relation betweenν2 andν is
much flatter than the1/α relation, corresponding to a more uni-
form (with respect to the disc viscosity) but also much less efficient
diffusion of the warp at lowα compared to the linear case. Our
simulations, which are characterised by a warp amplitudeψ ≈ 1
are reasonably well described by an almost constantα2 ≈ 2.5.

(iii) In general, for non-linear warps, the warp diffusion coeffi-
cient is a function of the warp amplitude, which is itself a function
of position and time. For a proper calculation of the warp evolu-
tion in a simple 1D diffusion code it is essential to include such
dependence. We stress that this can and should be done in any warp
diffusion code.

(iv) The non-linear theory also predicts the appearance of inter-
nal precessional torques. Also such torques are well described by
the non-linear theory of O99 and can be easily included in 1D mod-
els by the simple addition of an extra term in the evolution equation,
as discussed in the text.

(v) For large warp amplitudes and small viscosity (ψ >
√

24α)
the evolution of the system is not well described by a simple diffu-
sion equation and a full numerical approach is thus needed insuch
cases.

All of the above aspects of warp propagation are reproduced
faithfully in our simulations and can deeply affect the structure and
evolution of the disc. We stress that their implementation (except
for the last point) is relatively easy and recommended in simple 1D
models of warped accretion disc evolution.

Before concluding, we should add a word of caution. All of
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Figure 14.Profile ofly att = 500 time units for the caseA = 0.5 andα =
0.43. The solid black lines refer to the SPH simulations, while the dashed
red line show the result of the evolution of the diffusion plus precession
code, with non linear warp parameterα2 andα3 computed based on O99
theory of warp propagation. For comparison, we also show with the dotted
black line the profile att = 500 obtained from the simple 1D evolution
model assuming a constantα3 = 0.22, appropriate for this value ofα in
the linear regime (ψ ≪ 1).

the above results refer to warp propagation in a disc where vis-
cosity is a standard Navier-Stokes viscosity, and in particular to
the case where it is isotropic. Accretion disc viscosity is gener-
ally thought to be due to turbulence driven by some disc instability,
such as the magneto-rotational instability (Balbus & Hawley 1991)
or gravitational instabilities (Lodato & Rice 2004; Lodato2007).
In such cases, it is not obvious that the induced transport can be de-
scribed in terms of an isotropic viscosity coefficient, and some of
the above results, in particular concerning the precessional terms
(LP07), might be affected.
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