
“I went on to test the program in every way I could devise. I strained

it to expose its weaknesses. I ran it for high-mass stars and low-mass

stars, for stars born exceedingly hot and those born relatively cold. I ran

it assuming the superfluid currents beneath the crust to be absent – not

because I wanted to know the answer, but because I had developed an

intuitive feel for the answer in this particular case. Finally I got a run

in which the computer showed the pulsar’s temperature to be less than

absolute zero. I had found an error. I chased down the error and fixed it.

Now I had improved the program to the point where it would not run at

all.”

Frozen Star: Of Pulsars, Black Holes and the Fate of Stars

GEORGEGREENSTEIN

3
Smoothed Particle Hydrodynamics

3.1 Introduction

The standard approach to solving the equations of fluid dynamics numerically is to define fluid quan-

tities on a regular spatial grid, computing derivatives using finite difference or finite volume schemes.

This is an extremely well studied approach and most ‘state ofthe art’ methods for fluid dynamics have

been developed in this manner. In astrophysical fluid dynamics problems frequently involve changes in

spatial, temporal and density scales over many orders of magnitude. Thus, adaptivity is an essential in-

gredient which is absent from a fixed-grid approach. Progress in this area has been rapid in recent years

with the development of procedures for adaptive mesh refinement (AMR). The implementation of such

procedures is far from trivial, although the availability of libraries and toolkits for grid-based codes eases

this burden somewhat. However, a further constraint is thatastrophysical problems are frequently asym-

metric which can result in substantial numerical diffusionwhen solving on (fixed or adaptive) Cartesian

grids. Other approaches to this problem are to use unstructured grids (where typically the grid is recon-

structed at each new timestep) or Lagrangian grid methods, where the grid shape deforms according to

the flow pattern.

An alternative to all of these methods is to remove the spatial grid entirely, resulting in methods which

are inherently adaptive. In this approach fluid quantities are carried by a set of moving interpolation

points which follow the fluid motion. Since each point carries a fixed mass, the interpolation points are

referred to as ‘particles’. Derivatives are evaluated either by interpolation over neighbouring particles

(referred to as particle methods), or via a hybrid approach by interpolation to an overlaid grid (referred

to as particle-mesh methods, typified by the particle-in-cell (PIC) method used extensively in plasma

physics.

Smoothed Particle Hydrodynamics (SPH) is a particle methodintroduced by Lucy (1977) and Gin-

gold and Monaghan (1977). It has found widespread use in astrophysics due to its ability to tackle a
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30 Chapter 3. Smoothed Particle Hydrodynamics

wide range of problems involving complex, asymmetric phenomena with relative ease. Since these fea-

tures are highly desirable in many non-astrophysical applications, it is unsurprising that SPH is currently

finding many applications in other fields such as geophysics and engineering (and even film-making1).

The advantages of SPH over standard grid based approaches can be summarised as follows: Firstly,

SPH is conceptually both simple and beautiful. All of the equations can be derived self-consistently

from physical principles with a few basic assumptions. As a result complex physics is relatively simple

to incorporate. Its simplicity means that for the user it is avery intuitive numerical method which

lends itself easily to problem-specific modifications. Secondly, adaptivity is a built-in feature. The

Lagrangian nature of the method means that changes in density and flow morphology are automatically

accounted for without the need for mesh refinement or other complicated procedures. As a result of its

adaptivity, SPH is also very efficient in that resolution is concentrated on regions of high density, whilst

computational effort is not wasted on empty regions of space. Thirdly, free boundaries, common in

astrophysical problems, are simple and natural in SPH but often present difficulties for grid-based codes

(such as spurious heating from the interaction with a low density surrounding medium). This means that

no portions of fluid can be lost from the simulation, unlike ina grid based code where fluid which has

left the grid cannot return (this has been dubbed the ‘Columbus effect’ by Melvyn Davies, since fluid can

fall off the edge of the world). Fourthly, a significant advantage in an astrophysical context is that SPH

couples naturally with widely used N-Body codes and techniques, for which there exists a vast amount

of literature. Finally (although perhaps many more advantages could be given) visualisation and analysis

is also somewhat easier with Lagrangian techniques, since it is a simple matter to track and visualise

portions of the flow.

SPH also has a number of disadvantages when compared to finitedifference codes. The first of

these is that, unlike grid-based codes, SPH involves the additional computational cost of constructing the

neighbour lists. This is offset somewhat in that N-Body techniques used to calculate the gravitational

force (namely via tree-codes) can also be used in constructing the neighbour lists. Secondly, SPH suffers

from a lack of algorithm development, since a vast amount of research effort is focussed on finite dif-

ference or finite volume techniques. This often means that such techniques, although often applicable in

an SPH context, can be slow to filter into mainstream use. Thirdly, although not a disadvantage as such

but a point which is often overlooked, is that the setup of initial conditions is often more complicated

and requires much greater care. Since particles can be laid down in an infinite variety of ways, choosing

an appropriate setup for a given problem requires some experience and usually some experimentation.

Inappropriate particle setups can lead to poorer simulation results than might otherwise be expected (we

give some examples of this in§3.7.5). Finally, in the case of magnetohydrodynamics and other problems

involving anisotropic stresses (as we will discuss in chapter 4), numerical stability can become an issue

which must be dealt with appropriately.

In this chapter we provide an overview of the SPH method, including several improvements to the

basic method which have been made since the review article ofMonaghan (1992) was published (such

as improvements in shock-capturing techniques and the treatment of terms related to the use of a variable

smoothing length). In particular we focus on those aspects of the algorithm that are relevant in an MHD

context. The chapter is organised as follows: In section§3.2 we present the basic formalisms inherent to

1for example many of the graphics involving fluids in the film ‘Tomb Raider’ were computed using SPH
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SPH; in§3.3 we derive the SPH equations for compressible hydrodynamics using a variational principle.

Formulations of dissipative terms used to capture shocks are presented and discussed in§3.5. In§3.3.4

we discuss the incorporation of terms relating to the spatial variation of the smoothing length and in

§3.4 alternative formulations of SPH are examined within thevariational framework. Timestepping is

discussed in§3.6. Finally, we present numerical tests in§3.7 in support of the previous sections and as

preliminaries for the MHD tests described in Chapters 4 and 5.

3.2 Basic formalisms

3.2.1 Interpolant

The basis of the SPH approach is given as follows (Monaghan, 1992). We begin with the trivial identity2

A(r) =
∫

A(r ′)δ (|r − r ′|)dr ′, (3.1)

whereA is any variable defined on the spatial co-ordinatesr andδ refers to the Dirac delta function.

This integral is then approximated by replacing the delta function with a smoothing kernelW with char-

acteristic widthh, such that

lim
h→0

W (r − r ′,h) = δ (r − r ′), (3.2)

giving

A(r) =
∫

A(r ′)W (|r − r ′|,h)dr ′ + O(h2). (3.3)

The kernel function is normalised according to

∫

W (r − r ′,h)dr ′ = 1. (3.4)

Finally the integral (3.3) is discretised onto a finite set ofinterpolation points (the particles) by replacing

the integral by a summation and the mass elementρdV with the particle massm, ie.

A(r) =
∫

A(r ′)
ρ(r ′)

W (|r − r ′|,h)ρ(r ′)dr ′ + O(h2),

≈
N

∑
b=1

mb
Ab

ρb
W (|r − rb|,h), (3.5)

where the subscriptb refers the quantity evaluated at the position of particleb. This ‘summation inter-

polant’ is the basis of all SPH formalisms. The errors introduced in this step are discussed in§3.2.2.

Gradient terms may be calculated by taking the analytic derivative of (3.5), giving

∇A(r) =
∂
∂ r

∫

A(r ′)
ρ(r ′)

W (|r − r ′|,h)ρ(r ′)dr ′ + O(h2), (3.6)

2It is interesting to note that this equation, withA = ρ is used to define the density of the fluid in terms of the Lagrangian
co-ordinates in the Hamiltonian description of the ideal fluid (eq. (94) in Morrison, 1998). Similarly the SPH equivalent of this
expression, (3.42), forms the basis for the Hamiltonian description of SPH (see§3.3.2).
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≈ ∑
b

mb
Ab

ρb
∇aWab, (3.7)

where we have assumed that the gradient is evaluated at another particlea (ie. r = ra), defining∇a ≡ ∂
∂ ra

andWab ≡W (|ra − rb|,h).

3.2.2 Errors

The errors introduced by the approximation (3.3) can be estimated by expandingA(r ′) in a Taylor series

aboutr (Benz, 1990; Monaghan, 1992), giving

A(r) =
∫

[

A(r)+ (r ′− r)α ∂A
∂ rα +

1
2
(r ′− r)β (r ′− r)γ ∂ 2A

∂ rβ ∂ r γ +O((r − r ′)3)

]

W (|r − r ′|,h)dr ′,

= A(r)+
∂A
∂ rα

∫

(r ′− r)αW (r)dr ′ +
1
2

∂ 2A

∂ rβ ∂ r γ

∫

(r ′− r)β (r ′− r)γW (r)dr ′ +O[(r ′− r)3], (3.8)

wherer ≡ |r ′− r |; α ,β andγ are indices denoting co-ordinate directions (with repeated indices implying

a summation) and we have used the normalisation condition (3.4). The odd error terms are zero ifW

is an even function of(r − r ′) (ie. depending only on its magnitude), which, since|r − r ′| is always

less than the smoothing radius (2h in most cases), results in an approximation toO(h2). In principle

it is also possible to construct kernels such that the secondmoment is also zero, resulting in errors of

O(h4) (discussed further in§3.2.7). The disadvantage of such kernels is that the kernel function becomes

negative in some part of the domain, resulting in a potentially negative density evaluation. The errors

in the summation interpolant differ slightly since the approximation of integrals by summations over

particles no longer guarantees that these terms integrate exactly. Starting from the summation interpolant

evaluated on particlea, we expandAb in a Taylor series aroundra, giving

∑
b

mb
Ab

ρb
Wab = Aa ∑

b

mb

ρb
Wab + ∇Aa ·∑

b

mb

ρb
(rb − ra)Wab +O[(rb − ra)

2]. (3.9)

From this we see that the summation interpolation is exact for constant functions only when the inter-

polant is normalised by dividing by the interpolation of unity. In practical calculations the summation

interpolant is only used in the density evaluation (§3.3.1), resulting in a slight error in the density value.

More important are the errors resulting from the SPH evaluation of derivatives, since these are used

throughout in the discretisation of the fluid equations (§3.3).

The errors resulting from the gradient evaluation (3.6) maybe estimated in a similar manner by again

expandingA(r ′) in a Taylor series aboutr , giving

∇A(r) =

∫

[

A(r)+ (r ′− r)α ∂A
∂ rα +

1
2
(r ′− r)β (r ′− r)γ ∂ 2A

∂ rβ ∂ r γ +O[(r − r ′)3]

]

∇W (|r − r ′|,h)dr ′,

= A(r)
∫

∇Wdr ′ +
∂A
∂ rα

∫

(r ′− r)α ∇Wdr ′ +
1
2

∂ 2A

∂ rβ ∂ r γ

∫

(r ′− r)β (r ′− r)γ∇Wdr ′ +O[(r ′− r)3],

= ∇A(r)+
1
2

∂ 2A

∂ rβ ∂ r γ

∫

(r ′− r)β (r ′− r)γ∇W (r)dr ′ +O[(r ′− r)3], (3.10)

where we have used the fact that
∫

∇Wdr ′ = 0 for even kernels, whilst the second term integrates to

unity for even kernels satisfying the normalisation condition (3.4). The resulting errors in the integral
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interpolant for the gradient are therefore also ofO(h2). The errors in the summation interpolant for the

gradient (3.7) are given by expandingAb in a Taylor series aroundra, giving

∇Aa = ∑
b

mb
Ab

ρb
∇aWab,

= Aa ∑
b

mb

ρb
∇aWab +

∂Aa

∂ rα ∑
b

mb

ρb
(rb − ra)

α∇aWab

+
1
2

∂ 2Aa

∂ rβ ∂ r γ ∑
b

mb

ρb
(rb − ra)

β (rb − ra)
γ ∇aWab +O[(rb − ra)

3]. (3.11)

where the summations represent SPH approximations to the integrals in the second line of (3.10).

3.2.3 First derivatives

From (3.11) we immediately see that a straightforward improvement to the gradient estimate (3.7) can

be obtained by a simple subtraction of the first error term (i.e. the term in (3.11) that is present even in

the case of a constant function), giving (Monaghan, 1992)

∇Aa = ∑
b

mb
(Ab −Aa)

ρb
∇aWab, (3.12)

which is an SPH estimate of

∇A(r) = ∇A−A(∇1). (3.13)

Since the first error term in (3.11) is removed, the interpolation is exact for constant functions and indeed

this is obvious from the form of (3.12). The interpolation can be made exact for linear functions by

dividing by the summation multiplying the first derivative term in (3.11), ie.

∂Aa

∂ rα = χαβ ∑
b

mb

ρb
(Ab −Aa)∇βWab, χαβ =

[

∑
b

mb

ρb
(rb − ra)

α ∇βWab

]−1

. (3.14)

where∇β ≡ ∂/∂ rβ . This normalisation is somewhat cumbersome in practice, sinceχ is a matrix quan-

tity, requiring considerable extra storage (in three dimensions this means storing 3×3= 9 extra quantities

for each particle) and also since calculation of this term requires prior knowledge of the density. How-

ever, for some applications of SPH (e.g. solid mechanics) itis desirable to do so in order to retain angular

momentum conservation in the presence of anisotropic forces (Bonet and Lok, 1999).

A similar interpolant for the gradient follows by using

∇A =
1
ρ

[A∇ρ −∇(ρA)] (3.15)

≈ 1
ρa

∑
b

mb(Ab −Aa)∇aWab, (3.16)

which again is exact for a constantA. ExpandingAb in a Taylor series, we see that in this case the
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interpolation of a linear function can be made exact using

∂Aa

∂ rα = χαβ ∑
b

mb(Ab −Aa)∇βWab, χαβ =

[

∑
b

mb(rb − ra)
α ∇βWab

]−1

. (3.17)

which has some advantages over (3.14) in that it can be computed without prior knowledge of the density.

An alternative gradient interpolant is given by

∇A(r) = ρ
[

A
ρ2∇ρ + ∇

(

A
ρ

)]

≈ ρa ∑
b

mb

(

Aa

ρ2
a

+
Ab

ρ2
b

)

∇aWab (3.18)

which is commonly used in the SPH evaluation of the pressure gradient since it guarantees conservation

of momentum by the pairwise symmetry in the gradient term. Itis also the formulation of the pressure

gradient which follows naturally in the derivation of the SPH equations from a variational principle

(§3.3.2). ExpandingAb in a Taylor series aboutra we have

∑
b

mb

(

Aa

ρ2
a

+
Ab

ρ2
b

)

∇aWab = Aa ∑
b

mb

(

1
ρ2

a
+

1

ρ2
b

)

∇aWab +
∂Aa

∂ rα ∑
b

mb

ρ2
b

(rb − ra)
α ∇aWab

+
1
2

∂ 2Aa

∂ rβ ∂ r γ ∑
b

mb

ρ2
b

(rb − ra)
β (rb − ra)

γ∇aWab +O[(rb − ra)
3] (3.19)

from which we see that for a constant function the error is governed by the extent to which

∑
b

mb

(

1
ρ2

a
+

1

ρ2
b

)

∇aWab ≈ 0. (3.20)

Although a simple subtraction of the first term in (3.19) from(3.18) eliminates this error, the symmetry

in the gradient necessary for the conservation of momentum is lost by doing so. Retaining the exact

conservation of momentum therefore requires that such error terms are not eliminated. In applications of

SPH employing anisotropic forces (such in the MHD case), these error terms can be sufficient to cause

numerical instabilities (§4.4).

Derivatives of vector quantities follow in a similar manner. For example the divergence of a vector

quantityv can be estimated using

(∇ ·v)a ≈− 1
ρa

∑
b

mb(va −vb) ·∇aWab, (3.21)

or

(∇ ·v)a ≈ ρa ∑
b

mb

(

va

ρ2
a

+
vb

ρ2
b

)

·∇aWab, (3.22)

whilst the curl is given by (e.g.)

(∇×v)a ≈− 1
ρa

∑
b

mb(va −vb)×∇aWab. (3.23)
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3.2.4 Second derivatives

Second derivatives are slightly more complicated since forkernels with compact support a straightfor-

ward estimation using the second derivative of the kernel proves to be very noisy and sensitive to particle

disorder. For this reason it is better to use approximationsof the second derivative which utilise only

the first derivative of the kernel (Brookshaw, 1985; Monaghan, 1992). For a scalar quantity the second

derivative may be estimated using the integral approximation

∇2A(r) ≈ 2
∫

[A(r)−A(r ′)]
(r − r ′) ·∇W (r)

|r − r ′|2 dr ′, (3.24)

giving the SPH Laplacian

(∇2A)a ≈ 2∑
b

mb
(Aa −Ab)

ρb

rab ·∇aWab

r2
ab

, (3.25)

whererab ≡ ra − rb. This formalism is commonly used for heat conduction in SPH (e.g. Brookshaw

1985; Cleary and Monaghan 1999 and more recently Jubelgas etal. 2004). The integral approximation

(3.24) can be derived by expandingA(r ′) to second order in a Taylor series aboutr , giving

A(r)−A(r ′) = (r − r ′)α ∂A
∂ rα +

1
2
(r − r ′)α(r − r ′)β ∂ 2A

∂ rα ∂ rβ +O[(r − r ′)3]. (3.26)

Expanding this expression into (3.24), the integral is given by

∂A
∂ rα

∫

(r − r ′)α (r − r ′) ·∇W (r)
|r − r ′|2 dr ′ +

1
2

∂ 2A

∂ rα ∂ rβ

∫

(r − r ′)α(r − r ′)β (r − r ′) ·∇W (r)
|r − r ′|2 dr ′. (3.27)

The first integral is zero for spherically symmetric kernels, whilst the second term integrates to a delta

function, giving∇2A. A generalisation of (3.25) is derived for vector quantities by Español and Revenga

(2003). In three dimensions the integral approximation is given by

∂ 2v
∂ rα ∂ rβ ≈

∫

[v(r)−v(r ′)]
[

5(r − r ′)α(r − r ′)β −δ αβ
] (r − r ′) ·∇W(r)

|r − r ′|2 dr ′, (3.28)

which in SPH form becomes

(

∂ 2v
∂ rα ∂ rβ

)

a
≈ ∑

b

mb
(va −vb)

ρb

[

5rα
abrβ

ab −δ αβ
] rab ·∇aWab

r2
ab

. (3.29)

3.2.5 Smoothing kernels

The smoothing kernelW must by definition satisfy the requirement that it tends to a delta function as

the smoothing lengthh tends to zero (3.2) and the normalisation condition (3.4). In addition the kernel

is usually chosen to be an even function ofr to cancel the first error term in (3.8) and may therefore be

written in the form

W (r,h) =
σ
hν f

( r
h

)

, (3.30)
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wherer ≡ |r − r ′| andν is the number of spatial dimensions. Written in this form thenormalisation

condition (3.4) becomes

σ
∫

f (q)dV = 1, (3.31)

whereq = r/h and the volume elementdV = dq,2πqdq or 4πq2dq in one, two and three dimensions.

The simplest kernel with this property is the Gaussian

W (r,h) =
σ
hν e−q2

, (3.32)

whereq = r/h andσ = [1/
√

π,1/π,1/(π
√

π)] in [1,2,3] dimensions. This has the advantage that the

spatial derivative is infinitely smooth (differentiable) and therefore exhibits good stability properties (Fig-

ure 3.2). For practical applications, however, using a Gaussian kernel has the immediate disadvantage

that the interpolation spans the entire spatial domain (with computational cost ofO(N2)), despite the

fact that the relative contribution from neighbouring particles quickly become negligible with increasing

distance. For this reason it is far more efficient to use kernels with finite extent (ie. having compact sup-

port), reducing the calculation to a sum over closely neighbouring particles which dramatically reduces

the cost toO(nN) wheren is the number of contributing neighbours (although there isalso the additional

cost of finding the neighbouring particles). Kernels which are similar to the Gaussian in shape generally

give the best performance (see, e.g. Fulk and Quinn, 1996). Of these the most commonly used kernel is

that based on cubic splines (Monaghan and Lattanzio, 1985),given by

f (q) = σ











1− 3
2q2 + 3

4q3, 0≤ q < 1;
1
4(2−q)3, 1≤ q < 2;

0. q ≥ 2.

(3.33)

with normalisationσ = [2/3,10/(7π),1/π]. This kernel satisfies the basic requirements (3.2) and (3.4),

is even, has continuous first derivatives and compact support of size 2h. Smoother kernels can be intro-

duced by increasing the size of the compact support region (which correspondingly increases the cost of

evaluation by increasing the number of contributing neighbours) and by using higher order interpolating

spline functions. To this end the quartic spline kernel

f (q) = σ























(2.5−q)4−5(1.5−q)4 +10(0.5−q)4, 0≤ q < 0.5;

(2.5−q)4−5(1.5−q)4, 0.5≤ q < 1.5;

(2.5−q)4, 1.5≤ q < 2.5;

0. q ≥ 2.5.

(3.34)

with normalisationσ = [1/24,96/1199π,1/20π] and quintic spline kernel

f (q) = σ























(3−q)5−6(2−q)5 +15(1−q)5, 0≤ q < 1;

(3−q)5−6(2−q)5, 1≤ q < 2;

(3−q)5, 2≤ q < 3;

0. q ≥ 3.

(3.35)



3.2 Basic formalisms 37

with normalisationσ = [1/120,7/478π,1/120π ] can be used (e.g. Morris, 1996). The higher order

polynomials have the advantage of smoother derivatives which, in combination with the increased size

of compact support, decreases the sensitivity of the kernelto disorder in the particle distribution (§3.2.7).

Figure 3.1: Examples of SPH smoothing kernels (solid line) together with their first (dashed) and second
(dot-dashed) derivatives. Kernels correspond to those given in the text. The cubic spline (top left) is the
usual choice, whilst the quintic (top, middle) represents acloser approximation to the Gaussian kernel
(top right), at the cost of increased compact support. The bottom row correspond to various quintic
kernels with compact support of 2h which we derive in§3.2.6. The stability properties of all these
kernels are compared in Figure 3.2.

Note that it is entirely possible to construct kernels basedon smoother splines but which retain com-

pact support of size 2h. We derive a class of such kernels and compare their stability properties with the

kernels given in this section in§3.2.6. In principle it is also possible to construct higher order kernels

where the second error term in (3.8) is also zero. Monaghan (1992) demonstrates that such higher order



38 Chapter 3. Smoothed Particle Hydrodynamics

kernels may be constructed from any lower order kernel such as (3.33) by the simple relation

Whighorder = B(1−Aq2)W (q) (3.36)

where the parametersA andB are chosen to cancel the second moment and to satisfy the normalisation

condition (3.4). The disadvantage of all such kernels is that the kernel becomes negative in part of the

domain which could result in a negative density evaluation.Also it is not clear that such kernels actually

lead to significant improvements in accuracy in practical situations (since the kernel is sampled at only a

few points).

From time to time various alternatives have been proposed tothe kernel interpolation at the heart of

SPH, such as the use of Delaunay triangulations (Pelupessy et al., 2003) and normalisations of the ker-

nel interpolant (involving matrix inversion) which guarantee exact interpolations to arbitrary polynomial

orders (Maron and Howes, 2003; Bonet and Lok, 1999). It remains to be seen whether any such alterna-

tive proposals are viable in terms of the gain in accuracy versus the inevitable increase in computational

expense and algorithmic complexity.

Finally we note that in most SPH codes, the kernel is evaluated by linear interpolation from a pre-

computed table of values, since kernel evaluations are computed frequently. The computational cost

involved in calculating the kernel function is therefore the same whatever the functional form. In the

calculations given in this thesis, the kernel is tabulated as W (q) and∂W/∂q, where the table is evenly

spaced inq2 to give a better interpolation in the outer edges.

3.2.6 A general class of kernels

In this section we consider the possibility of constructingkernels based on smoother splines than the

cubic but which retain compact support of size 2h. A general class of such kernels may be derived by

considering kernels of the form

f (q) = σ























(r−q)n + A(α −q)n + B(β −q)n, 0≤ q < β ;

(r−q)n + A(α −q)n, β ≤ q < α ;

(r−q)n, α ≤ q < r;

0. q ≥ r

(3.37)

wheren is the order,r is the compact support size (in this caser = 2), A and B are parameters to

be determined andα andβ are the two matching points (with 0< β < α < r), although an arbitrary

number of matching points could be added. The formulation given above guarantees that the kernel

and its derivatives are continuous at the matching points and zero at the compact support radiusW (r) =

dW/dq(r) = 0. To determine the parametersA andB we require two further constraints on the form of

the kernel. For the kernels to resemble the Gaussian, we constrain the kernel gradient to be zero at the

origin and also that the second derivative be minimum at the origin (this also constrainsn ≥ 3), ie.

W ′(0) = 0, W ′′′(0) = 0. (3.38)
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For the moment we leave the matching points as free parameters. From the conditions (3.38), the param-

etersA andB are given in terms of the matching points by

A =
rn−3(r2−β 2)

αn−3(α2−β 2)
, B = −rn−1 + Aαn−1

β n−1 . (3.39)

In one dimension the normalisation constant is given by

σ =
n+1

2(Aαn+1 + Bβ n+1+ rn+1)
. (3.40)

As an example we can construct a quintic (n = 5) kernel that closely resembles the cubic spline

kernel (3.33) in all but the continuity of the second derivative. An example of such a kernel is given by

the choiceβ = 0.85,α = 1.87. This was chosen by constraining the second derivative tobe equal to that

of the cubic spline at the origin (ie.W ′′(0) = −2) and the turning point in the second derivative to be

located as close as possible to the that of the cubic spline (W ′′′(q ≈ 1) = 0; note that an exact match is

not possible under the constraints given). This kernel is shown in Figure 3.1 (‘cubic-like quintic’). The

stability properties are discussed in§3.2.7.

However, it would be more interesting to investigate whether other kernels with even better stability

properties can be constructed. To this end we have performeda survey of parameter space for quintic

(n = 5) kernels, from which we find that the most stable kernels arethose with matching points in the

rangeβ ≈ 0.5 with α ≈ 1.7 or β ≈ 0.7 with α ≈ 1.5. These two kernels (‘New Quintic(1)’ and ‘New

Quintic (2)’) are shown in Figure 3.1. The stability properties are discussed below.

3.2.7 Kernel stability properties

The accuracy of the kernels given in§3.2.5 and§3.2.6 may be compared via a stability analysis of the

SPH equations. Detailed investigations of the stability properties of SPH have been given elsewhere (e.g.

Morris 1996) and for this reason we refer the details of the stability analysis to appendix B (although as

for the fluid equations, the linearised form of the SPH equations are derived from a variational principle).

The result for one-dimensional SPH (for any equation of state) is the dispersion relation

ω2
a =

2mP0

ρ2
0

∑
b

[1−cosk(xa − xb)]
∂ 2W
∂x2 (xa − xb,h)

+
m2

ρ2
0

(

c2
s −

2P0

ρ0

)

[

∑
b

sink(xa − xb)
∂W
∂x

(xa − xb,h)

]2

, (3.41)

wherecs = ∂P/∂ρ is the sound speed. Figure 3.2 shows contours of the (normalised) square of the

numerical sound speedC2
num = ω2/k2 as a function of wavenumber and smoothing length (both in units

of the average particle spacing). The sums in (3.41) are calculated numerically assuming an (isothermal)

sound speed and particle spacing of unity (both wavelength and smoothing length are calculated in units

of the particle spacing). The quintic spline (top, centre) and the Gaussian (top right) show increasingly

better stability properties over the standard cubic spline(top left) although at increased computational

expense.

The stability properties of the ‘cubic-like’ quintic kernel derived in §3.2.6 (bottom left) are very
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Figure 3.2: One dimensional stability properties of the kernels shown in Figure 3.1 for isothermal SPH.
They-axis gives the smoothing length in units of the particle spacing ∆x, whilst thex-axis corresponds
to wavenumber in units of 1/∆x (such thatkx → 0 represents the limit of an infinite number of particles
per wavelength andh → ∞ represents the limit of an infinite number of neighbours). Contours show
the (normalised) square of the numerical sound speed from the dispersion relation (3.41). The quintic
spline (top, centre) and Gaussian kernels show improved accuracy over the standard cubic spline kernel
although at a higher computational cost. The kernels derived in §3.2.6 (bottom row) appear to give an
improvement in accuracy forh & 1.1 although degrade rapidly forh . 1.1 where the cubic spline retains
a reasonable accuracy

similar to that of the cubic spline, except that the ‘trough’in the contours ofC2
num observed ath =

1.5∆p (where the closest neighbour crosses the discontinuity in the second derivative) is much smoother.

However, the accuracy of this kernel appears to degrade for small smoothing lengths (h . 1.1∆p) where

the cubic spline retains a reasonable accuracy. Of the remaining two kernels derived in§3.2.6 (bottom

centre and bottom right), the second example (‘New Quintic (2)’) in particular appears to give slightly

better accuracy than the cubic spline over the rangeh & 1.1∆p although both kernels show the rapid

decline in accuracy for small smoothing lengths (h . 1.1∆p) observed in the cubic-like quintic. It is worth

noting that most multidimensional calculations use smoothing lengths in the rangeh = 1.1−1.2∆p.

In summary the new kernels appear to give a small gain in accuracy over the cubic spline kernel,

providedh & 1.1∆p. However, the gain in accuracy from the use of these alternative kernels is very

minor compared to the substantial improvements in accuracygained by the incorporation of the variable

smoothing length terms (§3.3.4), which effectively act as a normalisation of the kernel gradient.
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3.3 Fluid Equations

3.3.1 Continuity equation

The summation interpolant (3.5) takes a particularly simple form for the evaluation of density, ie.

ρa = ∑
b

mbWab. (3.42)

Taking the (Lagrangian) time derivative, we obtain

dρa

dt
= ∑

b

mb(va −vb) ·∇aWab, (3.43)

which may be translated back to continuum form via the summation interpolant (3.5) to give

dρ
dt

= v ·∇ρ −∇ · (ρv),

= −ρ(∇ ·v). (3.44)

This reveals that (3.43) and therefore (3.42) are SPH expressions for the continuity equation. It is a

remarkable fact that the entire SPH formalism can be self-consistently derived using only (3.42) in con-

junction with the first law of thermodynamics via a Lagrangian variational principle. Such a derivation

demonstrates that SPH has a robust Hamiltonian structure and ensures that the discrete equations reflect

the symmetries inherent in the Lagrangian, leading to the exact conservation of momentum, angular

momentum and energy.

3.3.2 Equations of motion

The Lagrangian for Hydrodynamics is given by (Eckart, 1960;Salmon, 1988; Morrison, 1998)

L =
∫

(

1
2

ρv2−ρu

)

dV, (3.45)

whereu is the internal energy per unit mass. In SPH form this becomes

L = ∑
b

mb

[

1
2

v2
b −ub(ρb,sb)

]

, (3.46)

where as previously we have replaced the volume elementρdV with the mass per SPH particlem. We

regard the particle co-ordinates as the canonical variables. Being able to specify all of the terms in the

Lagrangian directly in terms of these variables means that the conservation laws will be automatically

satisfied, since the equations of motion then result from theEuler-Lagrange equations

d
dt

(

∂L
∂va

)

− ∂L
∂ ra

= 0. (3.47)
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The internal energy is regarded as a function of the particle’s density, which in turn is specified as a

function of the co-ordinates by (3.42). The terms in (3.47) are therefore given by

∂L
∂va

= mava, (3.48)

∂L
∂ ra

= ∑
b

mb
∂ub

∂ρb

∣

∣

∣

∣

s

∂ρb

∂ ra
. (3.49)

From the first law of thermodynamics in the absence of dissipation we have

∂ub

∂ρb

∣

∣

∣

∣

s
=

Pb

ρ2
b

, (3.50)

and using (3.42) we have

∂ρb

∂ ra
= ∑

c
mc∇aWbc (δba −δca) , (3.51)

such that

∂L
∂ ra

= ∑
b

mb
Pb

ρ2
b
∑
c

mc∇aWbc (δba −δca) , (3.52)

= ma ∑
b

mb

(

Pa

ρ2
a

+
Pb

ρ2
b

)

∇aWab, (3.53)

where we have used the fact that the gradient of the kernel is anti-symmetric (ie.∇aWac =−∇aWca). The

SPH equation of motion in the absence of dissipation is therefore given by

dva

dt
= −∑

b

mb

(

Pa

ρ2
a

+
Pb

ρ2
b

)

∇aWab, (3.54)

which can be seen to explicitly conserve momentum since the contribution of the summation to the

momentum of particlea is equal and opposite to that given to particleb (given the antisymmetry of the

kernel gradient). Taking the time derivative of the total angular momentum, we have

d
dt ∑

a
ra ×mava = ∑

a
ma

(

ra ×
dva

dt

)

, (3.55)

= ∑
a

∑
b

mamb

(

Pa

ρ2
a

+
Pb

ρ2
b

)

ra × (ra − rb)Fab,

= −∑
a

∑
b

mamb

(

Pa

ρ2
a

+
Pb

ρ2
b

)

ra × rbFab. (3.56)

where the kernel gradient has been written as∇aWab = rabFab This last expression is zero since the

double summation is antisymmetric ina andb (this can be seen by swapping the summation indicesa

andb in the double sum and adding half of this expression to half ofthe original expression, giving zero).

Angular momentum is therefore also explicitly conserved.
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3.3.3 Energy equation

The energy equation also follows naturally from the variational approach, where we may choose to inte-

grate either the particle’s internal energyu, its specific energye or even its specific entropys. Integrating

the specific energy guarantees that the total energy is exactly conserved and it is common practice to

use this quantity in finite difference schemes. However the usual argument against this (which applies

equally to finite difference schemes) is that in some circumstances (where the kinetic energy is much

greater than the thermal energy) the thermal energy can become negative by round-off error. Integra-

tion of the specific entropy has some advantages and has been argued for in both SPH (Springel and

Hernquist, 2002) and finite difference schemes (e.g. Balsara and Spicer 1999).

Internal energy

The internal energy equation in the absence of dissipation follows from the use of the first law of ther-

modynamics (3.50), giving

dua

dt
=

Pa

ρ2
a

dρa

dt
. (3.57)

Using (3.43) therefore gives

dua

dt
=

Pa

ρ2
a
∑
b

mbvab ·∇aWab. (3.58)

Total energy

The conserved (total) energy is found from the Lagrangian via the Hamiltonian

H = ∑
a

va ·
∂L
∂va

−L, (3.59)

where using (3.48) and (3.46) we have

H = ∑
a

ma

(

1
2

v2
a + ua

)

, (3.60)

which is simply the total energy of the SPH particlesE since the Lagrangian does not explicitly depend

on the time. Taking the (Lagrangian) time derivative of (3.60), we have

dE
dt

= ∑
a

ma

(

va ·
dva

dt
+

dua

dt

)

. (3.61)

Substituting (3.54) and (3.58) and rearranging we find

dE
dt

= ∑
a

ma
dea

dt
= ∑

a
∑
b

mamb

(

Pa

ρ2
a

vb +
Pb

ρ2
b

va

)

·∇aWab, (3.62)
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and thus the specific energy equation (in the absence of dissipation) is given by

dea

dt
= ∑

b

mb

(

Pa

ρ2
a

vb +
Pb

ρ2
b

va

)

·∇aWab. (3.63)

Dissipative terms are discussed in§3.5.

Entropy

In the case of an ideal gas equation of state where

P = A(s)ργ , (3.64)

the functionA(s) evolves according to

dA
dt

=
γ −1
ργ−1

(

du
dt

− P
ρ2

dρ
dt

)

,

=
γ −1
ργ−1

(

du
dt

)

diss
. (3.65)

This has the advantage of placing strict controls on sourcesof entropy, sinceA is constant in the absence

of dissipative terms. The thermal energy is evaluated using

u =
A

γ −1
ργ−1. (3.66)

This formulation of the energy equation has been advocated in an SPH context by Springel and Hernquist

(2002).

3.3.4 Variable smoothing length terms

The smoothing lengthh determines the radius of interaction for each SPH particle.Early SPH simu-

lations used a fixed smoothing length for all particles. However allowing each particle to have its own

associated smoothing length which varies according to local conditions increases the spatial resolution

substantially (Hernquist and Katz, 1989; Benz, 1990). The usual rule is to take

ha ∝
(

1
ρa

)(1/ν)

, (3.67)

whereν is the number of spatial dimensions, although others are possible (Monaghan, 2000). Imple-

menting this rule self-consistently is more complicated inSPH since the densityρa is itself a function of

the smoothing lengthha via the relation (3.42). A simple approach is to use the time derivative of (3.67),

(Benz, 1990), ie.

dha

dt
= − ha

νρa

dρ
dt

, (3.68)
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which can then be evolved alongside the other particle quantities. This rule works well for most prac-

tical purposes, and maintains the relation (3.67) particularly well when the density is updated using the

continuity equation (3.43). However, it has been known for some time that, in order to be fully self-

consistent, extra terms involving the derivative ofh should be included in the momentum and energy

equations (e.g. Nelson 1994; Nelson and Papaloizou 1994; Serna et al. 1996). Attempts to do this were,

however, complicated to implement (Nelson and Papaloizou,1994) and therefore not generally adopted

by the SPH community. Recently Springel and Hernquist (2002) have shown that the so-called∇h terms

can be self-consistently included in the equations of motion and energy using a variational approach.

Springel and Hernquist (2002) included the variation of thesmoothing length in their variational princi-

ple by use of Lagrange multipliers, however, in the context of the discussion given in§3.3.2 we note that

by expressing the smoothing length as a function ofρ we can therefore specifyh as a function of the

particle co-ordinates (Monaghan, 2002). That is we haveh = h(ρ) whereρ is given by

ρa = ∑
b

mbW (rab,ha). (3.69)

Taking the time derivative, we obtain

dρa

dt
=

1
Ωa

∑
b

mbvab ·∇aWab(ha), (3.70)

where

Ωa =

[

1− ∂ha

∂ρa
∑
c

mc
∂Wab(ha)

∂ha

]

. (3.71)

A simple evaluation ofΩ for the kernel in the form (3.30) shows that this term differsfrom unity even

in the case of an initially uniform density particle distribution (i.e. with constant smoothing length). The

effects of this correction term even in this simple case are investigated in the sound wave tests described

in §3.7.2.

The equations of motion in the hydrodynamic case may then be found using the Euler-Lagrange

equations (3.47) and will therefore automatically conserve linear and angular momentum. The resulting

equations are given by (Springel and Hernquist, 2002; Monaghan, 2002)

dva

dt
= −∑

b

mb

[

Pa

Ωaρ2
a

∇aWab(ha)+
Pb

Ωbρ2
b

∇aWab(hb)

]

. (3.72)

Calculation of the quantitiesΩ involve a summation over the particles and can be computed alongside

the density summation (3.69). To be fully self-consistent we solve (3.69) iteratively to determine both

h andρ self-consistently. We do this as follows: Using the predicted smoothing length from (3.68), the

density is initially calculated by a summation over the particles. A new value of smoothing lengthhnew

is then computed from this density using (3.67). Convergence is determined according to the criterion

|hnew −h|
h

< 1.0×10−2. (3.73)

For particles which are not converged, the density of (only)those particles are recalculated (usinghnew).
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This process is then repeated until all particles are converged. Note that a particle’s smoothing length

is only set equal tohnew if the density is to be recalculated (this is to ensure that the same smoothing

length that was used to calculate the density is used to compute the terms in the other SPH equations).

Also, the density only needs to be recalculated on those particles which have not converged, since each

particle’s density is independent of the smoothing length of neighbouring particles. This requires a small

adjustment to the density calculation routine (such that the density can be calculated only for a selected

list of particles, rather than for all), but is relatively simple to implement and means that the additional

computational cost involved is negligible (at least for theproblems considered in this thesis). Note that

in principle the calculated gradient terms (3.71) may also be used to implement an iteration scheme such

as the Newton-Raphson method which converges faster than our simple fixed point iteration.

Where the variable smoothing length terms are not explicitly calculated, we use a simple averaging

of the kernels and kernel gradients to maintain the symmetryin the momentum and energy equations

(Hernquist and Katz, 1989; Monaghan, 1992), ie.

Wab =
1
2

[Wab(ha)+Wab(hb)] , (3.74)

and correspondingly

∇aWab =
1
2

[∇aWab(ha)+ ∇aWab(hb)] . (3.75)

Many of the test problems in this thesis are performed using this simple formulation. This is in order to

show (particularly in the MHD case) that satisfactory results on the test problems are not dependent on the

variable smoothing length formulation. In almost every case, however, self-consistent implementation of

the variable smoothing length terms as described above leads to a substantial improvement in accuracy

(demonstrated, for example, in§3.7 and in the MHD case in§4.6). Perhaps the only disadvantage to

the full implementation of the variable smoothing length terms is that the iterations ofh with ρ mean

that small density fluctuations are resolved by the method rather than being smoothed out, which may be

disadvantageous under some circumstances (e.g. where the fluctuations are unphysical). One possible

remedy for this might be to use a slightly different relationship betweenh andρ than is given by (3.67).

3.4 Alternative formulations of SPH

In §3.3 the SPH equations of motion and energy were derived from avariational principle using only the

density summation (3.42) and the first law of thermodynamics(3.50), leading to the equations of motion

in the form (3.54) and the energy equation (3.58) or (3.63). However many alternative formulations of

the SPH equations are possible and have been used in various contexts. In this section we demonstrate

how such alternative formulations may also be derived self-consistently using a variational principle.

For example, a general form of the momentum equation in SPH isgiven by (Monaghan, 1992)

dva

dt
= −∑

b

mb

(

Pa

ρσ
a ρ2−σ

b

+
Pb

ρσ
b ρ2−σ

a

)

∇aWab, (3.76)

which is symmetric between particle pairs for all choices ofthe parameterσ and therefore explicitly
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conserves momentum. Ritchie and Thomas (2001) use this formof the momentum equation withσ = 1

in their SPH formalism, finding that it gives slightly betterresults for problems involving large density

contrasts (they also use a slightly different procedure forevaluating the density). Marri and White (2003),

for similar reasons, use this equation withσ = 3/2, citing a reduction in the relative error in the force

calculation on particlea due to the influence of particleb which is desirable in the case of particles

with large density differences. However, it is apparent from the derivation given in§3.3.2 that forms

of this equation other than the standardσ = 2 case cannot be derived consistently using the density

summation (3.42) and correspondingly the continuity equation in the form (3.43). We are therefore

led to the conclusion that a consistent formulation of the SPH equations using the general form of the

momentum equation given above must involve modification of the continuity equation in some way. We

show below that the general form of the continuity equation which is consistent with (3.76) is derived

from the continuum equation

dρ
dt

= −ρ∇ ·v, (3.77)

expressed in the form

dρ
dt

= ρ2−σ [v ·∇(ρσ−1)−∇ · (vρσ−1)
]

, (3.78)

with SPH equivalent

dρa

dt
= ρ2−σ

a ∑
b

mb
(va −vb)

ρ2−σ
b

·∇aWab. (3.79)

In order to demonstrate that this is so, we use this expression for the density to derive the equations

of motion and energy via a variational principle.

3.4.1 Variational principle

In the derivation given in§3.3.2, the variables in the Lagrangian were explicitly written as a function of

the particle co-ordinates (via the identity 3.42), guaranteeing the exact conservation of linear and angular

momentum in the equations of motion via the use of the Euler-Lagrange equations. Using a more general

form of the continuity equation, however, means that the density can no longer be expressed directly as

a function of the particle co-ordinates and therefore that the derivation given in the previous section

cannot be applied in this case. However we may still use the Lagrangian to derive the equations of

motion by introducing constraints onρ in a manner similar to that of Bonet and Lok (1999). In this

case conservation of momentum and energy can be shown to depend on the formulation of the velocity

terms in the continuity equation (in particular that the term should be expressed as a velocity difference).

Clearly the major disadvantage of using a continuity equation of any form rather than the SPH summation

is that mass is no longer conserved exactly. It is shown in§4.3.2 that the kind of variational principle

given below may also be used to derive the equations of motionand energy in the MHD case.

For stationary action we require

δ
∫

Ldt =
∫

δLdt = 0, (3.80)
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where we consider variations with respect to a small change in the particle co-ordinatesδ ra. We therefore

have

δL = mava ·δva −∑
b

mb
∂ub

∂ρb

∣

∣

∣

∣

s
δρb. (3.81)

The Lagrangian variation in density is given, from (3.79), by

δρb = ρ2−σ
b ∑

c

mc

ρ2−σ
c

(δ rb −δ r c) ·∇bWbc. (3.82)

Using (3.82) and the first law of thermodynamics (3.50) in (3.81) and rearranging, we find

δL
δ ra

= −∑
b

mb
Pb

ρσ
b

∑
c

mc

ρ2−σ
c

∇bWbc(δba −δca). (3.83)

Putting this back into (3.80), integrating the velocity term by parts and simplifying (using∇aWab =

−∇bWba), we obtain

∫

[

−ma
dva

dt
−∑

b

mb

(

Pa

ρσ
a ρ2−σ

b

+
Pb

ρσ
b ρ2−σ

a

)

∇aWab

]

δ radt = 0, (3.84)

from which we obtain the momentum equation in the form (3.76). This equation is therefore consistent

with the continuity equation in the form (3.79). In the particular case considered by Marri and White

(2003) (σ = 3/2) this would imply a discrete form of the continuity equation given by

dρa

dt
=

√
ρa ∑

b

mb
vab√ρb

·∇aWab. (3.85)

Marri and White (2003) choose to retain the use of the usual SPH summation (3.42) to determine the

density. In the case considered by Ritchie and Thomas (2001)(σ = 1), the continuity equation becomes

dρa

dt
= ρa ∑

b

mb
vab

ρb
·∇aWab, (3.86)

which is again somewhat different to the density estimationused in their paper. The continuity equation

(3.86), when used in conjunction with the appropriate formulation of the momentum equation, has some

advantages in the case of fluids with large density differences (e.g. at a water/air interface) since the term

inside the summation involves only the particle volumesm/ρ rather than their mass, with the effect that

large mass differences between individual particles have less influence on the calculation of the velocity

divergence (Monaghan, private communication). An alternative is the formalism proposed by Ott and

Schnetter (2003), which we discuss in§3.4.3.

The internal energy equation consistent with the general momentum equation (3.76) is given by

dua

dt
=

Pa

ρσ
a

∑
b

mb
vab

ρ2−σ
b

·∇aWab, (3.87)

which is indeed the formalism used by Marri and White (2003) (with σ = 3/2) since it was found,
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unsurprisingly in this context, that integration of this equation resulted in much less numerical noise

than using other formalisms of the internal energy equation(in conjunction with their use of (3.76) with

σ = 3/2 as the momentum equation). The form of the total energy equation consistent with (3.76) and

(3.79) is given by

dea

dt
= −∑

b

mb

(

Pa

ρσ
a ρ2−σ

b

vb +
Pb

ρσ
b ρ2−σ

a
va

)

·∇aWab. (3.88)

We note the energy equation used by Ritchie and Thomas (2001)is different to the formulation given

above (withσ = 1) and therefore variationally inconsistent with their implementation of the momentum

equation. Hernquist and Katz (1989) point out that inconsistencies between the forms of the energy and

momentum equations result in errors ofO(h2) in the energy conservation. In this sense the difference be-

tween a consistent and inconsistent formalism is fairly minor, although a consistent formulation between

the momentum and energy equations in general appears to leadto slightly improved results (as found

by Marri and White). In practise we find that using alternative formulations of the continuity equation

generally gives slightly worse results than (even inconsistent) use of the density summation.

3.4.2 General alternative formulation

The momentum equation (3.76) can be generalised still further by noting that the continuity equation

(3.44) can be written as

dρ
dt

= φ
[

v ·∇
(

ρ
φ

)

−∇ ·
(

ρv
φ

)]

, (3.89)

with SPH equivalent

dρa

dt
= φa ∑

b

mb
vab

φb
·∇aWab, (3.90)

whereφ is any scalar variable defined on the particles. Deriving the momentum equation consistent with

this equation in the manner given above we find

dva

dt
= −∑

b

mb

(

Pa

ρ2
a

φa

φb
+

Pb

ρ2
b

φb

φa

)

∇aWab, (3.91)

which conserves momentum for any choice ofφ . In the case given in the previous section we would have

φ = ρ2−σ . Choosingφ = ρ/
√

P gives

dva

dt
= −∑

b

mb

(

2

√
PaPb

ρaρb

)

∇aWab. (3.92)

which is the momentum equation used by Hernquist and Katz (1989). The continuity equation consistent

with this form is therefore

dρa

dt
=

ρa√
Pa

∑
b

mb

√
Pb

ρb
vab ·∇aWab, (3.93)
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which at first sight appears somewhat bizarre, although it iscertainly a valid expression of the continuity

equation in SPH form. It is unclear whether using such alternative formulations of the continuity equa-

tion, in the name of consistency, has any advantages over theusual density summation. We leave it as an

exercise for the reader to amuse themselves by exploring various other combinations of variables, noting

that the forms of the internal and total energy equations consistent with (3.90) and (3.91) are given by

dua

dt
=

Pa

ρ2
a
∑
b

mb
φa

φb
vab ·∇aWab, (3.94)

and

dea

dt
= −∑

b

mb

(

Pa

ρ2
a

φa

φb
vb +

Pb

ρ2
b

φb

φa
va

)

·∇aWab. (3.95)

3.4.3 Ott and Schnetter formulation

Other formulations of the SPH equations have also been proposed to deal with the problem of large

density gradients. For example Ott and Schnetter (2003) propose modifying the SPH summation to give

na = ∑
b

Wab,

ρa = mana, (3.96)

that is where the number density of particlesn is calculated by summation rather than the mass density

ρ . This is to improve the interpolation when particles of large mass differences interact. Taking the time

derivative of (3.96), the continuity equation is given by (as in Ott and Schnetter 2003)

dρa

dt
= ma ∑

b

vab ·∇aWab. (3.97)

For equal mass particles this formalism is exactly the same as the usual summation (3.42). The for-

mulation (3.96) enables the density to be expressed as a function of the particle co-ordinates and thus

the derivation of the equations of motion and energy can be done in a straightforward manner using the

Euler-Lagrange equations, as in§3.3.2. The resulting equation of motion is given by

ma
dva

dt
= −∑

b

(

Pa

n2
a

+
Pb

n2
b

)

∇aWab, (3.98)

which is somewhat different to the equation of motion used inOtt and Schnetter (2003) (they use the

form 3.76 withσ = 1). The internal energy equation follows from the continuity equation (3.97) and the

first law of thermodynamics (3.50). We find

ma
dua

dt
=

Pa

n2
a
∑
b

vab ·∇aWab. (3.99)

Ott and Schnetter (2003) use a formulation of the internal energy equation where the pressure term is

symmetrised, which is inconsistent with their use of (3.96). The total energy equation consistent with
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their formalism can also be derived using the Hamiltonian (§3.3.3) and is given by

ma
dea

dt
= −∑

b

(

Pa

n2
a
vb +

Pb

n2
b

va

)

·∇aWab. (3.100)

In this case use of the self-consistent formalism presentedabove should lead to slightly improved results

over the momentum and energy equations employed by Ott and Schnetter (2003), since the density is

still calculated via a direct summation over the particles.

3.5 Shocks

In any high-order numerical scheme, the simulation of shocks is accompanied by unphysical oscillations

behind the shock front. This occurs because in discretisingthe continuum equations (in the SPH case

using 3.5) we assume that the fluid quantities are smoothly varying on the smallest length scale (in SPH

this is the smoothing lengthh). This means that discontinuities on such scales are not resolved by the

numerical method. The simplest approach to this problem is to introduce a small amount of viscosity

into the simulation which acts to spread out the shock front so that it can be sufficiently resolved (von

Neumann and Richtmyer, 1950; Richtmyer and Morton, 1967). This is similar to the way in which shock

fronts are smoothed out by nature, although in the latter case the effect occurs at a much finer level.

The disadvantage of using such an ‘artificial’ viscosity is that it can produce excess heating elsewhere

in the simulation. As such the use of artificial viscosity is regarded by many numerical practitioners as

outdated since most finite difference schemes now rely on methods which either restrict the magnitude of

the numerical flux across a shock front in order to prevent unphysical oscillations (such as total variation

diminishing (TVD) schemes) or by limiting the jump in the basic variables across the shock front using

the exact solution to the Riemann problem (Godunov-type schemes). There remain, however, distinct ad-

vantages to the use of an artificial viscosity, primarily that, unlike the Godunov-type schemes, it is easily

applied where new physics is introduced (such as a more complicated equation of state than the ideal gas

law) and the complexity of the algorithm does not increase with the number of spatial dimensions. In the

case of magnetohydrodynamics, artificial viscosity is commonly used even in standard finite-difference

codes3 since the Riemann problem is difficult to solve and computationally expensive. Furthermore,

dissipative terms are often still used even when a Riemann solver has been implemented (e.g. Balsara

1998). For these reasons artificial viscosity methods continue to find widespread usage, particularly in

simulations using unstructured or Lagrangian meshes (Caramana et al., 1998).

In recent years it has been shown that Godunov-type schemes can in fact be used in conjunction with

SPH by regarding interacting particle pairs as left and right states of the Riemann problem (Cha and

Whitworth, 2003; Inutsuka, 2002; Parshikov and Medin, 2002; Monaghan, 1997b). In this manner the

implementation of Godunov-type schemes to multidimensional problems is greatly simplified in SPH

because the one-dimensional Riemann problem is solved between particle pairs, removing the need for

complicated operator splitting procedures in higher dimensions. The formalism presented by Cha and

Whitworth (2003) is remarkably simple to incorporate into any standard SPH code. A Godunov-type

scheme for MHD in SPH would be extremely useful (although notwidely applicable), but it is well

3for example in the widely used ZEUS code for astrophysical fluid dynamics (Stone and Norman, 1992)
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beyond the scope of this thesis. We therefore formulate artificial dissipation terms using the formulation

of Monaghan (1997b) which is generalised to the MHD case in§4.5. The problem of excess heating is

addressed by the implementation of switches to turn off the dissipative terms away from shock fronts,

described in§3.5.2.

3.5.1 Artificial viscosity and thermal conductivity

A variety of different formulations of artificial viscosityin SPH have been used, however the most

common implementation is that given by Monaghan (1992), where the term in equation (3.54) is given

by

(

dva

dt

)

diss
= ∑

b

mb
−α c̄abµab + β µ2

ab

ρ̄ab
∇aWab, µab =

hvab · rab

r2
ab +0.01h2

, (3.101)

wherevab ≡ va − vb (similarly for rab), barred quantities refer to averages between particlesa andb,

andc refers to the sound speed. This viscosity is applied only when the particles are in compression

(ie. vab · rab < 0), is Galilean invariant, conserves total linear and angular momentum and vanishes

for rigid body rotation. Theβ term (quadratic invab) represents a form of viscosity similar to the

original formulation of von Neumann and Richtmyer (1950) and becomes dominant in the limit of large

velocity differences (ie. in high Mach number shocks). Theα term is linear invab and is dominant

for small velocity differences4. Most astrophysical SPH implementations follow Monaghan (1992) in

settingα = 1 andβ = 2 which provides the necessary dissipation near a shock front.

The term given by equation (3.101) was constructed to have the properties described above, however

in the relativistic case it was unclear as to what form such anartificial viscosity should take. Chow and

Monaghan (1997) thus formulated an artificial viscosity forultra-relativistic shocks in SPH by analogy

with Riemann solvers. This is outlined by Monaghan (1997b) in a discussion of SPH and Riemann

solvers. The essential idea is to regard the interacting particles as left and right Riemann states and to

construct a dissipation which involves jumps in the physical variables. The dissipation term in the force

(giving artificial viscosity) therefore involves a jump in the velocity variable and is similar to (3.101),

taking the form (forvab · rab < 0)

(

dva

dt

)

diss
= −∑

b

mb
αvsig(va −vb) · r̂ab

2ρ̄ab
∇aWab, (3.102)

where vsig is a signal velocity and̂rab ≡ (ra − rb)/|ra − rb| is a unit vector along the line joining the

particles. Note that this formalism differs from (3.101) inthat a factor ofh/|rab| has been removed.

Also the 0.01h2 term has been removed from the denominator since for variable smoothing lengths it is

unnecessary. The jump in velocity involves only the component along the line of sight since this is the

only component expected to change at a shock front. In a similar manner, the dissipative term in the

specific energy equation (3.63) is given by

(

dea

dt

)

diss
= −∑

b

mb
vsig(e∗a − e∗b)

2ρ̄ab
r̂ab ·∇aWab, (3.103)

4The introduction of such a term into artificial viscosity methods is generally attributed to Landshoff (1955) (see, e.g.
Caramana et al. 1998)
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where(e∗a − e∗b) is the jump in specific energy. The specific energy used in thisterm is given by

e∗a =

{

1
2α(va · r̂ab)

2 + αuua, vab · rab < 0;

αuua vab · rab ≥ 0;
(3.104)

that is, where the specific kinetic energy has been projectedalong the line joining the particles, since

only the component of velocity parallel to this vector is expected to jump at a shock front. Note that in

general we use a different parameterαu to control the thermal energy term and that this term is applied

to particles in both compression and rarefaction.

The signal velocity represents the maximum speed of signal propagation along the line of sight be-

tween the two particles. Whilst many formulations could be devised, it turns out that the results are not

sensitive to the particular choice made. A simple estimate of the signal velocity is given by

vsig = ca + cb −βvab · r̂ab (3.105)

whereca denotes the speed of sound of particlea and β ∼ 1, such that vsig/2 is an estimate of the

maximum speed for linear wave propagation between the particles. Theβ term, which acts as a von

Neumann and Richtmyer viscosity as in equation (3.101), arises naturally in this formulation. Practical

experience suggests, however, thatβ = 2 is a better choice. For a more general discussion of signal

velocities we refer the reader to Monaghan (1997b) and Chow and Monaghan (1997).

The contribution to the thermal energy from the dissipativeterms is found using

dua

dt
=

dea

dt
−va ·

dva

dt
. (3.106)

In this case we obtain
(

dua

dt

)

diss
= ∑

b

mb
vsig

2ρ̄ab

{

−1
2

α [(va −vb) · r̂ab]
2 + αu(ua −ub)

}

r̂ab ·∇aWab (3.107)

which is added to the non-dissipative term (3.58). The first term is the positive definite contribution to

the thermal energy from the artificial viscosity (since the kernel gradient is always negative). The second

term (involving a jump in thermal energy) provides an artificial thermal conductivity. Physically this

means that discontinuities in the thermal energy are also smoothed.

The artificial dissipation given by (3.102)-(3.107) is usedas a basis for constructing an appropriate

dissipation for the MHD case in§4.5.

3.5.2 Artificial dissipation switches

Artificial viscosity

In both (3.101) and (3.102) the artificial viscosity is applied universally across the particles despite only

being needed when and where shocks actually occur. This results in SPH simulations being much more

dissipative than is necessary and can cause problematic effects where this dissipation is unwanted (such

as in the presence of shear flows). A switch to reduce the artificial viscosity away from shocks is given by

Morris and Monaghan (1997). Using this switch in multi-dimensional simulations substantially reduces
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the problematic effects of using an artificial viscosity in SPH.

The key idea is to regard the dissipation parameterα (c.f. equation 3.102) as a particle property. This

can then be evolved along with the fluid equations according to

dαa

dt
= −αa −αmin

τa
+Sa, (3.108)

such that in the absence of sourcesS , α decays to a valueαmin over a timescaleτ . The timescaleτ is

calculated according to

τ =
h

C vsig
, (3.109)

whereh is the particle’s smoothing length, vsig is the maximum signal propagation speed at the particle

location andC is a dimensionless parameter with value 0.1 < C < 0.2. We conservatively useC = 0.1

which means that the value ofα decays toαmin over∼ 5 smoothing lengths.

The source termS is chosen such that the artificial dissipation grows as the particle approaches a

shock front. We use (Rosswog et al., 2000)

S = max(−∇ ·v,0)(2.0−α), (3.110)

such that the dissipation grows in regions of strong compression. Following Morris and Monaghan

(1997) where the ratio of specific heatsγ differs from 5/3 (but not for the isothermal case), we multiply

S by a factor

[

ln

(

5/3+1
5/3−1

)]

/

[

ln

(

γ +1
γ −1

)]

(3.111)

The source term is multiplied by a factor(2.0−α) as the standard source term given by Morris and

Monaghan (1997) was found to produce insufficient damping atshock fronts when used in conjunction

with the Monaghan (1997b) viscosity. The source term (3.110) is found to provide sufficient damping

on the Sod (1978) hydrodynamic shock tube problem and in the MHD shock tube tests we describe

in chapter§4.6 (ie. αmax ∼ 1 for these problems). In order to conserve momentum the average value

ᾱ = 0.5(αa + αb) is used in equations (3.102), (3.104) and (3.107). A lower limit of αmin = 0.1 is used

to preserve order away from shocks (note that this is an orderof magnitude reduction from the usual

value ofα = 1.0 everywhere).

The numerical tests in§4.6 demonstrate that use of this switch gives a significant reduction in dissi-

pation away from shocks whilst preserving the shock-capturing ability of the code.

Artificial thermal conductivity

A similar switch to that used in the artificial viscosity may therefore be devised for the artificial thermal

conductivity term, with the parameterαu evolved according to

dαu,a

dt
= −αu,a −αu,min

τa
+Sa, (3.112)
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where the decay timescaleτ is the same as that used in (3.108) and in this case we useαu,min = 0. The

corresponding source term is given by

S = |∇
√

u|, (3.113)

which is constructed to have dimensions of inverse time. Thegradient term is computed according to

∇
√

u =
1
2

u−1/2∇u, (3.114)

where

∇ua =
1
ρa

∑
b

mb(ua −ub)∇aWab(ha). (3.115)

Use of this switch ensures that artificial thermal conductivity is only applied at large gradients in the

thermal energy. The need to do so in dissipation-based shockcapturing schemes is often concealed by

smoothing of the initial conditions in shock tube tests (§3.7.3). From the first law of thermodynamics

(3.50) we infer that gradients in the thermal energy correspond to large gradients in the density. In

a hydrodynamic shock these occur either at the shock front orat the contact discontinuity. Artificial

viscosity is not required at the contact discontinuity because the pressure is constant across it. Using

unsmoothed initial conditions and in the absence of artificial thermal conductivity, a significant overshoot

in thermal energy occurs at the contact discontinuity (thisphenomenon is known as ‘wall heating’ and is

illustrated in Figure 3.9). The resulting glitch in the pressure is often ascribed to ‘starting errors’ due to

the unsmoothed initial conditions. However, applying smoothing to the initial conditions of a shock-tube

test means that gradients across the contact discontinuityremain smoothed throughout the evolution (see

e.g. Figure 3.8), removing the need for artificial thermal conductivity which acts to spread gradients in

the thermal energy. Whilst there is also a gradient in thermal energy at a shock front, this is smoothed

out by the application of artificial viscosity there and so the need for artificial thermal conductivity can

go unnoticed. In§3.7.3 we present results of the standard Sod (1978) shock tube test, showing the

effectiveness of the switch discussed above in applying therequisite amount of smoothing at the contact

discontinuity.

3.6 Timestepping

3.6.1 Predictor-corrector scheme

We integrate the SPH equations in this thesis using a slight modification of the standard predictor-

corrector (Modified Euler) method which is second order accuracy in time (Monaghan, 1989). The

predictor step is given by

v1/2 = v0 +
∆t
2

f0, (3.116)

r1/2 = r0 +
∆t
2

v1/2, (3.117)

e1/2 = e0 +
∆t
2

ė0, (3.118)
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where in practice we usef0 ≈ f−1/2 and ė0 ≈ ė−1/2 to give a one-step method. The rates of change of

these quantities are then computed via the SPH summations using the predicted values at the half step,

ie.

f1/2 = f(r1/2,v1/2) ė1/2 = ė(r1/2,v1/2) (3.119)

The corrector step is given by

v∗ = v0 +
∆t
2

f1/2, (3.120)

r∗ = r0 +
∆t
2

v∗, (3.121)

e∗ = e0 +
∆t
2

ė1/2, (3.122)

and finally

v1 = 2v∗−v0, (3.123)

r1 = 2r∗− r0, (3.124)

e1 = 2e∗− e0. (3.125)

Note that in this scheme the position updates in both the predictor and corrector steps use the updated

value of velocity. This effectively means that the positionis updated using both the first and second

derivatives. From numerical experiments we find that this scheme gives much better stability properties.

Where evolved, density, smoothing length, magnetic field and the dissipation parameters follow the

energy evolution. The total energye is interchangeable for the thermal energyu.

3.6.2 Reversible integrators

The simple predictor-corrector method given above is adequate for all the problems considered in this

thesis since the integration time is quite short. For large simulations over long timescales, however, the

accuracy and stability of the integration method needs morecareful attention. In the past decade or so a

substantial research effort has been devoted to the development of high accuracy so-called ‘geometric’

integrators for Hamiltonian systems (e.g. Hut et al., 1995;Stoffer, 1995; Huang and Leimkuhler, 1997;

Holder et al., 2001; Hairer et al., 2002). Since SPH in the absence of dissipative terms can derived from a

Hamiltonian variational principle, much of this work is applicable in the SPH context. The primary con-

dition for the construction of a geometric integrator is time-reversibility (that is, particle quantities should

return to their original values upon reversing the direction of time integration). It is fairly straightfor-

ward to construct a reversible integrator for the SPH equations in the case of a constant smoothing length,

where the density summation is used and where the pressure iscalculated directly from the density (such

that the force evaluation uses only the particle co-ordinates). The standard leapfrog algorithm is one such

example. In general, however, the construction of a reversible scheme is complicated by several factors.

The first is the use of a variable timestep (which immediatelydestroys the time-symmetry in the leapfrog

scheme, although see Holder et al. (2001) for recent progress on this). The second complicating factor is

that the reversibility condition becomes more difficult when equations with rates of change involving the
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particle velocity are used (such as the thermal or total energy equation or the continuity equation for the

density). In this case the construction of a reversible integrator for SPH necessarily involves the calcu-

lation of derivatives involving the velocity in separate step to the force evaluation, leading to additional

computational expense. A third complicating factor is the use of individual particle timesteps in large

SPH codes, although symplectic methods have also been constructed for this case (Hairer et al., 2002).

3.6.3 Courant condition

The timestep is determined by the Courant condition

dtc = Ccourmin

(

h
vsig

)

(3.126)

whereh = min(ha,hb) and vsig is the maximum signal velocity between particle pairs. Thissignal veloc-

ity is similar to that used in the artificial dissipation terms (§3.5), except that we use

vsig =
1
2

(va +vb + β |vab · j |) (3.127)

with β = 1 whenvab · j > 0 (ie. where the dissipation terms are not applied). The minimum in (3.126) is

taken over all particle interactions and typically we useCcour = 0.4.

Although this condition is sufficient for all of the simulations described here, in general it is necessary

to pose the additional constraint from the forces

dtf = C f min

(

ha

|aa|

)1/2

, (3.128)

whereaa is the acceleration on particlea and typicallyC f = 0.25.

3.7 Numerical tests

3.7.1 Implementation

Unless otherwise indicated the simulations use the densitysummation (3.42), the momentum equation

(3.54) and the energy equation in the form (3.63). The numerical tests presented throughout this thesis

were implemented using a code written by the author as a testbed for MHD algorithms.

Neighbour finding

Since the code has been designed for flexibility rather than performance, we take a simplified approach

to neighbour finding using linked lists. The particles are binned into grid cells of size 2h whereh is the

maximum value of smoothing length over the particles. Particles in a given cell then search only the

adjoining cells for contributing neighbours. This approach becomes very inefficient for a large range

in smoothing lengths such that for large simulations it is essential to use a more effective algorithm. A

natural choice is to use the tree code used in the computationof the gravitational force (Hernquist and

Katz, 1989; Benz et al., 1990).
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Boundary conditions

Boundary conditions are implemented using either ghost or fixed particles. For reflecting boundaries,

ghost particles are created which mirror the SPH particles across the boundary. These particles are exact

copies of the SPH particles in all respects except for the velocity, which is of opposite sign on the ghost

particle, producing a repulsive force at the boundary. For periodic boundary conditions the ghosts are

exact copies of the particles at the opposite boundary. In the MHD shock tube tests considered in§4.6

involving non-zero velocities at the boundaries, boundaryconditions are implemented in one dimension

by simply fixing the properties of the 6 particles closest to each boundary. Where the initial velocities

of these particles are non-zero their positions are evolvedaccordingly and a particle is removed from

the domain once it has crossed the boundary. Where the distance between the closest particle and the

boundary is more than the initial particle spacing a new particle is introduced to the domain. Hence for

inflow or outflow boundary conditions the resolution changesthroughout the simulation.

3.7.2 Propagation and steepening of sound waves

We initially consider the propagation of linear sound wavesin SPH. This test is particularly important

in the MHD case (§4.6.4) since it highlights the instability in the momentum-conserving formalism of

SPMHD. In this case we investigate the dependence of sound speed on smoothing length and the damping

due to artificial viscosity.

Particle setup

The particles are initially setup at equal separations in the domainx = [0,1] using ghost particles (§3.7.1)

to create periodic boundary conditions. The linear solution for a travelling sound wave in the x-direction

is given by

ρ(x, t) = ρ0(1+ Asin(kxa −ωt), (3.129)

vx(x, t) = CsAsin(kxa −ωt), (3.130)

whereω = 2πCs/λ is the angular frequency,Cs is the sound speed in the undisturbed medium and

k = 2π/λ is the wavenumber. The initial conditions therefore correspond tot = 0 in the above. The

perturbation in density is applied by perturbing the particles from an initially uniform setup. We consider

the one dimensional perturbation

ρ = ρ0[1+Asin(kx)], (3.131)

whereA = D/ρ0 is the perturbation amplitude. The cumulative total mass inthe x direction is given by

M(x) = ρ0

∫

[1+Asin(kx)]dx

= ρ0[x−Acos(kx)]x0, (3.132)
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Figure 3.3: Representative results from the isothermal sound wave tests in one dimension using the
standard cubic spline kernel with a fixed smoothing length. The figure on the left shows the results
after 5 periods (corresponding to 5 crossings of the computational domain) usingh = 1.5∆̄p. The figure
on the right shows the results using a fixed smoothing length but with the correction from the variable
smoothing length terms.

Figure 3.4: Representative results from the isothermal sound wave tests in one dimension using the
standard cubic spline kernel with a variable smoothing length that varies with density. The figure on the
left shows the results after 5 periods using a simple averageof the kernel gradients, whilst the figure on
the right shows the results using the consistent formulation of the variable smoothing length terms.

such that the cumulative mass at any given point as a fractionof the total mass is given by

M(x)
M(xmax)

. (3.133)

For equal mass particles distributed inx = [0,xmax] the cumulative mass fraction at particlea is given by

xa/xmax such that the particle position may be calculated using

xa

xmax
=

M(xa)

M(xmax)
. (3.134)

Substituting the expression forM(x) we have the following equation for the particle position

xa

xmax
− xa −Acos(kxa)

[xmax −Acos(kxmax)]
= 0, (3.135)

which we solve iteratively using a simple Newton-Raphson rootfinder. With the uniform particle distri-

bution as the initial conditions this converges in one or twoiterations.
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One dimensional tests

Initially we consider one dimensional, isothermal simulations using a fixed smoothing length (for which

the results of the stability analysis given in§3.2.7 hold). The cubic spline kernel is used withh = 1.5∆p

where∆p is the initial particle spacing. This value of smoothing length was chosen because in Figure 3.2

the cubic spline is seen to significantly underestimate the sound speed at this value ofh. The simulation

is setup using 100 particles (corresponding tokx = 0.0628 in Figure 3.2) and a wave amplitude of 0.005

to ensure that the wave remains essentially linear throughout the simulation. No artificial viscosity is

used. For isothermal simulations, the pressure is calculated directly from the density usingP = c2
s ρ . The

sound speed given by the SPH simulations is estimated from the temporal spacing of minima in the total

kinetic energy of the particles.

A representative example of these simulations is given in the left hand side of Figure 3.3 after five

crossings of the computational domain. The amplitude is well maintained by the SPH scheme, however

the wave lags behind the exact solution, giving a significantphase error as expected from the stability

analysis (Figure 3.2). The sound speed obtained from the numerical tests is plotted in Figure 3.5 for a

range of smoothing length values (solid points). In this case the results show excellent agreement with

the analytic results using the dispersion relation (3.41) given by the solid line (this line corresponds to

kx ≈ 0 in Figure 3.2). We observe that, depending on the value ofh the numerical sound wave can both

lag and lead the exact solution (in Figure 3.5 this corresponds to sound speeds less than or greater than

unity).

In §3.3.4 it was noted that the variable smoothing length terms normalise the kernel even in the case

of a fixed smoothing length. The results of the fixed smoothinglength simulation with this correction

term are shown by the dashed line in Figure 3.5, with a representative example given in the right hand

side of Figure 3.3. The numerical wave speed appears much closer to the theoretical value of unity.

Results using a smoothing length which varies with density according to (3.68) are given by the

dot-dashed line in Figure 3.5, with a representative example shown in Figure 3.4. The phase error is

slightly lower than either of the fixed smoothing length cases. Including the normalisation of the kernel

gradient from the variable smoothing lengths (§3.3.4) gives numerical sound speeds very close to unity

(dotted line in Figure 3.5). A representative example of these simulations is given in the right hand panel

of Figure 3.4 after 5 periods. The results in this case show excellent agreement with the exact (linear)

solution, with a small amount of steepening due to nonlineareffects.

The results of this test indicate that, whilst alternative kernels can give slight improvements in accu-

racy over the standard cubic spline (§3.2.7), a substantial gain in accuracy can be gained firstly by the

use of a variable smoothing length and secondly by self-consistently accounting for∇h terms in the for-

mulation of the SPH equations. These terms act as a normalisation of the kernel gradient which appear

to effectively remove the dependence of the numerical soundspeed on the smoothing length value.

Effects of artificial viscosity

In the absence of any switches, the artificial viscosity is specified according to (3.102) withα = 1, β = 2

everywhere. The results of the sound wave propagation with artificial viscosity turned on are shown in the

left panel of Figure 3.6. After 5 crossings of the computational domain the wave is severely damped by
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Figure 3.5: Summary of the isothermal sound wave tests using 100 particles. The numerical sound speed
from the SPH simulations is shown plotted against the (mean)smoothing length in units of the average
particle spacing. Results using the cubic spline kernel with a fixed smoothing length (solid points) may
be compared with the analytic result (solid line, under points) from the dispersion relation (3.41) (this
line corresponds tokx = 0 in Figure 3.2). The dashed line gives the numerical resultsusing the cubic
spline with a fixed smoothing length but incorporating the correction from the∇h terms, which show
much lower phase errors. The dotted and dot-dashed lines give numerical results using the cubic spline
with a variable smoothing length with and without the∇h terms respectively. In both cases the results
show a substantial improvement over the fixed smoothing length case, much more so than from the use
of alternative kernels (e.g. the New Quintic (2) from§3.2.6, given by the solid line).

the artificial viscosity term. The effect is to reduce the order of the numerical scheme since convergence

to the exact solution is much slower. The results using the artificial viscosity switch discussed in§3.5.2

are shown in the right panel of Figure 3.6. The results show good agreement with the linear solution,

demonstrating that use of the artificial viscosity switch very effectively restores the numerical schemes

ability to propagate small perturbations without excessive damping.

Figure 3.6: (left) Isothermal sound wave with amplitude = 0.005 in one dimension with artificial vis-
cosity applied uniformly to particles in compression (ie.α = 1, β = 2) and (right) applied using the
viscosity switch withαmin = 0.1.

Finally, we demonstrate the usefulness of the artificial viscosity switch by considering the steepening
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Figure 3.7: Nonlinear isothermal sound wave in one dimension showing steepening to shock. The wave
profile is shown after 5 crossings of the computational domain, corresponding to 5 periods. The initial
conditions are a linear wave with amplitude 0.05 (solid line). With artificial viscosity applied using
the switch the steepening is resolved, although some oscillations are observed to occur ahead of the
steepened wave.

of a nonlinear sound wave. In this case the initial amplitudeis 0.05 and artificial viscosity is applied using

the switch. The wave profile att = 5 is shown in Figure 3.7 and is significantly steepened compared to

the initial conditions (solid line). The use of the switch enables the steepening to be resolved, however

some oscillations are found to occur ahead of the steepened wave.

3.7.3 Sod shock tube

The standard shock tube test for any compressible fluid dynamics code is that of Sod (1978). The problem

consists of dividing the domain into two halves, one consisting of high pressure, high density gas whilst

the other is low pressure and low density. These two portionsof gas are allowed to interact att = 0,

resulting in a shock and rarefaction wave which propagate through the gas. This test illustrates the shock

capturing ability of the 1D code and thus provides a good testof the artificial viscosity formalism (§3.5).

It is also the basis for the MHD shock tube considered in§4.6.3. We set up the problem using 450 SPH

particles in the domainx = [−0.5,0.5]. The particles are setup with uniform masses such that the density

jump is modelled by a jump in particle separation. Initial conditions in the fluid to the left of the origin

are given by(ρ ,P,vx) = [1,1,0] whilst conditions to the right are given by(ρ ,P,vx) = [0.125,0.1,0] with

γ = 1.4. The particle separation to the left of the discontinuity is 0.01.

Figure 3.8 shows the results of this problem att = 0.2. The exact solution, calculated using the exact

Riemann solver given in Toro (1992) is given by the solid line. In this case artificial viscosity has been

applied uniformly to particles in compression (ie. usingα = 1), whilst no artificial thermal conductivity

has been used (ie.αu = 0). The results are generally good although there is significant deviation in the

slope of the rarefaction wave. This can be traced largely to the smoothing applied to the initial conditions.

Following Monaghan (1997b) (although a similar procedure is applied in many published versions of this

test), the initial discontinuities in density and pressurewere smoothed over several particles according to

the rule

A =
AL + ARex/d

1+ ex/d
(3.136)
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whereAL andAR are the uniform left and right states with respect to the origin andd is taken as half of

the largest initial particle separation at the interface (ie. the particle separation on the low density side).

Where the initial density is smoothed the particles are spaced according to the rule

ρa(xa+1− xa−1) = 2ρR∆R (3.137)

where∆R is the particle spacing to the far right of the origin with density ρR. Note that initial smoothing

lengths are set according to the ruleh ∝ 1/ρ and are therefore also smoothed. Where the total energyε̂
is integrated we smooth the basic variableu construct the total energy from the sum of the kinetic and

internal energies.

Such smoothing of the initial conditions can be avoided altogether if the density summation (3.42) is

used, particularly if the smoothing length is updated self-consistently with the density. The results of this

problem using unsmoothed initial conditions are shown in Figure 3.9. The artificial viscosity is applied

uniformly whilst no artificial thermal conductivity has been used. In this case the rarefaction profile

agrees extremely well with the exact solution (solid line).The unsmoothed initial conditions highlight the

need for artificial thermal conductivity since the thermal energy overshoots at the contact discontinuity

with a resulting glitch in the pressure profile. The gradientin thermal energy at the shock front does not

show this effect due to the smoothing of the shock by the artificial viscosity term. The results of this test

with a small amount of artificial thermal conductivity applied using the switch discussed in§3.5.2 are

shown in Figure 3.10. The variable smoothing length terms have also been used in this case, although

results are similar with a simple average of the kernel gradients in the force equation (3.54). The contact

discontinuity is smoothed over several smoothing lengths by the thermal conductivity term, removing the

overshoot in the thermal energy. The resulting profiles compare extremely well with the exact solution

(solid line).

Finally, the results of this test where both the artificial viscosity and conductivity are controlled us-

ing the switches described in§3.5.2 are shown in Figure 3.11. The top row shows the velocityand

thermal energy profiles compared with the exact solution (solid line), whilst the bottom row shows the

time-varying co-efficientsα andαu of the viscosity and thermal conductivity respectively. With the un-

smoothed initial conditions and the viscosity switch thereis a slight oscillation in the velocity profile

at the head of the rarefaction wave. The variable smoothing length terms have been used in this case

involving the consistent update of the smoothing length with density (§3.3.4). If a simple average of

the kernel gradients is used instead the oscillations in therarefaction wave are still present but slightly

less pronounced. In effect, the iterations of density and smoothing length make the scheme much more

sensitive to small perturbations, since a small change in the smoothing length will be reflected in the

density profile and vice-versa. This means that structures in the simulation are in general better resolved

and is clearly advantageous. However alsos mean that small errors in the density evolution are amplified

where they may otherwise have been smoothed out by the numerical scheme.

3.7.4 Blast wave

In this test we consider a more extreme version of the shock tube test considered previously. In this

problem the initial conditions in the fluid to the left of the origin are given by(ρ ,P,vx) = [1,1000,0]
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Figure 3.8: Results of the Sod shock tube problem in one dimension. The simulation uses 450 particles
with conditions in the fluid initially to the left of the origin given by(ρ ,P,vx) = [1,1,0] whilst conditions
to the right are given by(ρ ,P,vx) = [0.125,0.1,0] with γ = 1.4. Initial profiles of density and pressure
have been smoothed and artificial viscosity is applied uniformly. Agreement with the exact solution
(solid line) is generally good, but note the deviation from the exact solution in the rarefaction wave due
to the initial smoothing.

Figure 3.9: Results of the Sod shock tube problem using unsmoothed (purely discontinuous) initial con-
ditions. Artificial viscosity has been applied uniformly whilst no artificial thermal conductivity has been
used. In the absence of any smoothing of the initial conditions the rarefaction profile agrees well with
the exact solution (solid line). The thermal energy is observed to overshoot at the contact discontinuity.
There is also a small overshoot in velocity at the right end ofthe rarefaction wave.
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Figure 3.10:Results of the Sod shock tube problem using unsmoothed initial conditions and applying a
small amount of artificial thermal conductivity using the switch described in§3.5.2. Artificial viscosity
is applied uniformly. The overshoot in the thermal energy observed in Figure 3.9 is corrected for by
the smoothing of the contact discontinuity produced by the thermal conductivity term. The variable
smoothing length terms have also been used in this case, although results are similar with a simple
average of the particle kernels.

Figure 3.11: Velocity and thermal energy profiles (top row) in the Sod shock tube problem using un-
smoothed initial conditions and where both artificial viscosity and thermal conductivity are applied using
the switches discussed in§3.5.2. The bottom row shows the time-varying co-efficientsα andαu of the
viscosity and thermal conductivity respectively. With theunsmoothed initial conditions and the viscosity
switch there is a slight oscillation in the velocity profile at the head of the rarefaction wave. The variable
smoothing length terms have also been used in this case.
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whilst conditions to the right are given by(ρ ,P,vx) = [1,0.1,0] with γ = 1.4. The 104 pressure ratio

across the initial discontinuity results in a strong blast wave which propagates into the fluid to the right

of the origin. The velocity of the contact discontinuity is very close to that of the shock, producing a

sharp density spike behind the shock front. This test therefore presents a demanding benchmark for any

numerical code.

Figure 3.12: Results of the one dimensional blast wave test att = 0.01. Conditions in the fluid initially
to the left of the origin given by(ρ ,P,vx) = [1,1000,0] whilst conditions to the right are given by
(ρ ,P,vx) = [1,0.1,0] with γ = 1.4. 1000 particles have been used with no smoothing of the initial
conditions. The agreement with the exact solution (solid line) is excellent. The contact discontinuity is
spread sufficiently by the artificial thermal conductivity to be resolved accurately. In this simulation the
density summation and the average of the kernel gradients has been used.

The results of this test att = 0.01 are shown in Figure 3.12. The agreement with the exact solution

(solid line) is excellent. In this simulation the density summation and the average of the kernel gradients

has been used and the artificial viscosity is applied using the viscosity switch. The SPH results may

be compared with those given in Monaghan (1997b). Although we use the same formulation of the

dissipative terms as in Monaghan (1997b), in that paper the artificial thermal conductivity is applied only

for particles in compression, resulting in a need to smooth the initial discontinuity in the pressure. With

the thermal conductivity term applied using the switch the contact discontinuity is spread sufficiently in

order to be resolved accurately and smoothing of the initialconditions is therefore unnecessary. In the

SPH solution given by Monaghan (1997b) the spike in density is observed to overshoot the exact solution,

which is not observed in this case. This is due to the use of thedensity summation (3.42) rather than

evolving the continuity equation (3.43) as in Monaghan (1997b). Use of the continuity equation is more

efficient since it does not require an extra pass over the particles in order to calculate the density. Using

alternative formulations of the pressure term in the momentum equation (e.g. using equation (3.76)

with σ = 1) gives similar results (although the Hernquist and Katz (1989) formulation (3.92) appears

to produce negative pressures on this problem). Using the consistent alternative formulations of the
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continuity equation, however, appears to worsen the overshoot observed in the density spike compared

to the usual continuity equation (for example in theσ = 1 case, the density spike overshoots toρmax ≈ 10

when the continuity equation (3.86) is used).

3.7.5 Cartesian shear flows

In a recent paper Imaeda and Inutsuka (2002) (hereafter II02) have suggested that SPH gives particularly

poor results on problems involving significant amounts of shear. The simplest test considered by II02 is a

Cartesian shear flow. The setup is a two dimensional, uniformdensityρ = 1 box in the domain 0≤ x ≤ 1

and 0≤ y≤ 1 with a shear velocity field vx = 0,vy = sin(2πx) and periodic boundary conditions in thex−
andy− directions. In general such flows are known (at least in the incompressible case) to be unstable to

Kelvin-Helmholtz instabilities at the inflection point in the velocity profile (e.g. Drazin and Reid, 1981).

However, a straightforward stability analysis of this flow demonstrates that it is indeed stable to small

perturbations in thex−direction (note, however that the application of viscositycan significantly affect

the stability properties for these types of problems).

We setup the problem using 2500 (50 x 50) particles initiallyarranged on a cubic lattice. The smooth-

ing length we use is set according to

h = η
(

m
ρ

)
1
2

, (3.138)

where we useη = 1.2, resulting in an initially uniform value ofh = 0.024. The smoothing length

is allowed to change with density according to (3.68), although this has little effect since the density

remains close uniform throughout the simulation. The equation of state is isothermal such that the

pressure is given in terms of the density viaP = c2
s ρ . As in II02, we consider both the pressure-free

case (cs = 0) and also usingcs = 0.05, in both cases using no artificial viscosity. The results for the

pressure-free case are shown in Figure 3.13. After 50 dynamical times (defined as one crossing of the

computational domain at the highest velocity, ie. in this case tdyn = 1) the density remains extremely

close to uniform (∆ρ ≈ 10−3ρ) and the particle positions remain ordered. Results in II02show large

errors (∆ρ/ρ & ρ) in the density in less than 1 dynamical time. Similar results are obtained in the

cs = 0.05 case, shown after 20 dynamical times in Figure 3.14. Again, the amplitude of the density error

is very small (∆ρ ≈ 10−2ρ). Some disruption in the particle distribution is observedto occur at later

times, however in the absence of any artificial viscosity small compressible modes are not damped in

any way and in the absence of a high accuracy timestepping algorithm such disorder might reasonably

be expected. Also it is well known that the particles initially arranged on a cubic lattice will eventually

move off the lattice and settle to a more isotropic close packed distribution (e.g. Morris 1996).

The question is, therefore: Why do the results obtained in II02 show so much error in the density evo-

lution? The major factor appears to be the particle setup. The details of the particle setup are not given

in II02, however by inspection of their figures it appears that the particles are arranged in a quasi-random

fashion. The density errors observed in their paper may therefore be an amplification (by the shear flow)

of initial perturbations in the density distribution due tothe particle setup. A second contributing factor is

that the value of smoothing length used by II02 is very low (they useη = 1 in equation (3.138), whereas

typical values forη lie in the range 1.1− 1.2 in most multidimensional SPH implementations). How-
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Figure 3.13: Particle positions (left) and density evolution (right) inthe pressure-free Cartesian shear
flow test with shear velocity field vx = 0,vy = sin(2πx). The amplitude of the density error is extremely
small (∆ρ ≈ 10−3ρ)

Figure 3.14:Particle positions (left) and density evolution (right) inthe Cartesian shearing box test with
sound speedcs0 = 0.05 and shear velocity field vx = 0,vy = sin(2πx). The amplitude of the density error
is very small (∆ρ ≈ 10−2ρ)

ever, even with their choice of smoothing lengthh = 1.0(m/ρ)
1
2 , we still find that the density remains

essentially constant.

3.7.6 Toy stars

A disadvantage of many of the test problems found in the astrophysical fluid dynamics literature is

that, being designed for grid-based codes, they all involvesome kind of boundary condition. For codes

designed ultimately to simulate self-gravitating gas it isuseful to have benchmarks based on a finite

system. Secondly simple, exact, nonlinear solutions to theequations of hydrodynamics are few and far

between, and this even more so in the case of magnetohydrodynamics. For this reason we investigate

benchmarks based on a simple class of exact solutions which we call ‘Toy Stars’. The equations of

hydrodynamics are modified by the addition of a linear force term which is proportional to the co-

ordinates (which means that the particles move in a paraboloidal potential centred on the origin). The

one dimensional equation of motion is given by

dv
dt

= − 1
ρ

∂P
∂x

−Ω2x, (3.139)

whereΩ is the angular frequency. In the following we rescale the equations in units such thatΩ2 = 1.

The toy star force has many interesting properties and was even considered by Newton as an example of

the simplest many-body force. The toy star equations withγ = 2 are also identical in form to the shallow

water equations.



3.7 Numerical tests 69

Figure 3.15: Toy star static structure. 200 SPH particles are set up in an initially uniform distribution
along the x axis and allowed to evolve under the influence of the linear force. The SPH particles are
shown by the solid points after damping to an equilibrium distribution. The agreement with the exact
quadratic (ρ = 1− x2) solution (solid line) is extremely good.

Assuming a polytropic equation of state (ie.P = Kργ) with constant of proportionalityK = 1/4 and

γ = 2, the Toy Star static structure at equilibrium is easily derived from (3.139) as

ρ = ρ0(1− x2) (3.140)

In this thesis we will simply consider the most interesting toy star problem which is the calculation

of the fundamental oscillatory mode since it turns out to be an exact, non-linear solution. However, a

perturbation analysis can be used to derive linear solutions to the Toy Star equations which also present

interesting benchmarks for numerical codes. An investigation of the linear modes using SPH, together

with a detailed comparison of the oscillation frequencies with the linear solution is given in Monaghan

and Price (2004). The non-linear solution for arbitraryγ may be derived by considering velocity pertur-

bations in the form

v = A(t)x, (3.141)

where the density is given by

ργ−1 = H(t)−C(t)x2. (3.142)

The exact solution (Monaghan and Price, 2004) for the parameters A, H and C is given in terms of the

ordinary differential equations

Ḣ = −AH(γ −1), (3.143)

Ȧ =
2Kγ
γ −1

C−1−A2 (3.144)

Ċ = −AC(1+ γ). (3.145)
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which can be solved numerically with ease. The relation

A2 = −1− 2σC
γ −1

+ kC
2

γ+1 , (3.146)

wherek is a constant which is determined from the initial values ofA andC. The exact solution equations

(3.143)-(3.145) take particularly simple forms for the case γ = 2.

Static structure

The simplest test with the toy star is to verify the static structure. We setup 200 SPH particles equally

spaced along the x axis withx = [−1,1] with zero initial velocity and a total massM = 4/3. The particles

are then allowed to evolve under the influence of the linear force, with the velocities damped using the

artificial viscosity. The particle distribution at equilibrium is shown in Figure 3.15 and shows extremely

good agreement with the exact solution (eq. 3.140).

Non linear test cases

For the non-linear tests the one dimensional Toy star is initially set up using 200 equal mass particles

distributed along the x axis. Although in principle we coulduse the particle distribution obtained in

the previous test as the initial conditions, it is simpler just to space the particles according to the static

density profile (3.140). The SPH equations are implemented using the summation over particles to

calculate the density and the usual momentum equation with the linear force subtracted. The equation of

state is specified by usingP = Kργ , where for the cases shown we setK = 1/4. The smoothing length is

allowed to vary with the particle density, where we take simple averages of kernel quantities in the SPH

equations in order to conserve momentum.

The exact (non-linear) solution is obtained by numerical integration of equations (3.143)-(3.145)

using a simple improved Euler method. We use the condition (3.146) as a check on the quality of this

integration by evaluating the constantk, which should remain close to its initial value.

Results for the case where initiallyA = C = H = 1 (and thereforek = 4) are shown in figure 3.16

at t = 3.54 (corresponding to approximately one oscillation period) alongside the exact solution shown

by the solid lines. No artificial viscosity is applied in thiscase. The agreement with the exact solution

is excellent. Note that the sound speed in this case isCs = 1/
√

2 such that using the parameterA = 1

results in supersonic velocities at the edges of the star (the solution is therefore highly non-linear).

Figure 3.17 shows the SPH results for a simulation withγ = 5/3 and the same initial parameters as

Figure 3.16. Velocity and density profiles are shown at timet = 11.23 corresponding to approximately

three oscillation periods. No artificial viscosity is used.The agreement with the exact solution (solid

lines) is again extremely good.

Results of simulations with artificial viscosity turned on are similar, although with a small damping

of the kinetic energy over time.
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Figure 3.16: Results of the SPH non linear Toy star simulation withγ = 2 and initial conditions v= x,
ρ = 1− x2 (ie. A = C = H = 1). Velocity and density profiles are shown after approximately one
oscillation period, with the SPH particles indicated by thesolid points and the exact solution by the solid
line in each case. Equal mass particles are used with a variable initial separation.

Figure 3.17: Results of the SPH non linear Toy star simulation withγ = 5/3 and initial conditions
v = x, ρ = (1− x2)3/2 (ie. A = C = H = 1 with γ = 5/3). Velocity and density profiles are shown after
approximately three oscillation periods and the exact solution is given by the solid line.

3.8 Summary

In this chapter we have thoroughly reviewed the SPH algorithm. Alternatives to the standard cubic

spline kernel were investigated in§3.2.5 and§3.2.6, on the basis of their stability properties. Higher

order spline kernels giving closer approximations to the Gaussian were found to give better stability

properties although at the price of an increase in computational expense due to the greater number of

contributing neighbours. The possibility of constructingkernels with better stability properties based

on smoother splines but retaining compact support of size 2h was investigated, with good results for

smoothing lengthsh & 1.1 (in units of the average particle spacing). However, the gain in accuracy from

the use of these alternative kernels is very minor compared to the substantial improvements in accuracy

gained by the incorporation of the variable smoothing length terms (§3.3.4)

The discrete equations of SPH were formulated self-consistently from a variational principle in§3.3,

leading naturally to equations which explicitly conserve momentum, angular momentum and energy.
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Artificial dissipation terms used to capture shocks were then discussed, where in§3.5.2 a new switch

to control the application of artificial thermal conductivity was considered (the importance of which is

highlighted in the numerical tests described in§3.7). The consistent formulation of the SPH equations

incorporating a variable smoothing length was discussed in§3.3.4, which are shown to lead to increased

accuracy in a wide range of problems (including linear waves(§3.7.2), shock tubes (§3.7.3), Cartesian

shear flows (§3.7.5) and toy stars (§3.7.6)). It was shown in§3.4 that consistent formulations of SPH

when alternative formulations of the momentum equation areused can be derived from a variational

principle by modifying the form of the continuity equation.Various timestepping algorithms were dis-

cussed in§3.6, particularly the need to perform a separate pass over the particles to compute derivatives

involving the velocity for a reversible integration of the SPH equations. Finally several numerical tests

were presented.

The linear sound wave tests (3.7.2) demonstrated a phase error in the SPH simulation of sound waves

dependent on the value of the smoothing length and related tothe use of kernels with compact support.

This phase error was shown to be largely corrected for by allowing the smoothing length to vary with

density and self-consistently accounting for the extra terms which arise in the SPH equations. Also the

damping of small perturbations induced by the artificial viscosity term was found to be significantly

reduced by use of the artificial viscosity switch described in §3.5.2. In the second test problem, the

standard shock tube test of Sod (1978), the importance of applying a small amount of artificial thermal

conductivity was highlighted, which avoids the need to artificially smooth the initial conditions of such

problems. The SPH algorithm was also shown to give good results on a more extreme version of this

test (§3.7.4). Thirdly (§3.7.5), the Cartesian shear flow tests given by Imaeda and Inutsuka (2002) were

examined, demonstrating that SPH gives good results on thisproblem for uniform particle setups and

does not show the large errors encountered by these authors.Finally, the SPH algorithm was tested

against several exact, non-linear solutions derived for systems of particles, known as ‘Toy Stars’ and was

shown to give results in excellent agreement with theory.


