“I went on to test the program in every way | could devise. histed
it to expose its weaknesses. | ran it for high-mass stars amehiass
stars, for stars born exceedingly hot and those born relgtaold. | ran
it assuming the superfluid currents beneath the crust to benab- not
because | wanted to know the answer, but because | had dedetop
intuitive feel for the answer in this particular case. Fipdlgot a run

in which the computer showed the pulsar's temperature toebg than
absolute zero. | had found an error. | chased down the erbfiged it.

Now | had improved the program to the point where it would not at

all”

Frozen Sar: Of Pulsars, Black Holes and the Fate of Stars
GEORGEGREENSTEIN

Smoothed Particle Hydrodynamics

3.1 Introduction

The standard approach to solving the equations of fluid dycgnmumerically is to define fluid quan-
tities on a regular spatial grid, computing derivativesngdiinite difference or finite volume schemes.
This is an extremely well studied approach and most ‘stateefirt’ methods for fluid dynamics have
been developed in this manner. In astrophysical fluid dyoamioblems frequently involve changes in
spatial, temporal and density scales over many orders ohitualg. Thus, adaptivity is an essential in-
gredient which is absent from a fixed-grid approach. Pragirethis area has been rapid in recent years
with the development of procedures for adaptive mesh remefAMR). The implementation of such
procedures is far from trivial, although the availabilitijibraries and toolkits for grid-based codes eases
this burden somewhat. However, a further constraint isakabphysical problems are frequently asym-
metric which can result in substantial numerical diffusiimen solving on (fixed or adaptive) Cartesian
grids. Other approaches to this problem are to use unstasttyrids (where typically the grid is recon-
structed at each new timestep) or Lagrangian grid metholdsyerthe grid shape deforms according to
the flow pattern.

An alternative to all of these methods is to remove the sipgtiid entirely, resulting in methods which
are inherently adaptive. In this approach fluid quantities Garried by a set of moving interpolation
points which follow the fluid motion. Since each point casr&efixed mass, the interpolation points are
referred to as ‘particles’. Derivatives are evaluatedegithy interpolation over neighbouring particles
(referred to as particle methods), or via a hybrid approachterpolation to an overlaid grid (referred
to as particle-mesh methods, typified by the particle-ih{&C) method used extensively in plasma
physics.

Smoothed Particle Hydrodynamics (SPH) is a particle methtvdduced by Lucy (1977) and Gin-
gold and Monaghan (1977). It has found widespread use in@stsics due to its ability to tackle a
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wide range of problems involving complex, asymmetric pmeapna with relative ease. Since these fea-
tures are highly desirable in many non-astrophysical agtins, it is unsurprising that SPH is currently
finding many applications in other fields such as geophysidseagineering (and even film-maki)g

The advantages of SPH over standard grid based approaahés sammarised as follows: Firstly,
SPH is conceptually both simple and beautiful. All of the &ipns can be derived self-consistently
from physical principles with a few basic assumptions. Assutt complex physics is relatively simple
to incorporate. Its simplicity means that for the user it igeay intuitive numerical method which
lends itself easily to problem-specific modifications. Sethg adaptivity is a built-in feature. The
Lagrangian nature of the method means that changes in yi@msitflow morphology are automatically
accounted for without the need for mesh refinement or otheptioated procedures. As a result of its
adaptivity, SPH is also very efficient in that resolution @centrated on regions of high density, whilst
computational effort is not wasted on empty regions of spatkirdly, free boundaries, common in
astrophysical problems, are simple and natural in SPH behgfresent difficulties for grid-based codes
(such as spurious heating from the interaction with a lowsitgrsurrounding medium). This means that
no portions of fluid can be lost from the simulation, unlikeaigrid based code where fluid which has
left the grid cannot return (this has been dubbed the ‘Cougwmffect’ by Melvyn Davies, since fluid can
fall off the edge of the world). Fourthly, a significant adtege in an astrophysical context is that SPH
couples naturally with widely used N-Body codes and teales) for which there exists a vast amount
of literature. Finally (although perhaps many more adwgedacould be given) visualisation and analysis
is also somewhat easier with Lagrangian techniques, striseaisimple matter to track and visualise
portions of the flow.

SPH also has a number of disadvantages when compared todifi@eence codes. The first of
these is that, unlike grid-based codes, SPH involves thitéiaial computational cost of constructing the
neighbour lists. This is offset somewhat in that N-Body tégbes used to calculate the gravitational
force (namely via tree-codes) can also be used in consiguttie neighbour lists. Secondly, SPH suffers
from a lack of algorithm development, since a vast amounesgéarch effort is focussed on finite dif-
ference or finite volume techniques. This often means ttat sechniques, although often applicable in
an SPH context, can be slow to filter into mainstream use.dihialthough not a disadvantage as such
but a point which is often overlooked, is that the setup didhconditions is often more complicated
and requires much greater care. Since particles can bedwaid th an infinite variety of ways, choosing
an appropriate setup for a given problem requires some iexper and usually some experimentation.
Inappropriate particle setups can lead to poorer simulagsults than might otherwise be expected (we
give some examples of this §3.7.5). Finally, in the case of magnetohydrodynamics ahdrgtroblems
involving anisotropic stresses (as we will discuss in chiag), numerical stability can become an issue
which must be dealt with appropriately.

In this chapter we provide an overview of the SPH methoduficly several improvements to the
basic method which have been made since the review artidddoobighan (1992) was published (such
as improvements in shock-capturing techniques and theriess of terms related to the use of a variable
smoothing length). In particular we focus on those aspddisecalgorithm that are relevant in an MHD
context. The chapter is organised as follows: In sedi®@ we present the basic formalisms inherent to

for example many of the graphics involving fluids in the filnoftb Raider’ were computed using SPH
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SPH; in§3.3 we derive the SPH equations for compressible hydrodigzansing a variational principle.
Formulations of dissipative terms used to capture shoakpmaasented and discussed815. In§3.3.4
we discuss the incorporation of terms relating to the spatigation of the smoothing length and in
§3.4 alternative formulations of SPH are examined withinhgational framework. Timestepping is
discussed ir$3.6. Finally, we present numerical tests§B7 in support of the previous sections and as
preliminaries for the MHD tests described in Chapters 4 and 5

3.2 Basic formalisms

3.2.1 Interpolant

The basis of the SPH approach is given as follows (Monagt882)1 We begin with the trivial identify

/A a(Ir —r')d (3.1)

whereA is any variable defined on the spatial co-ordinatesd é refers to the Dirac delta function.
This integral is then approximated by replacing the deltecfion with a smoothing kern&/ with char-
acteristic widthh, such that

rI}irfOW(r —r1',h) =d(r —r’), (3.2)
giving

/A (Ir —¢'|,h)dr’ + O(h?). (3.3)
The kernel function is normalised according to
/W(r —r' hydr’ = 1. (3.4)

Finally the integral (3.3) is discretised onto a finite seintérpolation points (the particles) by replacing
the integral by a summation and the mass elerpeit with the particle mass, ie.

Ar) = /ggi;W(h—r/|,h)p(r’)dr/+0(h2),

N

Ap
> Mo
b=1 Pb
where the subscrigi refers the quantity evaluated at the position of particld his ‘summation inter-

polant’ is the basis of all SPH formalisms. The errors intiwetl in this step are discusseds®i2.2.
Gradient terms may be calculated by taking the analytiovdeve of (3.5), giving

Q

W([r —rp|,h), (3.5)

OAr) = %/gg/gww—r’],h)p(r’)dr’+0(h2), (3.6)

2|t is interesting to note that this equation, with= p is used to define the density of the fluid in terms of the Lagieang
co-ordinates in the Hamiltonian description of the idealtffiieq. (94) in Morrison, 1998). Similarly the SPH equivalefthis
expression, (3.42), forms the basis for the Hamiltoniarcideton of SPH (se§3.3.2).
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~ %%@mawab, (3.7)
Po

where we have assumed that the gradient is evaluated aeampeatticlea (ie. r = ry), definingd, = 0%
andWy, =W(|ra —rp|,h).

3.2.2 Errors

The errors introduced by the approximation (3.3) can bene¢éd by expandiné(r’) in a Taylor series
aboutr (Benz, 1990; Monaghan, 1992), giving

+0((r =) |W(r —r'|,hydr’,

2
AT) = /[A(r)+(r’—r)“§%+%(r’—r)ﬁ(r’—r)y oA

arBary
= A(r)+;r—é/(r’—r)“W(r)dr’Jr%arﬁ;:ry/(r/—r)B(r’—r)V\N(r)dr/+ﬁ[(r’—r)3], (3.8)

wherer = |1’ —r

; a, B andy are indices denoting co-ordinate directions (with repeatdices implying

a summation) and we have used the normalisation conditi@l).(3he odd error terms are zeroVif

is an even function ofr —r’) (ie. depending only on its magnitude), which, sirjice-r’| is always
less than the smoothing radiush(ih most cases), results in an approximatiorvtth?). In principle

it is also possible to construct kernels such that the secomment is also zero, resulting in errors of
0 (h*) (discussed further i§3.2.7). The disadvantage of such kernels is that the keunetibn becomes
negative in some part of the domain, resulting in a potdptiagative density evaluation. The errors
in the summation interpolant differ slightly since the apgimation of integrals by summations over
particles no longer guarantees that these terms integtatéle Starting from the summation interpolant
evaluated on particla, we expandyy, in a Taylor series arounid, giving

grno@wab =Aag Wy + D Y 220 Fa W + 01— 1)) (3.9)

Po Po Po
From this we see that the summation interpolation is exactdastant functions only when the inter-
polant is normalised by dividing by the interpolation of tyniln practical calculations the summation
interpolant is only used in the density evaluatig8.8.1), resulting in a slight error in the density value.
More important are the errors resulting from the SPH evalnavf derivatives, since these are used
throughout in the discretisation of the fluid equatio§.3).

The errors resulting from the gradient evaluation (3.6) tmagstimated in a similar manner by again
expandingA(r’) in a Taylor series about giving

2

OA(r) = /[A(r)+(r’—r)“%+%(r’—r)ﬁ(r’—r)y +ﬁ[(r—r’)3]] OW(|r —r’|,h)dr’,

orBary
_ / ﬁ/ I \a / }ﬂ/ I \Bry! _\Y / I \3
= A(r)/DWdr +0ra (r"—r)“0OWdr +20r36ry (r'=r)P(r'—r)’OWdr" + o[(r" —r)7],
= DA(r)+ }LA/(W— NP —r)YOW(r)dr’ + G[(r' —r)?] (3.10)
20rBory ’ '

where we have used the fact thaf]lwdr’ = 0 for even kernels, whilst the second term integrates to
unity for even kernels satisfying the normalisation candit(3.4). The resulting errors in the integral
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interpolant for the gradient are therefore alsaxth?). The errors in the summation interpolant for the
gradient (3.7) are given by expandiAg in a Taylor series arounid,, giving

A = %mﬁ TaWap,

0
L 02Aa T B y 3
20rBarv £ py ——(rb—Ta)" (1o —ra) UaWap + O[(rp —ra)°]. (3.11)

where the summations represent SPH approximations to téngrats in the second line of (3.10).

3.2.3 First derivatives

From (3.11) we immediately see that a straightforward imenoent to the gradient estimate (3.7) can
be obtained by a simple subtraction of the first error term (he term in (3.11) that is present even in
the case of a constant function), giving (Monaghan, 1992)

AbAa)

OAa = %mb OaWab, (3.12)

which is an SPH estimate of
OA(r) =0OA—A(0O1). (3.13)

Since the first error term in (3.11) is removed, the interfiamais exact for constant functions and indeed
this is obvious from the form of (3.12). The interpolatiorndae made exact for linear functions by
dividing by the summation multiplying the first derivativerm in (3.11), ie.

dAq

-1
B ™M amB
ara Xaﬁ% . (Ap — Aq) 0P Whp, Xap = [% Y (rp—ra)0 Wab] : (3.14)

where0? = 9/drP. This normalisation is somewhat cumbersome in practioeegj is a matrix quan-
tity, requiring considerable extra storage (in three disi@ms this means storing<33 = 9 extra quantities
for each particle) and also since calculation of this terquines prior knowledge of the density. How-
ever, for some applications of SPH (e.g. solid mechanidgsXi¢sirable to do so in order to retain angular
momentum conservation in the presence of anisotropic $qi8enet and Lok, 1999).

A similar interpolant for the gradient follows by using

O0A = %[ADp—D(pA)] (3.15)

%

p—la > (Ao~ A TaWe, (3.16)

which again is exact for a constaAt ExpandingA, in a Taylor series, we see that in this case the
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interpolation of a linear function can be made exact using

0Aa

-1
ara Xap%ma Ap — A) TPWyp, Xap = [% mo(rb—ra)aDﬁWab] : (3.17)

which has some advantages over (3.14) in that it can be cemmithout prior knowledge of the density.

An alternative gradient interpolant is given by

= o[ Bevs()]

%g%( :ﬁw% (3.18)

%

which is commonly used in the SPH evaluation of the pressiadignt since it guarantees conservation
of momentum by the pairwise symmetry in the gradient ternis #iso the formulation of the pressure
gradient which follows naturally in the derivation of the I$Rquations from a variational principle
(§3.3.2). Expanding\, in a Taylor series about, we have

1 0A; — My u
DaW = DaW + b —ra DaW
%%( > b Aa%”b( Pb> ab 0r“%pg(rb ra) b
(92Aa , ,
Zdrﬁary%p (rp—ra)’OaWap + O[(rp—ra)”] (3.19)

from which we see that for a constant function the error issgo®d by the extent to which

%ma ( ) OaWhp = 0. (3.20)

Although a simple subtraction of the first term in (3.19) fr¢8nl8) eliminates this error, the symmetry
in the gradient necessary for the conservation of momensulost by doing so. Retaining the exact
conservation of momentum therefore requires that such tmnms are not eliminated. In applications of
SPH employing anisotropic forces (such in the MHD case)xdtaror terms can be sufficient to cause
numerical instabilities§é.4).

Derivatives of vector quantities follow in a similar mann&or example the divergence of a vector
guantityv can be estimated using

%mb ) - DaWap, (3.21)
or
Vampa (228 ) Dt (3.2
whilst the curl is given by (e.g.)

(|:| X V - % I‘Tb Vb X HaWap. (3.23)
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3.2.4 Second derivatives

Second derivatives are slightly more complicated sinc&kéonels with compact support a straightfor-
ward estimation using the second derivative of the kerrmlgs to be very noisy and sensitive to particle
disorder. For this reason it is better to use approximatifnthe second derivative which utilise only

the first derivative of the kernel (Brookshaw, 1985; Monaght092). For a scalar quantity the second
derivative may be estimated using the integral approxwnati

D2A(r) ~ 2 / %dr/, (3.24)

giving the SPH Laplacian

(DZAawzgmo (Aa—Ao) Fap- DaWab, (3.25)

Pb rab

wherer g = ra — rp. This formalism is commonly used for heat conduction in SBH).( Brookshaw
1985; Cleary and Monaghan 1999 and more recently Jubelgds2804). The integral approximation
(3.24) can be derived by expandiAgr’) to second order in a Taylor series abougiving

2
JA 1 Bd

AN = Ar) = (r=1") 5 + S (=) (r=r’) 0raarﬁ+ﬁ[(r—r/)3]. (3.26)

Expanding this expression into (3.24), the integral is igilog

dr’. (3.27)

ﬁ . /a(r_r/)'DW(r) / } 9°A . na /B(r_r/)'[’w(r)
0r°’/( - Ir—r’|2 dr+20r“0rﬁ (r=r)(r—r) Ir—r’|2

The first integral is zero for spherically symmetric kernelhilst the second term integrates to a delta
function, giving[J?A. A generalisation of (3.25) is derived for vector quansitiy Espafiol and Revenga
(2003). In three dimensions the integral approximatiorivsryby

2 . N
70:2;3 %/[V(r)—v(r/)] [S(r UL _r/)B_aaB} %dr/, (3.28)

which in SPH form becomes

_ 5aB] Fap- HaWen
<0r0’0rl3> %mb [Srabr o ] 2 (3.29)

3.2.5 Smoothing kernels

The smoothing kerndlV must by definition satisfy the requirement that it tends taebiadfunction as
the smoothing length tends to zero (3.2) and the normalisation condition (3.4)addition the kernel

is usually chosen to be an even functiorr @b cancel the first error term in (3.8) and may therefore be
written in the form

w(rh) = 9 (h> (3.30)
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wherer = |r —r’| and v is the number of spatial dimensions. Written in this form tleemalisation
condition (3.4) becomes

o / Fq)dV =1, (3.31)

whereq = r/h and the volume elememlv = dg,2rmdq or 4rg?dq in one, two and three dimensions.
The simplest kernel with this property is the Gaussian

W(r,h) = hi‘ve—qz, (3.32)
whereq=r/hando = [1/\/m,1/m,1/(m/m)] in [1,2,3] dimensions. This has the advantage that the
spatial derivative is infinitely smooth (differentiable)ditherefore exhibits good stability properties (Fig-
ure 3.2). For practical applications, however, using a Gaunskernel has the immediate disadvantage
that the interpolation spans the entire spatial domainh(eitmputational cost of’(N?)), despite the
fact that the relative contribution from neighbouring paets quickly become negligible with increasing
distance. For this reason it is far more efficient to use Kenvéh finite extent (ie. having compact sup-
port), reducing the calculation to a sum over closely neighing particles which dramatically reduces
the cost tor’(nN) wheren is the number of contributing neighbours (although theedds the additional
cost of finding the neighbouring particles). Kernels whioh similar to the Gaussian in shape generally
give the best performance (see, e.g. Fulk and Quinn, 199@heSe the most commonly used kernel is
that based on cubic splines (Monaghan and Lattanzio, 198&n by

1-3¢?+33, 0<qg<1y;
fla)=0¢ z(2-a)? 1<q<2 (3.33)
0 q>2.

with normalisationo = [2/3,10/(7m),1/m]. This kernel satisfies the basic requirements (3.2) and, (3.4
is even, has continuous first derivatives and compact stppsize . Smoother kernels can be intro-
duced by increasing the size of the compact support regibicfiwcorrespondingly increases the cost of
evaluation by increasing the number of contributing neayhb) and by using higher order interpolating
spline functions. To this end the quartic spline kernel

(25—-q)*—5(1.5—q)*+1000.5—q)*, 0<q<0.5;
—a)4— —ag)? < .
‘) =0 (25—q)*—5(1.5—q)%, 05<q<15; (3.34)
(25-0q)4, 15<q<25;
0. q>25.
with normalisationo = [1/24,96/1199rm,1/20r] and quintic spline kernel
(3-0)°-6(2-0)°+151-0)°, 0<qg<l;
—-q)°-6(2—q)° 1<q<2;
fq) =0 (3-09)°-6(2—-0q)>, <q<2 (3.35)
(3—a)° 2<q<3;

0. q>3.
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with normalisationo = [1/120,7/478m,1/120m] can be used (e.g. Morris, 1996). The higher order
polynomials have the advantage of smoother derivativeshwylim combination with the increased size
of compact support, decreases the sensitivity of the kéordikorder in the particle distributio§3.2.7).

T ————— 77—
Cubic spline | Quintic spline | Gaussian |

s .
New quintic (1) | New quintic (2) |

T A
Cubic—like quintic |

1 ~. S i \ il

r/h r/h r/h

Figure 3.1: Examples of SPH smoothing kernels (solid line) togetheh dieir first (dashed) and second
(dot-dashed) derivatives. Kernels correspond to thosngivthe text. The cubic spline (top left) is the
usual choice, whilst the quintic (top, middle) representéoger approximation to the Gaussian kernel
(top right), at the cost of increased compact support. Theoborow correspond to various quintic

kernels with compact support oh2vhich we derive in§3.2.6. The stability properties of all these
kernels are compared in Figure 3.2.

Note that it is entirely possible to construct kernels basedmoother splines but which retain com-
pact support of sizel2 We derive a class of such kernels and compare their stapititperties with the
kernels given in this section i§8.2.6. In principle it is also possible to construct highetes kernels
where the second error term in (3.8) is also zero. Monagh@®@2jldemonstrates that such higher order
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kernels may be constructed from any lower order kernel sa¢B.83) by the simple relation
Whighorder = B(1 — Ad?)W(q) (3.36)

where the parametefsandB are chosen to cancel the second moment and to satisfy thealismtion
condition (3.4). The disadvantage of all such kernels is ttna kernel becomes negative in part of the
domain which could result in a negative density evaluat&lso it is not clear that such kernels actually
lead to significant improvements in accuracy in practicalaions (since the kernel is sampled at only a
few points).

From time to time various alternatives have been proposduetiiernel interpolation at the heart of
SPH, such as the use of Delaunay triangulations (Pelupésgy 2003) and normalisations of the ker-
nel interpolant (involving matrix inversion) which guataa exact interpolations to arbitrary polynomial
orders (Maron and Howes, 2003; Bonet and Lok, 1999). It rasi@ be seen whether any such alterna-
tive proposals are viable in terms of the gain in accuracgugethe inevitable increase in computational
expense and algorithmic complexity.

Finally we note that in most SPH codes, the kernel is evadubgelinear interpolation from a pre-
computed table of values, since kernel evaluations are gtedprequently. The computational cost
involved in calculating the kernel function is therefore ttame whatever the functional form. In the
calculations given in this thesis, the kernel is tabulateWéq) and dW/dq, where the table is evenly
spaced irg? to give a better interpolation in the outer edges.

3.2.6 A general class of kernels

In this section we consider the possibility of constructikegnels based on smoother splines than the
cubic but which retain compact support of size 2 general class of such kernels may be derived by
considering kernels of the form

(r—a)"+A(a—0a)"+B(B-q)", 0<q<p;

f(q=o) (T TA@AT Fea<a; (3.37)
(r—a)", as<q<r;
0. q>r

wheren is the order,r is the compact support size (in this case- 2), A and B are parameters to
be determined and and 3 are the two matching points (with€ 3 < a < r), although an arbitrary
number of matching points could be added. The formulatimergiabove guarantees that the kernel
and its derivatives are continuous at the matching poindszano at the compact support radiigr ) =
dW/dq(r) = 0. To determine the parameteksand B we require two further constraints on the form of
the kernel. For the kernels to resemble the Gaussian, weéraonthe kernel gradient to be zero at the
origin and also that the second derivative be minimum at thggo(this also constraine > 3), ie.

W/ (0) = 0, W (0) = 0. (3.38)
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For the moment we leave the matching points as free parasn&em the conditions (3.38), the param-
etersA andB are given in terms of the matching points by

rn—3 r2_ 2 rn—l Aan—l
A:M, B:—; (3.39)
anf?)(az _ BZ) anl
In one dimension the normalisation constant is given by
n+1
o= . 3.40
z(Aan—i-l_’_ BB”+1+ rn+1) ( )

As an example we can construct a quintic={ 5) kernel that closely resembles the cubic spline
kernel (3.33) in all but the continuity of the second defix&t An example of such a kernel is given by
the choiceB = 0.85,a = 1.87. This was chosen by constraining the second derivatiiee gxjual to that
of the cubic spline at the origin (i&V”(0) = —2) and the turning point in the second derivative to be
located as close as possible to the that of the cubic sphff§q ~ 1) = 0; note that an exact match is
not possible under the constraints given). This kernel ésvshin Figure 3.1 (‘cubic-like quintic’). The
stability properties are discussedsiBL2.7.

However, it would be more interesting to investigate whetiitber kernels with even better stability
properties can be constructed. To this end we have perfoarsenlvey of parameter space for quintic
(n=5) kernels, from which we find that the most stable kernelstlawse with matching points in the
rangef3 ~ 0.5 with a ~ 1.7 or 3 ~ 0.7 with a ~ 1.5. These two kernels (‘New Quintic(1)’ and ‘New
Quintic (2)") are shown in Figure 3.1. The stability propestare discussed below.

3.2.7 Kernel stability properties

The accuracy of the kernels given§B8.2.5 and3.2.6 may be compared via a stability analysis of the
SPH equations. Detailed investigations of the stabiligperties of SPH have been given elsewhere (e.g.
Morris 1996) and for this reason we refer the details of thbility analysis to appendix B (although as
for the fluid equations, the linearised form of the SPH equmstiare derived from a variational principle).
The result for one-dimensional SPH (for any equation ok$tistthe dispersion relation

2 o 2mP0 02W
m? 2P, ow ?
+p_§ (Cg—p—c)()) [%Sink(xa_xb)ﬁ(xa—xbvh) ; (3.41)

wherecs = dP/dp is the sound speed. Figure 3.2 shows contours of the (n@eddlsquare of the
numerical sound spedf,,,, = w?/k? as a function of wavenumber and smoothing length (both itsuni
of the average particle spacing). The sums in (3.41) arelleadsd numerically assuming an (isothermal)
sound speed and patrticle spacing of unity (both wavelengilsmnoothing length are calculated in units
of the patrticle spacing). The quintic spline (top, centmed the Gaussian (top right) show increasingly
better stability properties over the standard cubic spliop left) although at increased computational
expense.

The stability properties of the ‘cubic-like’ quintic kednderived in §3.2.6 (bottom left) are very
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T
Cubic spline

T T
Quintic spline 5 gl Gaussian

> e

New quintic (1)

kx kx kx

Figure 3.2: One dimensional stability properties of the kernels shawigure 3.1 for isothermal SPH.
They-axis gives the smoothing length in units of the particlecépgAx, whilst thex-axis corresponds
to wavenumber in units of Ak (such thakx — 0 represents the limit of an infinite number of particles
per wavelength antl — « represents the limit of an infinite number of neighbours)n©ars show
the (normalised) square of the numerical sound speed frendigpersion relation (3.41). The quintic
spline (top, centre) and Gaussian kernels show improvegracg over the standard cubic spline kernel
although at a higher computational cost. The kernels deiiivg3.2.6 (bottom row) appear to give an
improvementin accuracy fdr> 1.1 although degrade rapidly for< 1.1 where the cubic spline retains
a reasonable accuracy

similar to that of the cubic spline, except that the ‘trougi’the contours ofC2,,, observed ah =
1.5Ap (where the closest neighbour crosses the discontinuityeisécond derivative) is much smoother.
However, the accuracy of this kernel appears to degraderfall smoothing lengthsh(< 1.1Ap) where
the cubic spline retains a reasonable accuracy. Of the némgatiwo kernels derived i63.2.6 (bottom
centre and bottom right), the second example (‘New Quir)§ (n particular appears to give slightly
better accuracy than the cubic spline over the ramgel1.1Ap although both kernels show the rapid
decline in accuracy for small smoothing lengths{1.1Ap) observed in the cubic-like quintic. Itis worth
noting that most multidimensional calculations use smiogtlengths in the range= 1.1 — 1.2Ap.

In summary the new kernels appear to give a small gain in acgusver the cubic spline kernel,
providedh = 1.1Ap. However, the gain in accuracy from the use of these alteméernels is very
minor compared to the substantial improvements in accugaoyed by the incorporation of the variable
smoothing length term$38.3.4), which effectively act as a normalisation of the letigradient.
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3.3 Fluid Equations

3.3.1 Continuity equation

The summation interpolant (3.5) takes a particularly sexfpkm for the evaluation of density, ie.
Pa = % MpWap. (3.42)

Taking the (Lagrangian) time derivative, we obtain

dpa

o %mo(va — Vp) - HaWap, (3.43)

which may be translated back to continuum form via the suriamanterpolant (3.5) to give

dp

— —p(0-v). (3.44)

This reveals that (3.43) and therefore (3.42) are SPH esjores for the continuity equation. It is a
remarkable fact that the entire SPH formalism can be sei§istently derived using only (3.42) in con-
junction with the first law of thermodynamics via a Lagramgiariational principle. Such a derivation
demonstrates that SPH has a robust Hamiltonian structarerssures that the discrete equations reflect
the symmetries inherent in the Lagrangian, leading to tleetegonservation of momentum, angular
momentum and energy.

3.3.2 Equations of motion

The Lagrangian for Hydrodynamics is given by (Eckart, 196&imon, 1988; Morrison, 1998)

L= / (%pvz— pu> dv, (3.45)

whereu is the internal energy per unit mass. In SPH form this becomes
1,
L= %mb SVh— Un(POb,Sb) | 5 (3.46)

where as previously we have replaced the volume elepévitwith the mass per SPH particte. We
regard the particle co-ordinates as the canonical vasatiBeing able to specify all of the terms in the
Lagrangian directly in terms of these variables means tietobnservation laws will be automatically
satisfied, since the equations of motion then result fronEthler-Lagrange equations

d /oL\ dL
g (0_\/a> - 0. (3.47)
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The internal energy is regarded as a function of the pasiclensity, which in turn is specified as a
function of the co-ordinates by (3.42). The terms in (3.4@)taerefore given by

oL
3o = MaVa, (3.48)
oL Jup| 9Py
i Zop I 3.49
Ora %mb Opp|sOra (3.49)
From the first law of thermodynamics in the absence of disisipave have
Oup P
=2 3.50
Om|s P2 (3:50)
and using (3.42) we have
P _ S melTWoe (B — ) (3.50)
o, ch aVVoc (Opa ) .
such that
oL P,
d—ra = %mopg zmcDaV\d)c(aoa—a:a)a (3.52)
Pa Pn>
= MmSYMm| = +—= | OaWap, 3.53
2 <p§ iZ) 459

where we have used the fact that the gradient of the kernatiisammetric (ie.0Wse = —0Wea). The
SPH equation of motion in the absence of dissipation is thexegiven by

dv,

_ LW
e gn o)

a Pp
which can be seen to explicitly conserve momentum since ¢inéribution of the summation to the
momentum of particle is equal and opposite to that given to partiblégiven the antisymmetry of the
kernel gradient). Taking the time derivative of the totajalar momentum, we have

d dv
azraxmava = Z%(raxd—ta>, (3.55)
a a
P R
= Z%%%(p—§+p—€>rax(ra—rb)|:aba
P
= —Z%ww(p—ng%)raxerab. (3.56)

where the kernel gradient has been written[&8\,, = ranFap This last expression is zero since the
double summation is antisymmetric &andb (this can be seen by swapping the summation indices
andb in the double sum and adding half of this expression to hati@briginal expression, giving zero).

Angular momentum is therefore also explicitly conserved.
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3.3.3 Energy equation

The energy equation also follows naturally from the vaoiaail approach, where we may choose to inte-
grate either the particle’s internal enengyits specific energg or even its specific entropy Integrating
the specific energy guarantees that the total energy islgxawmiserved and it is common practice to
use this quantity in finite difference schemes. However theallargument against this (which applies
equally to finite difference schemes) is that in some cirdarmes (where the kinetic energy is much
greater than the thermal energy) the thermal energy camieoegative by round-off error. Integra-
tion of the specific entropy has some advantages and has bgegdaor in both SPH (Springel and
Hernquist, 2002) and finite difference schemes (e.g. Balaad Spicer 1999).

Internal energy

The internal energy equation in the absence of dissipatibovfs from the use of the first law of ther-
modynamics (3.50), giving

dua P dpa
Gt pZdt (3.57)
Using (3.43) therefore gives

du, Pa

Total energy

The conserved (total) energy is found from the Lagrangiarthé Hamiltonian
H= Zva — —L (3.59)
where using (3.48) and (3.46) we have
1,
H= Zma Evaﬁ—ua , (3.60)
a

which is simply the total energy of the SPH particlesince the Lagrangian does not explicitly depend
on the time. Taking the (Lagrangian) time derivative of (3,&ve have

dE dva du
E: Zma< d +d—ta> (3.61)
a

Substituting (3.54) and (3.58) and rearranging we find

dE dea

Fap s

Po
_a - OaWap, 3.62
%mamb<p vb+p ) A (3.62)
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and thus the specific energy equation (in the absence opdigsi) is given by

des Pa P
- % a4 2V, | - OaWap. .

Dissipative terms are discussed;B5.

Entropy
In the case of an ideal gas equation of state where
P=A(S)p’, (3.64)

the functionA(s) evolves according to

dA y—l(du Pdp)

dt pv-1\dt p2dt

y—1 <du>
e YA (3.65)
pY\dt ) giss

This has the advantage of placing strict controls on sowtestropy, sincé\ is constant in the absence
of dissipative terms. The thermal energy is evaluated using

A
_ y-1 3.66
U=-—3p (3.66)
This formulation of the energy equation has been advocated 5SPH context by Springel and Hernquist
(2002).

3.3.4 Variable smoothing length terms

The smoothing lengtlh determines the radius of interaction for each SPH partiBlatly SPH simu-
lations used a fixed smoothing length for all particles. Heeveallowing each particle to have its own
associated smoothing length which varies according td lomaditions increases the spatial resolution
substantially (Hernquist and Katz, 1989; Benz, 1990). Theurule is to take

1 (1/v)
h, O <—> , (3.67)
Pa

wherev is the number of spatial dimensions, although others arsilples(Monaghan, 2000). Imple-
menting this rule self-consistently is more complicate@®H since the densify, is itself a function of
the smoothing length, via the relation (3.42). A simple approach is to use the tierévdtive of (3.67),
(Benz, 1990), ie.

dhy  hy dp
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which can then be evolved alongside the other particle diiesit This rule works well for most prac-
tical purposes, and maintains the relation (3.67) paditywell when the density is updated using the
continuity equation (3.43). However, it has been known fame time that, in order to be fully self-
consistent, extra terms involving the derivativeloghould be included in the momentum and energy
equations (e.g. Nelson 1994; Nelson and Papaloizou 199da®¢al. 1996). Attempts to do this were,
however, complicated to implement (Nelson and Papaloiz684) and therefore not generally adopted
by the SPH community. Recently Springel and Hernquist (20@2e shown that the so-calléth terms
can be self-consistently included in the equations of nmofind energy using a variational approach.
Springel and Hernquist (2002) included the variation ofgh@othing length in their variational princi-
ple by use of Lagrange multipliers, however, in the contéthe discussion given if3.3.2 we note that
by expressing the smoothing length as a functiop afe can therefore specifiy as a function of the
particle co-ordinates (Monaghan, 2002). That is we Haveh(p) wherep is given by

Pa= 3 MW(ras.ha). (3.69)

Taking the time derivative, we obtain

doa 1

where

Qa= [1— oha 5> ndeab(ha) (3.71)

dpa C 0ha .

A simple evaluation of2 for the kernel in the form (3.30) shows that this term diffsmm unity even

in the case of an initially uniform density particle distrilon (i.e. with constant smoothing length). The
effects of this correction term even in this simple case @mrestigated in the sound wave tests described
in §3.7.2.

The equations of motion in the hydrodynamic case may therobedf using the Euler-Lagrange
equations (3.47) and will therefore automatically consditvear and angular momentum. The resulting
eqguations are given by (Springel and Hernquist, 2002; Mbaag2002)
dva _

Ps Py
a - % My [m OaWap(ha) + mmawab(hb) . (3.72)

Calculation of the quantitieQ involve a summation over the particles and can be computedjside
the density summation (3.69). To be fully self-consisteertselve (3.69) iteratively to determine both
h andp self-consistently. We do this as follows: Using the preslicimoothing length from (3.68), the
density is initially calculated by a summation over the jgées. A new value of smoothing lengthey
is then computed from this density using (3.67). Convergesdetermined according to the criterion

’h"Lh_h’ <10x10°2 (3.73)

For particles which are not converged, the density of (othigkse particles are recalculated (usingy).
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This process is then repeated until all particles are cgeekr Note that a particle’'s smoothing length
is only set equal td,q, if the density is to be recalculated (this is to ensure thatséime smoothing
length that was used to calculate the density is used to cmpe terms in the other SPH equations).
Also, the density only needs to be recalculated on thoséclestwvhich have not converged, since each
particle’s density is independent of the smoothing lendtimeighbouring particles. This requires a small
adjustment to the density calculation routine (such thatdnsity can be calculated only for a selected
list of particles, rather than for all), but is relativelyrgile to implement and means that the additional
computational cost involved is negligible (at least for fiieblems considered in this thesis). Note that
in principle the calculated gradient terms (3.71) may alsoaded to implement an iteration scheme such
as the Newton-Raphson method which converges faster thairmple fixed point iteration.

Where the variable smoothing length terms are not explicitlculated, we use a simple averaging
of the kernels and kernel gradients to maintain the symmiattiie momentum and energy equations
(Hernquist and Katz, 1989; Monaghan, 1992), ie.

Wap = 5 W)+ Wes(h)], 379

and correspondingly
1
HaWap = > [DaWab (ha) 4+ OaWap (hy)] - (3.75)

Many of the test problems in this thesis are performed ugirggsimple formulation. This is in order to
show (particularly in the MHD case) that satisfactory resah the test problems are not dependent on the
variable smoothing length formulation. In almost everyecdmwever, self-consistent implementation of
the variable smoothing length terms as described abovs eaal substantial improvement in accuracy
(demonstrated, for example, #3.7 and in the MHD case if4.6). Perhaps the only disadvantage to
the full implementation of the variable smoothing lengthrie is that the iterations df with p mean
that small density fluctuations are resolved by the methtiabrahan being smoothed out, which may be
disadvantageous under some circumstances (e.g. whereithgaflons are unphysical). One possible
remedy for this might be to use a slightly different relagbip betweerhn andp than is given by (3.67).

3.4 Alternative formulations of SPH

In §3.3 the SPH equations of motion and energy were derived freamiational principle using only the

density summation (3.42) and the first law of thermodynart8cs0), leading to the equations of motion

in the form (3.54) and the energy equation (3.58) or (3.63)weler many alternative formulations of

the SPH equations are possible and have been used in vadoiexis. In this section we demonstrate

how such alternative formulations may also be derived satisistently using a variational principle.
For example, a general form of the momentum equation in SBiNéRn by (Monaghan, 1992)

dva Pa P
2y m, ) W, (3.76)
TR (pgpé ° pgPa “) :

which is symmetric between particle pairs for all choiceshaf parameteo and therefore explicitly
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conserves momentum. Ritchie and Thomas (2001) use thisdbthe momentum equation with = 1

in their SPH formalism, finding that it gives slightly bett@sults for problems involving large density
contrasts (they also use a slightly different procedure¥atuating the density). Marri and White (2003),
for similar reasons, use this equation wih= 3/2, citing a reduction in the relative error in the force
calculation on particlea due to the influence of particle which is desirable in the case of particles
with large density differences. However, it is apparentrfriine derivation given ir§3.3.2 that forms
of this equation other than the standard= 2 case cannot be derived consistently using the density
summation (3.42) and correspondingly the continuity equain the form (3.43). We are therefore
led to the conclusion that a consistent formulation of thél @guations using the general form of the
momentum equation given above must involve modificatiomefdontinuity equation in some way. We
show below that the general form of the continuity equatidnclv is consistent with (3.76) is derived
from the continuum equation

dp

a:_pm.v’ (3.77)

expressed in the form

with SPH equivalent

d _ Va — Vp
s _ pz-o5 m,Ya ¥ g, (3.79)
dt Jols
In order to demonstrate that this is so, we use this expmessiahe density to derive the equations
of motion and energy via a variational principle.

3.4.1 Variational principle

In the derivation given i33.3.2, the variables in the Lagrangian were explicitly tertas a function of
the particle co-ordinates (via the identity 3.42), guagaig the exact conservation of linear and angular
momentum in the equations of motion via the use of the Eugyringe equations. Using a more general
form of the continuity equation, however, means that thesiigican no longer be expressed directly as
a function of the particle co-ordinates and therefore thatderivation given in the previous section
cannot be applied in this case. However we may still use tlwdrmgian to derive the equations of
motion by introducing constraints gm in a manner similar to that of Bonet and Lok (1999). In this
case conservation of momentum and energy can be shown tadiepeghe formulation of the velocity
terms in the continuity equation (in particular that therteshould be expressed as a velocity difference).
Clearly the major disadvantage of using a continuity equiadif any form rather than the SPH summation
is that mass is no longer conserved exactly. It is showgdi.2 that the kind of variational principle
given below may also be used to derive the equations of mationenergy in the MHD case.

For stationary action we require

5 / Ldt= / SLdt=0, (3.80)
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where we consider variations with respect to a small chamtieei particle co-ordinate¥ 5. We therefore
have

M| 5o (3.81)

S

OL =muvy- OVa— %mb
The Lagrangian variation in density is given, from (3.79), b

3=p2 "y pg—mf" (8t — 3rc) - Tp\he. (3.82)

C

Using (3.82) and the first law of thermodynamics (3.50) i8{3.and rearranging, we find

5—ra LD by s T oWbo (B — Bea)- (3.83)

Putting this back into (3.80), integrating the velocitynteby parts and simplifying (usin@laWap =
—[OpWha), we obtain

dvy Py R ]
m—2 -y m %) OWy | Sradt=0, (3.84)
/[ dt % (pgpé 7 pgpi ") : :

from which we obtain the momentum equation in the form (3.78)is equation is therefore consistent
with the continuity equation in the form (3.79). In the pautar case considered by Marri and White
(2003) (@ = 3/2) this would imply a discrete form of the continuity equatigiven by

do o = VPa %mb— Oa\Wap. (3.85)

Marri and White (2003) choose to retain the use of the usuél SiRnmation (3.42) to determine the
density. In the case considered by Ritchie and Thomas (2@0%)1), the continuity equation becomes

P %mo— Ol (3.86)

which is again somewhat different to the density estimatised in their paper. The continuity equation
(3.86), when used in conjunction with the appropriate fdation of the momentum equation, has some
advantages in the case of fluids with large density diffezerfe.g. at a water/air interface) since the term
inside the summation involves only the particle volum@® rather than their mass, with the effect that
large mass differences between individual particles has® influence on the calculation of the velocity
divergence (Monaghan, private communication). An altivads the formalism proposed by Ott and
Schnetter (2003), which we discussi®4.3.

The internal energy equation consistent with the generahemium equation (3.76) is given by

dua, Py

Vab
= % A/ .87
dt pg My—>— - UaVWVab, (3.87)

2—0
b

which is indeed the formalism used by Marri and White (2008)H o = 3/2) since it was found,
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unsurprisingly in this context, that integration of thisuatjon resulted in much less numerical noise
than using other formalisms of the internal energy equdiimronjunction with their use of (3.76) with
o = 3/2 as the momentum equation). The form of the total energytemueonsistent with (3.76) and
(3.79) is given by

des Pa P

g
a Py

We note the energy equation used by Ritchie and Thomas (28@llfferent to the formulation given
above (witho = 1) and therefore variationally inconsistent with their Isypentation of the momentum
equation. Hernquist and Katz (1989) point out that incdaaises between the forms of the energy and
momentum equations result in errors@fh?) in the energy conservation. In this sense the difference be-
tween a consistent and inconsistent formalism is fairlyanialthough a consistent formulation between
the momentum and energy equations in general appears tadesightly improved results (as found
by Marri and White). In practise we find that using alternatiermulations of the continuity equation
generally gives slightly worse results than (even incdast} use of the density summation.

3.4.2 General alternative formulation

The momentum equation (3.76) can be generalised stilldartly noting that the continuity equation
(3.44) can be written as

£-ofol)-o ()

with SPH equivalent

dpoa Vap
T (Pa% mb% - HaWhp, (3.90)

whereg is any scalar variable defined on the particles. Deriving the mdomarequation consistent with
this equation in the manner given above we find

dva _ Rea RBe
dt——%%( + DaWap, (3.91)

which conserves momentum for any choicepoin the case given in the previous section we would have
@ = p>~°. Choosingp = p/+/P gives

dvg v/ Pan>
—2 Y m(2 OaWab. 92
dt % ( PaPb o (3.92)

which is the momentum equation used by Hernquist and Ka&)L9 he continuity equation consistent
with this form is therefore

dpa Pa v
—a %%—W-DW, 3.93
dt /—Pa 0o ab - UaVVab ( )
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which at first sight appears somewhat bizarre, althoughciiitainly a valid expression of the continuity
equation in SPH form. It is unclear whether using such adtira formulations of the continuity equa-
tion, in the name of consistency, has any advantages oveistia density summation. We leave it as an
exercise for the reader to amuse themselves by exploringugother combinations of variables, noting
that the forms of the internal and total energy equationsistent with (3.90) and (3.91) are given by

du, P ¢

at = P§ %%%Vab‘ DaWab, (3.94)
and

dea Pa ¢ R ®

s %mb <p§ (Povb+ pg (pava OaWap. (3.95)

3.4.3 Ott and Schnetter formulation

Other formulations of the SPH equations have also been peapto deal with the problem of large
density gradients. For example Ott and Schnetter (2003)gse@ modifying the SPH summation to give

na = %Wam
Pa = MaNg, (3.96)

that is where the number density of partictes calculated by summation rather than the mass density
p. This is to improve the interpolation when particles of &rgass differences interact. Taking the time
derivative of (3.96), the continuity equation is given bg {a Ott and Schnetter 2003)

d

% - ma%vab- OaWap. (3.97)

For equal mass particles this formalism is exactly the sasnthe usual summation (3.42). The for-
mulation (3.96) enables the density to be expressed as fidnraf the particle co-ordinates and thus
the derivation of the equations of motion and energy can Ine doa straightforward manner using the
Euler-Lagrange equations, as§i®.3.2. The resulting equation of motion is given by

dva - L
me=-3 (ng + n%> W, (3.98)

which is somewhat different to the equation of motion use®ihand Schnetter (2003) (they use the
form 3.76 witho = 1). The internal energy equation follows from the contip@tjuation (3.97) and the
first law of thermodynamics (3.50). We find

duy Py

— == - OaWhp. 3.99
Megr — g 4 Vobr -l (3.99)
Ott and Schnetter (2003) use a formulation of the internatggnequation where the pressure term is
symmetrised, which is inconsistent with their use of (3.9B)e total energy equation consistent with
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their formalism can also be derived using the Hamiltong$3.3) and is given by

dey Pa P
— = —Vp+ —Va | - UaWap. 3.100
M = (et 2ve) Dt (3100
In this case use of the self-consistent formalism preseaitesie should lead to slightly improved results
over the momentum and energy equations employed by Ott amae8er (2003), since the density is
still calculated via a direct summation over the particles.

3.5 Shocks

In any high-order numerical scheme, the simulation of skaekccompanied by unphysical oscillations
behind the shock front. This occurs because in discretifingcontinuum equations (in the SPH case
using 3.5) we assume that the fluid quantities are smoothiyingon the smallest length scale (in SPH
this is the smoothing length). This means that discontinuities on such scales are nolvezsby the
numerical method. The simplest approach to this problero iattoduce a small amount of viscosity
into the simulation which acts to spread out the shock frorthat it can be sufficiently resolved (von
Neumann and Richtmyer, 1950; Richtmyer and Morton, 196Hi}s i similar to the way in which shock
fronts are smoothed out by nature, although in the lattee tas effect occurs at a much finer level.
The disadvantage of using such an ‘artificial’ viscosityhattit can produce excess heating elsewhere
in the simulation. As such the use of artificial viscosityeégarded by many numerical practitioners as
outdated since most finite difference schemes now rely ohadstwhich either restrict the magnitude of
the numerical flux across a shock front in order to prevenhysigal oscillations (such as total variation
diminishing (TVD) schemes) or by limiting the jump in the wagariables across the shock front using
the exact solution to the Riemann problem (Godunov-typersas). There remain, however, distinct ad-
vantages to the use of an artificial viscosity, primarilytthlike the Godunov-type schemes, it is easily
applied where new physics is introduced (such as a more ooaigdl equation of state than the ideal gas
law) and the complexity of the algorithm does not increadé thie number of spatial dimensions. In the
case of magnetohydrodynamics, artificial viscosity is camliy used even in standard finite-difference
codes$ since the Riemann problem is difficult to solve and compotetily expensive. Furthermore,
dissipative terms are often still used even when a Riemalwersbas been implemented (e.g. Balsara
1998). For these reasons artificial viscosity methods noatto find widespread usage, particularly in
simulations using unstructured or Lagrangian meshes (@ara et al., 1998).

In recent years it has been shown that Godunov-type scheanén tact be used in conjunction with
SPH by regarding interacting particle pairs as left andtrigghtes of the Riemann problem (Cha and
Whitworth, 2003; Inutsuka, 2002; Parshikov and Medin, 20@2naghan, 1997b). In this manner the
implementation of Godunov-type schemes to multidimeraigmoblems is greatly simplified in SPH
because the one-dimensional Riemann problem is solvecebatyarticle pairs, removing the need for
complicated operator splitting procedures in higher disi@ms. The formalism presented by Cha and
Whitworth (2003) is remarkably simple to incorporate intyyastandard SPH code. A Godunov-type
scheme for MHD in SPH would be extremely useful (although wiately applicable), but it is well

3for example in the widely used ZEUS code for astrophysicad filynamics (Stone and Norman, 1992)
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beyond the scope of this thesis. We therefore formulatBciatidissipation terms using the formulation
of Monaghan (1997b) which is generalised to the MHD casgliB. The problem of excess heating is
addressed by the implementation of switches to turn off theightive terms away from shock fronts,
described ir$3.5.2.

3.5.1 Artificial viscosity and thermal conductivity

A variety of different formulations of artificial viscositin SPH have been used, however the most
common implementation is that given by Monaghan (1992),revtiee term in equation (3.54) is given

by

dva —QCaplhab + BH3, hVap - I'ap
—_ = — ALY =5 3.101
< dt >di$ %n‘b pab aVVab, Uab rgb_’_O.O]hza ( )

wherevg, = v, — vy (similarly for rg), barred quantities refer to averages between particiasd b,
andc refers to the sound speed. This viscosity is applied onlynathe particles are in compression
(ie. vap-rap < 0), is Galilean invariant, conserves total linear and amgutomentum and vanishes
for rigid body rotation. TheB term (quadratic invg,) represents a form of viscosity similar to the
original formulation of von Neumann and Richtmyer (1950) &#ecomes dominant in the limit of large
velocity differences (ie. in high Mach number shocks). Théerm is linear invy, and is dominant
for small velocity differencés Most astrophysical SPH implementations follow Monaghz®9@) in
settinga = 1 andf = 2 which provides the necessary dissipation near a shock fron

The term given by equation (3.101) was constructed to haverbperties described above, however
in the relativistic case it was unclear as to what form suchréficial viscosity should take. Chow and
Monaghan (1997) thus formulated an artificial viscosity dtira-relativistic shocks in SPH by analogy
with Riemann solvers. This is outlined by Monaghan (1997ba idiscussion of SPH and Riemann
solvers. The essential idea is to regard the interactinticfes as left and right Riemann states and to
construct a dissipation which involves jumps in the phylsieaiables. The dissipation term in the force
(giving artificial viscosity) therefore involves a jump ihe velocity variable and is similar to (3.101),
taking the form (fowvg, - rap < 0)

dva> QVsig(Va— Vb) - Fap
HMa) _ OaWp, 3.102
( i) =y m el W (3.102)

where \q is a signal velocity andia, = (ra —rp)/|ra—rp| is @ unit vector along the line joining the
particles. Note that this formalism differs from (3.101)that a factor ofh/|ra| has been removed.
Also the 001h? term has been removed from the denominator since for varighbothing lengths it is
unnecessary. The jump in velocity involves only the compomdong the line of sight since this is the
only component expected to change at a shock front. In aaimihnner, the dissipative term in the
specific energy equation (3.63) is given by

de, Vsg(€ —€;) .
L)y m ST o, 3.103
(dt>di$ 5 m0 s S, o (3.103)

4The introduction of such a term into artificial viscosity metls is generally attributed to Landshoff (1955) (see, e.g.
Caramana et al. 1998)
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where(e; — €)) is the jump in specific energy. The specific energy used intéhis is given by

(3.104)

. ) 3a(Va-Pap)®+aula, Vap-Tan<O;
ayUa Vab-Tap > 0;

that is, where the specific kinetic energy has been projegimuy the line joining the particles, since
only the component of velocity parallel to this vector is esfgd to jump at a shock front. Note that in
general we use a different parametgrto control the thermal energy term and that this term is agpli
to particles in both compression and rarefaction.

The signal velocity represents the maximum speed of sigmglggation along the line of sight be-
tween the two particles. Whilst many formulations could bgisked, it turns out that the results are not
sensitive to the particular choice made. A simple estimatheosignal velocity is given by

Vsg = Ca+Cp— BVab Tap (3.105)

wherec, denotes the speed of sound of partieland 3 ~ 1, such that yg/2 is an estimate of the
maximum speed for linear wave propagation between thecfesti Thef term, which acts as a von
Neumann and Richtmyer viscosity as in equation (3.1013earnaturally in this formulation. Practical
experience suggests, however, tfat 2 is a better choice. For a more general discussion of signal
velocities we refer the reader to Monaghan (1997b) and Cmal\Monaghan (1997).

The contribution to the thermal energy from the dissipat@rens is found using

du, de, dv,

@ a e a (8106

In this case we obtain

(%> — S my 3 {—}a[(v —Vp) - Fap]®+ (U —u)}f A (3.107)
dtdi$%2p—ab2abab u(Ua— Up) ¢ Fab - DaWap :

which is added to the non-dissipative term (3.58). The fesntis the positive definite contribution to
the thermal energy from the artificial viscosity (since teerel gradient is always negative). The second
term (involving a jump in thermal energy) provides an aifichermal conductivity. Physically this
means that discontinuities in the thermal energy are alsmtrad.

The artificial dissipation given by (3.102)-(3.107) is usexda basis for constructing an appropriate
dissipation for the MHD case i$4.5.

3.5.2 Artificial dissipation switches

Artificial viscosity

In both (3.101) and (3.102) the artificial viscosity is apgliuniversally across the particles despite only
being needed when and where shocks actually occur. Thikg@ssPH simulations being much more
dissipative than is necessary and can cause problematiztefifhere this dissipation is unwanted (such
as in the presence of shear flows). A switch to reduce thecaatifiiscosity away from shocks is given by
Morris and Monaghan (1997). Using this switch in multi-dim@nal simulations substantially reduces
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the problematic effects of using an artificial viscosity iRFR

The key idea is to regard the dissipation parametés.f. equation 3.102) as a particle property. This
can then be evolved along with the fluid equations according t
daa @

a— Omin
BZ 3.108
dt = I a ( )

such that in the absence of sourc&s a decays to a value,, over a timescale. The timescalg is
calculated according to

- h
_%Vgg’

(3.109)

whereh is the particle’s smoothing lengthgyis the maximum signal propagation speed at the particle
location and#” is a dimensionless parameter with valug & ¢ < 0.2. We conservatively usg = 0.1
which means that the value afdecays tam, over~ 5 smoothing lengths.

The source terny” is chosen such that the artificial dissipation grows as thecfmapproaches a
shock front. We use (Rosswog et al., 2000)

& =max—0-v,0)(2.0—a), (3.110)

such that the dissipation grows in regions of strong congpmas Following Morris and Monaghan
(1997) where the ratio of specific heatsliffers from 5/3 (but not for the isothermal case), we miytip
. by a factor

['” <§?§fi>} / ['” <%ﬂ (3.111)

The source term is multiplied by a fact@®.0— a) as the standard source term given by Morris and
Monaghan (1997) was found to produce insufficient dampirghatk fronts when used in conjunction
with the Monaghan (1997b) viscosity. The source term (3.14.@ound to provide sufficient damping
on the Sod (1978) hydrodynamic shock tube problem and in thEONMhock tube tests we describe
in chapters4.6 (ie. amax ~ 1 for these problems). In order to conserve momentum theageevalue
a = 0.5(a, + ap) is used in equations (3.102), (3.104) and (3.107). A lowmitlof oy, = 0.1 is used
to preserve order away from shocks (note that this is an aflaragnitude reduction from the usual
value ofa = 1.0 everywhere).

The numerical tests if4.6 demonstrate that use of this switch gives a significatuaton in dissi-
pation away from shocks whilst preserving the shock-capguability of the code.

Atrtificial thermal conductivity

A similar switch to that used in the artificial viscosity mdnetefore be devised for the artificial thermal
conductivity term, with the parameter, evolved according to
daya @

ua— Oumin
- : ., 3.112
dt Ta + as ( )
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where the decay timescateis the same as that used in (3.108) and in this case weygg = 0. The
corresponding source term is given by

= ||:|\/a|’ (3.113)

which is constructed to have dimensions of inverse time. gradient term is computed according to

0y/u= %u‘l/ZDu, (3.114)
where

1

Pa

Use of this switch ensures that artificial thermal condutgtiis only applied at large gradients in the
thermal energy. The need to do so in dissipation-based staqutkiring schemes is often concealed by
smoothing of the initial conditions in shock tube teg}8.7.3). From the first law of thermodynamics
(3.50) we infer that gradients in the thermal energy cowedpto large gradients in the density. In
a hydrodynamic shock these occur either at the shock froat tiie contact discontinuity. Artificial
viscosity is not required at the contact discontinuity heseathe pressure is constant across it. Using
unsmoothed initial conditions and in the absence of auifttiermal conductivity, a significant overshoot
in thermal energy occurs at the contact discontinuity {hisnomenon is known as ‘wall heating’ and is
illustrated in Figure 3.9). The resulting glitch in the mewe is often ascribed to ‘starting errors’ due to
the unsmoothed initial conditions. However, applying sthom to the initial conditions of a shock-tube
test means that gradients across the contact discontiruitgin smoothed throughout the evolution (see
e.g. Figure 3.8), removing the need for artificial thermaidactivity which acts to spread gradients in
the thermal energy. Whilst there is also a gradient in theamargy at a shock front, this is smoothed
out by the application of artificial viscosity there and se tieed for artificial thermal conductivity can
go unnoticed. In§3.7.3 we present results of the standard Sod (1978) shoektady, showing the
effectiveness of the switch discussed above in applyingdgbeisite amount of smoothing at the contact
discontinuity.

3.6 Timestepping

3.6.1 Predictor-corrector scheme

We integrate the SPH equations in this thesis using a sligidifination of the standard predictor-
corrector (Modified Euler) method which is second order eacy in time (Monaghan, 1989). The
predictor step is given by

V- v°+%f°, (3.116)

ri2 = r°+%v1/2, (3.117)
At .

2 = f4+=¢&, (3.118)

2
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where in practice we usi® ~ f~1/2 ande® ~ & 1/2 to give a one-step method. The rates of change of
these quantities are then computed via the SPH summatiamg the predicted values at the half step,
ie.

fY2 = £(r1/2 y1/2) Y2 = g(r/2 vi/?) (3.119)

The corrector step is given by

VA v°+%fl/2, (3.120)
At

r* = r0+5v*, (3.121)
At

e = e°+§e1/2, (3.122)

and finally

vio= v O, (3.123)

rt = 2r —r9, (3.124)

et = 2¢—¢. (3.125)

Note that in this scheme the position updates in both theigioedand corrector steps use the updated
value of velocity. This effectively means that the positisrupdated using both the first and second
derivatives. From numerical experiments we find that thigeate gives much better stability properties.
Where evolved, density, smoothing length, magnetic field e dissipation parameters follow the

energy evolution. The total energyis interchangeable for the thermal enetgy

3.6.2 Reversible integrators

The simple predictor-corrector method given above is aategfor all the problems considered in this
thesis since the integration time is quite short. For lafgrigtions over long timescales, however, the
accuracy and stability of the integration method needs roareful attention. In the past decade or so a
substantial research effort has been devoted to the deweltpof high accuracy so-called ‘geometric’
integrators for Hamiltonian systems (e.g. Hut et al., 1®offer, 1995; Huang and Leimkuhler, 1997;
Holder et al., 2001; Hairer et al., 2002). Since SPH in theabs of dissipative terms can derived from a
Hamiltonian variational principle, much of this work is digpble in the SPH context. The primary con-
dition for the construction of a geometric integrator isahmeversibility (that is, particle quantities should
return to their original values upon reversing the direttid time integration). It is fairly straightfor-
ward to construct a reversible integrator for the SPH equatin the case of a constant smoothing length,
where the density summation is used and where the presstakeigated directly from the density (such
that the force evaluation uses only the particle co-orésjatThe standard leapfrog algorithm is one such
example. In general, however, the construction of a reviersicheme is complicated by several factors.
The first is the use of a variable timestep (which immediadelstroys the time-symmetry in the leapfrog
scheme, although see Holder et al. (2001) for recent pregneshis). The second complicating factor is
that the reversibility condition becomes more difficult whegjuations with rates of change involving the
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particle velocity are used (such as the thermal or totalggnequation or the continuity equation for the
density). In this case the construction of a reversiblegir®r for SPH necessarily involves the calcu-
lation of derivatives involving the velocity in separatesto the force evaluation, leading to additional
computational expense. A third complicating factor is tlse of individual particle timesteps in large
SPH codes, although symplectic methods have also beernractest for this case (Hairer et al., 2002).

3.6.3 Courant condition

The timestep is determined by the Courant condition

: h
whereh = min(h,, hp) and g is the maximum signal velocity between particle pairs. Biggal veloc-
ity is similar to that used in the artificial dissipation tex1§3.5), except that we use

Vsg = 5 (Va+Vo+ B|Vap-j|) (3.127)

NI =

with B = 1 whenvg, -j > 0 (ie. where the dissipation terms are not applied). Thermmim in (3.126) is
taken over all particle interactions and typically we Ggg, = 0.4.

Although this condition is sufficient for all of the simulatis described here, in general it is necessary
to pose the additional constraint from the forces

dtf = Csmin (—) , (3.128)
EX

wherea, is the acceleration on partickeand typicallyCs = 0.25.

3.7 Numerical tests

3.7.1 Implementation

Unless otherwise indicated the simulations use the dessitymation (3.42), the momentum equation
(3.54) and the energy equation in the form (3.63). The nuaktésts presented throughout this thesis
were implemented using a code written by the author as asg$ti MHD algorithms.

Neighbour finding

Since the code has been designed for flexibility rather tlefopnance, we take a simplified approach
to neighbour finding using linked lists. The particles amenled into grid cells of sizelRwhereh is the
maximum value of smoothing length over the particles. Bladiin a given cell then search only the
adjoining cells for contributing neighbours. This appiod®=comes very inefficient for a large range
in smoothing lengths such that for large simulations it se@tial to use a more effective algorithm. A
natural choice is to use the tree code used in the computatitre gravitational force (Hernquist and
Katz, 1989; Benz et al., 1990).
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Boundary conditions

Boundary conditions are implemented using either ghostxedfparticles. For reflecting boundaries,
ghost particles are created which mirror the SPH partiatessa the boundary. These particles are exact
copies of the SPH patrticles in all respects except for thecity] which is of opposite sign on the ghost
particle, producing a repulsive force at the boundary. Fwiogic boundary conditions the ghosts are
exact copies of the particles at the opposite boundary. driMthID shock tube tests consideredSih 6
involving non-zero velocities at the boundaries, boundanyditions are implemented in one dimension
by simply fixing the properties of the 6 particles closestaateboundary. Where the initial velocities
of these particles are non-zero their positions are evohaardingly and a particle is removed from
the domain once it has crossed the boundary. Where the cistatween the closest particle and the
boundary is more than the initial particle spacing a newigarts introduced to the domain. Hence for
inflow or outflow boundary conditions the resolution chantigeughout the simulation.

3.7.2 Propagation and steepening of sound waves

We initially consider the propagation of linear sound wawveSPH. This test is particularly important
in the MHD case §4.6.4) since it highlights the instability in the moment@anserving formalism of
SPMHD. In this case we investigate the dependence of sowatism smoothing length and the damping
due to artificial viscosity.

Particle setup

The particles are initially setup at equal separationserditmainx = [0, 1] using ghost particle$8.7.1)
to create periodic boundary conditions. The linear sotuta a travelling sound wave in the x-direction
is given by

p(xt) = po(1+Asin(kxa— wt), (3.129)
Vx(X,t) = CsAsin(kxg — wt), (3.130)

where w = 21Cs/A is the angular frequencys is the sound speed in the undisturbed medium and
k = 2m/A is the wavenumber. The initial conditions therefore cqroesl tot = O in the above. The
perturbation in density is applied by perturbing the p&tidrom an initially uniform setup. We consider
the one dimensional perturbation

p = po[1+ Asin(kx)], (3.131)
whereA = D/py is the perturbation amplitude. The cumulative total maghénx direction is given by

MX) = po /.[1+Asin(kx)]dx
= po[x—Acoskx)[p, (3.132)
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Figure 3.3: Representative results from the isothermal sound wave tesine dimension using the
standard cubic spline kernel with a fixed smoothing lengthe Tigure on the left shows the results
after 5 periods (corresponding to 5 crossings of the contipata domain) usindy = 1.5Ap. The figure
on the right shows the results using a fixed smoothing lengtiwith the correction from the variable
smoothing length terms.

1.005
1.005

Figure 3.4: Representative results from the isothermal sound wave tesine dimension using the
standard cubic spline kernel with a variable smoothingtletigat varies with density. The figure on the
left shows the results after 5 periods using a simple aves&tiee kernel gradients, whilst the figure on
the right shows the results using the consistent formuiaifdhe variable smoothing length terms.

such that the cumulative mass at any given point as a fraofitime total mass is given by

M (x)

m . (3. 133)

For equal mass particles distributedxie- [0, xmax] the cumulative mass fraction at partielés given by
Xa/Xmax Such that the particle position may be calculated using

Xa _ M(xa)
—_—= 3.134
Substituting the expression fbt(x) we have the following equation for the particle position

Xa  Xa—AcosKxa) _o, (3.135)

Xmax  [Xmax — ACOS KXmax)]

which we solve iteratively using a simple Newton-Raphsastfinder. With the uniform particle distri-
bution as the initial conditions this converges in one or it@mtions.



60 Chapter 3. Smoothed Particle Hydrodynamics

One dimensional tests

Initially we consider one dimensional, isothermal simiglas using a fixed smoothing length (for which
the results of the stability analysis givenB.2.7 hold). The cubic spline kernel is used whtk- 1.5Ap
whereAp s the initial particle spacing. This value of smoothingdénwas chosen because in Figure 3.2
the cubic spline is seen to significantly underestimate thied speed at this value bf The simulation

is setup using 100 particles (correspondinggte- 0.0628 in Figure 3.2) and a wave amplitude dd@b

to ensure that the wave remains essentially linear thrautgtih@ simulation. No artificial viscosity is
used. For isothermal simulations, the pressure is catadidirectly from the density usirg= c2p. The
sound speed given by the SPH simulations is estimated frertethporal spacing of minima in the total
kinetic energy of the particles.

A representative example of these simulations is given énléft hand side of Figure 3.3 after five
crossings of the computational domain. The amplitude i$ mealntained by the SPH scheme, however
the wave lags behind the exact solution, giving a signifigaraise error as expected from the stability
analysis (Figure 3.2). The sound speed obtained from theericah tests is plotted in Figure 3.5 for a
range of smoothing length values (solid points). In thisedh® results show excellent agreement with
the analytic results using the dispersion relation (3.44¢rgby the solid line (this line corresponds to
ke =~ 0 in Figure 3.2). We observe that, depending on the valletbé numerical sound wave can both
lag and lead the exact solution (in Figure 3.5 this corredpdn sound speeds less than or greater than
unity).

In §3.3.4 it was noted that the variable smoothing length teromsalise the kernel even in the case
of a fixed smoothing length. The results of the fixed smoothémgth simulation with this correction
term are shown by the dashed line in Figure 3.5, with a reptatee example given in the right hand
side of Figure 3.3. The numerical wave speed appears musérdio the theoretical value of unity.

Results using a smoothing length which varies with densityoeding to (3.68) are given by the
dot-dashed line in Figure 3.5, with a representative exarspbwn in Figure 3.4. The phase error is
slightly lower than either of the fixed smoothing length sadacluding the normalisation of the kernel
gradient from the variable smoothing lengttj8.8.4) gives numerical sound speeds very close to unity
(dotted line in Figure 3.5). A representative example o§éh@mulations is given in the right hand panel
of Figure 3.4 after 5 periods. The results in this case shaelnt agreement with the exact (linear)
solution, with a small amount of steepening due to nonlirdcts.

The results of this test indicate that, whilst alternatieeniels can give slight improvements in accu-
racy over the standard cubic splini8(2.7), a substantial gain in accuracy can be gained firstithé
use of a variable smoothing length and secondly by selfistamgly accounting foflh terms in the for-
mulation of the SPH equations. These terms act as a nortiatisa the kernel gradient which appear
to effectively remove the dependence of the numerical sspeéd on the smoothing length value.

Effects of artificial viscosity

In the absence of any switches, the artificial viscosity ectffied according to (3.102) withi = 1,8 =2
everywhere. The results of the sound wave propagation wtiffcal viscosity turned on are shown in the
left panel of Figure 3.6. After 5 crossings of the computadicdomain the wave is severely damped by
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- - -~ fixed h with Vh terms
~—-==- variable h
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0.85 - New quintic (2), fixed h

Figure 3.5: Summary of the isothermal sound wave tests using 100 pestithe numerical sound speed
from the SPH simulations is shown plotted against the (ms@aothing length in units of the average
particle spacing. Results using the cubic spline kerndl wifixed smoothing length (solid points) may
be compared with the analytic result (solid line, under ifrom the dispersion relation (3.41) (this
line corresponds téx = 0 in Figure 3.2). The dashed line gives the numerical resusitsg the cubic
spline with a fixed smoothing length but incorporating therection from thelJh terms, which show
much lower phase errors. The dotted and dot-dashed linesngimerical results using the cubic spline
with a variable smoothing length with and without thie terms respectively. In both cases the results
show a substantial improvement over the fixed smoothingtfecgse, much more so than from the use
of alternative kernels (e.g. the New Quintic (2) fr¢®12.6, given by the solid line).

the artificial viscosity term. The effect is to reduce theasrdf the numerical scheme since convergence
to the exact solution is much slower. The results using ttifecéal viscosity switch discussed i§8.5.2

are shown in the right panel of Figure 3.6. The results shoasdgmreement with the linear solution,
demonstrating that use of the artificial viscosity switchyveffectively restores the numerical schemes
ability to propagate small perturbations without excessigmping.

1.005
1.005

0 ‘O.Z‘OA‘OAG‘OAS‘ 1 0 ‘OQ‘OA‘O.G‘OB‘ 1
Figure 3.6: (left) Isothermal sound wave with amplitude = 0.005 in onmelision with artificial vis-

cosity applied uniformly to particles in compression (.= 1, 3 = 2) and (right) applied using the
viscosity switch withoin = 0.1.

Finally, we demonstrate the usefulness of the artificiatagity switch by considering the steepening
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1.05

0.95

X

Figure 3.7: Nonlinear isothermal sound wave in one dimension showiegpsning to shock. The wave
profile is shown after 5 crossings of the computational domadrresponding to 5 periods. The initial
conditions are a linear wave with amplitude 0.05 (solid )in&Vith artificial viscosity applied using
the switch the steepening is resolved, although some ateills are observed to occur ahead of the
steepened wave.

of a nonlinear sound wave. In this case the initial amplitisd05 and artificial viscosity is applied using
the switch. The wave profile at=5 is shown in Figure 3.7 and is significantly steepened coetpty

the initial conditions (solid line). The use of the switchabtes the steepening to be resolved, however
some oscillations are found to occur ahead of the steepeaeel. w

3.7.3 Sod shock tube

The standard shock tube test for any compressible fluid digsesnde is that of Sod (1978). The problem
consists of dividing the domain into two halves, one coirgisdf high pressure, high density gas whilst
the other is low pressure and low density. These two portafrgas are allowed to interact at= 0,
resulting in a shock and rarefaction wave which propagatautih the gas. This test illustrates the shock
capturing ability of the 1D code and thus provides a gooddkttte artificial viscosity formalisms@.5).

It is also the basis for the MHD shock tube consideregdifs.3. We set up the problem using 450 SPH
particles in the domair = [—0.5,0.5]. The particles are setup with uniform masses such that thstgte
jump is modelled by a jump in particle separation. Initiahditions in the fluid to the left of the origin
are given by(p,P,vx) = [1,1, 0] whilst conditions to the right are given i, P, vx) = [0.125 0.1, 0] with

y = 1.4. The particle separation to the left of the discontinust@.D1.

Figure 3.8 shows the results of this problent at0.2. The exact solution, calculated using the exact
Riemann solver given in Toro (1992) is given by the solid lihethis case artificial viscosity has been
applied uniformly to particles in compression (ie. using- 1), whilst no artificial thermal conductivity
has been used (i&, = 0). The results are generally good although there is sigmifideviation in the
slope of the rarefaction wave. This can be traced largely@simoothing applied to the initial conditions.
Following Monaghan (1997b) (although a similar procedsragplied in many published versions of this
test), the initial discontinuities in density and pressuege smoothed over several particles according to
the rule

AL+ AgeYd

3.136
1+ ev/d ( )
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whereA_ andAg are the uniform left and right states with respect to theiorigndd is taken as half of
the largest initial particle separation at the interfaee {he particle separation on the low density side).
Where the initial density is smoothed the particles areegaccording to the rule

Pa(Xa+1—Xa-1) = 20ROR (3.137)

whereAr is the particle spacing to the far right of the origin with diéy pr. Note that initial smoothing
lengths are set according to the rhlél 1/p and are therefore also smoothed. Where the total ergergy
is integrated we smooth the basic variableonstruct the total energy from the sum of the kinetic and
internal energies.

Such smoothing of the initial conditions can be avoidedgather if the density summation (3.42) is
used, particularly if the smoothing length is updated selisistently with the density. The results of this
problem using unsmoothed initial conditions are shown guFé 3.9. The artificial viscosity is applied
uniformly whilst no artificial thermal conductivity has beeised. In this case the rarefaction profile
agrees extremely well with the exact solution (solid linE)e unsmoothed initial conditions highlight the
need for artificial thermal conductivity since the thermiakrgy overshoots at the contact discontinuity
with a resulting glitch in the pressure profile. The gradierthermal energy at the shock front does not
show this effect due to the smoothing of the shock by the aelfviscosity term. The results of this test
with a small amount of artificial thermal conductivity apgali using the switch discussed §8.5.2 are
shown in Figure 3.10. The variable smoothing length ternve fadso been used in this case, although
results are similar with a simple average of the kernel grgiin the force equation (3.54). The contact
discontinuity is smoothed over several smoothing lengghthe thermal conductivity term, removing the
overshoot in the thermal energy. The resulting profiles ammgxtremely well with the exact solution
(solid line).

Finally, the results of this test where both the artificiaodsity and conductivity are controlled us-
ing the switches described §8.5.2 are shown in Figure 3.11. The top row shows the velaanitg
thermal energy profiles compared with the exact solutiofiddime), whilst the bottom row shows the
time-varying co-efficientsr anday of the viscosity and thermal conductivity respectively.th\the un-
smoothed initial conditions and the viscosity switch thisra slight oscillation in the velocity profile
at the head of the rarefaction wave. The variable smootléngth terms have been used in this case
involving the consistent update of the smoothing lengtthwdiensity £3.3.4). If a simple average of
the kernel gradients is used instead the oscillations imdhefaction wave are still present but slightly
less pronounced. In effect, the iterations of density andathing length make the scheme much more
sensitive to small perturbations, since a small changedrsthoothing length will be reflected in the
density profile and vice-versa. This means that structurésel simulation are in general better resolved
and is clearly advantageous. However alsos mean that sirats én the density evolution are amplified
where they may otherwise have been smoothed out by the neahscheme.

3.7.4 Blast wave

In this test we consider a more extreme version of the shdoé test considered previously. In this
problem the initial conditions in the fluid to the left of theigin are given by(p,P,vyx) = [1,100Q 0]
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0.5

Figure 3.8: Results of the Sod shock tube problem in one dimension. Thelation uses 450 particles
with conditions in the fluid initially to the left of the origigiven by(p, P,vx) = [1,1,0] whilst conditions

to the right are given byp, P, vx) = [0.1250.1,0] with y = 1.4. Initial profiles of density and pressure
have been smoothed and artificial viscosity is applied unmifp. Agreement with the exact solution
(solid line) is generally good, but note the deviation frdra £xact solution in the rarefaction wave due
to the initial smoothing.

Figure 3.9: Results of the Sod shock tube problem using unsmoothedlymiseontinuous) initial con-
ditions. Artificial viscosity has been applied uniformly ilgh no artificial thermal conductivity has been
used. In the absence of any smoothing of the initial conudiitithe rarefaction profile agrees well with
the exact solution (solid line). The thermal energy is obséto overshoot at the contact discontinuity.
There is also a small overshoot in velocity at the right enthefrarefaction wave.
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0.5

Figure 3.10: Results of the Sod shock tube problem using unsmoothedlindnditions and applying a
small amount of artificial thermal conductivity using theitl described ir§3.5.2. Artificial viscosity
is applied uniformly. The overshoot in the thermal energgesbed in Figure 3.9 is corrected for by
the smoothing of the contact discontinuity produced by tierrhal conductivity term. The variable
smoothing length terms have also been used in this caseuglhresults are similar with a simple
average of the particle kernels.
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Figure 3.11: Velocity and thermal energy profiles (top row) in the Sod $hibe problem using un-
smoothed initial conditions and where both artificial visitpand thermal conductivity are applied using
the switches discussed §3.5.2. The bottom row shows the time-varying co-efficiamtand a,, of the
viscosity and thermal conductivity respectively. With tirsmoothed initial conditions and the viscosity
switch there is a slight oscillation in the velocity profilethe head of the rarefaction wave. The variable
smoothing length terms have also been used in this case.



66 Chapter 3. Smoothed Particle Hydrodynamics

whilst conditions to the right are given iy, P,vy) = [1,0.1,0] with y = 1.4. The 10 pressure ratio
across the initial discontinuity results in a strong blaat/@which propagates into the fluid to the right
of the origin. The velocity of the contact discontinuity isry close to that of the shock, producing a
sharp density spike behind the shock front. This test theegiresents a demanding benchmark for any
numerical code.
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Figure 3.12: Results of the one dimensional blast wave test-a0.01. Conditions in the fluid initially
to the left of the origin given by p,P,vy) = [1,1000Q0] whilst conditions to the right are given by
(p,P,vx) = [1,0.1,0] with y = 1.4. 1000 particles have been used with no smoothing of th&linit
conditions. The agreement with the exact solution (sofid)lis excellent. The contact discontinuity is
spread sufficiently by the artificial thermal conductivitytie resolved accurately. In this simulation the
density summation and the average of the kernel gradiestbden used.

The results of this test at= 0.01 are shown in Figure 3.12. The agreement with the exacticolu
(solid line) is excellent. In this simulation the densityrsnation and the average of the kernel gradients
has been used and the artificial viscosity is applied usiegvibcosity switch. The SPH results may
be compared with those given in Monaghan (1997b). Althoughuse the same formulation of the
dissipative terms as in Monaghan (1997b), in that paperrtifecl thermal conductivity is applied only
for particles in compression, resulting in a need to smdwaghiritial discontinuity in the pressure. With
the thermal conductivity term applied using the switch tbetact discontinuity is spread sufficiently in
order to be resolved accurately and smoothing of the ingtialditions is therefore unnecessary. In the
SPH solution given by Monaghan (1997b) the spike in densibpserved to overshoot the exact solution,
which is not observed in this case. This is due to the use ofi¢imsity summation (3.42) rather than
evolving the continuity equation (3.43) as in Monaghan @99 Use of the continuity equation is more
efficient since it does not require an extra pass over thélestin order to calculate the density. Using
alternative formulations of the pressure term in the moomanéquation (e.g. using equation (3.76)
with o = 1) gives similar results (although the Hernquist and Ka&8@) formulation (3.92) appears
to produce negative pressures on this problem). Using theistent alternative formulations of the
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continuity equation, however, appears to worsen the ogetstbserved in the density spike compared
to the usual continuity equation (for example in the- 1 case, the density spike overshootpig, ~ 10
when the continuity equation (3.86) is used).

3.7.5 Cartesian shear flows

In a recent paper Imaeda and Inutsuka (2002) (hereafter @& suggested that SPH gives particularly
poor results on problems involving significant amounts efeshThe simplest test considered by 1102 is a
Cartesian shear flow. The setup is a two dimensional, unit@nsityp = 1 box in the domain & x< 1
and 0<y < 1 with a shear velocity fieldy= 0, vy = sin(27x) and periodic boundary conditions in tke
andy— directions. In general such flows are known (at least in therimpressible case) to be unstable to
Kelvin-Helmholtz instabilities at the inflection point ihe velocity profile (e.g. Drazin and Reid, 1981).
However, a straightforward stability analysis of this floentbnstrates that it is indeed stable to small
perturbations in the—direction (note, however that the application of viscosian significantly affect
the stability properties for these types of problems).

We setup the problem using 2500 (50 x 50) particles initiatlanged on a cubic lattice. The smooth-
ing length we use is set according to

1
h=n (T) : (3.138)
p
where we use) = 1.2, resulting in an initially uniform value ofi = 0.024. The smoothing length
is allowed to change with density according to (3.68), altitothis has little effect since the density
remains close uniform throughout the simulation. The dqoadf state is isothermal such that the
pressure is given in terms of the density Wa= c2p. As in 1102, we consider both the pressure-free
case ¢ = 0) and also usings = 0.05, in both cases using no artificial viscosity. The resuitstlie
pressure-free case are shown in Figure 3.13. After 50 dyaniines (defined as one crossing of the
computational domain at the highest velocity, ie. in thisedgy, = 1) the density remains extremely
close to uniform Ap ~ 10 3p) and the particle positions remain ordered. Results in #0@w large
errors fp/p 2 p) in the density in less than 1 dynamical time. Similar resalte obtained in the
¢cs = 0.05 case, shown after 20 dynamical times in Figure 3.14. Adlaemamplitude of the density error
is very small fp ~ 102p). Some disruption in the particle distribution is obsertedccur at later
times, however in the absence of any artificial viscosity [soanpressible modes are not damped in
any way and in the absence of a high accuracy timesteppimgithlign such disorder might reasonably
be expected. Also it is well known that the particles inijia@rranged on a cubic lattice will eventually
move off the lattice and settle to a more isotropic close pdakstribution (e.g. Morris 1996).

The question is, therefore: Why do the results obtaineddia $how so much error in the density evo-
lution? The major factor appears to be the particle setug. details of the particle setup are not given
in 1102, however by inspection of their figures it appeard tha particles are arranged in a quasi-random
fashion. The density errors observed in their paper magtber be an amplification (by the shear flow)
of initial perturbations in the density distribution duethe particle setup. A second contributing factor is
that the value of smoothing length used by 1102 is very loveythsen = 1 in equation (3.138), whereas
typical values fom lie in the range 1L — 1.2 in most multidimensional SPH implementations). How-
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Figure 3.13: Particle positions (left) and density evolution (right)thre pressure-free Cartesian shear
flow test with shear velocity fieldy= 0, vy = sin(2nx). The amplitude of the density error is extremely
small (\p ~ 10-3p)
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Figure 3.14: Particle positions (left) and density evolution (right)ire Cartesian shearing box test with
sound speedyp = 0.05 and shea