Appendix A
Discretization scheme for non-relativistic equations

The discretization scheme used in Chapter 2 for the nomivistic fluid equations is summarised in
Figure 2.1. Fluxes are calculated on the half grid pointslevtiie other terms are calculated on the
integer points. We solve (2.1)-(2.5) in the following mann€he numerical equations are solved first
for velocity on the half grid points (dropping the supergtrifor convenience),
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where the superscriptrefers to thenth timestep and the subscriptefers toith grid point (Y, 1/2,0i41/2
thus being points on the staggered velocity grid). The diyap, 1/, is calculated using linear interpola-
tion between the grid points, i@, 1/, = %(pi + pi+1). We then solve for the density and internal energy
on the integer grid points using the updated velocity,
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wherec is the adiabatic sound speed in the gas giverZoy yP/p. We typically setAt to half of this
value.
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Appendix B
SPH stability analysis

In this appendix we perform a stability analysis of the seaddSPH formalism derived i§3.3. Since
the SPH equations were derived directly from a variatiomalqgiple, the linearised equations may be
derived from a second order perturbation to the Lagrandiat6j, given by
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where the perturbation {0 is to second order in the second term and to first order in ihe tibrm. The
density perturbation is given by a perturbation of the SPiHration (3.42), which to second order is
given byt
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The derivatives of the thermal energy with respect to degmmsitow from the first law of thermodynamics,
ie.
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The Lagrangian perturbed to second order is therefore
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The perturbed momentum equation is given by using the pgertUEuUler-Lagrange equation,
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INote that the first order term may be decoded into continuum fo give the usual expression

op =—poll-(r)

wherepg refers to the unperturbed quantity.
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162 Appendix B. SPH stability analysis
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giving the SPH form of the linearised momentum equation
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Equation (B.7) may also be obtained by a direct perturbaifcthe SPH equations of motion derived in
63.3.2. For linear waves the perturbations are assumed tbthe trm
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Assuming equal mass particles, the momentum equation (BcOmes
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From the continuity equation (3.43) the amplitudef the density perturbation is given in terms of the

particle co-ordinates by
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Finally, plugging this into (B.14) and taking the real compat, the SPH dispersion relation (for any
equation of state) is given by
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For an isothermal equation of state this can be simplifiethéurby settingc2 = Py/po. An adiabatic
equation of state corresponds to settidg- yPo,/po.



Appendix C
Linear waves in MHD

In this section we describe the setup used for the MHD wavsesrited ing4.6.4. The MHD equations
in continuum form may be written as
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together with the divergence constraintB = 0. We perturb according to
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wherec? = yPy/po is the sound speed. Considering only linear terms, the girduequations are there-
fore given by
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Specifying the perturbation according to
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we have
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164 Appendix C. Linear waves in MHD
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Considering only waves in the x-direction (le= [k, 0,0]), defining the wave spead= w/k and using
(C.9) to eliminateD, equation (C.10) gives
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whereby, = 0 sinceld- B = 0. Using these in (C.11) we have

We can therefore solve for the perturbation amplitudesy, v,, by andb, in terms of the amplitude of
the density perturbatioB and the wave speed We find
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where we have dropped the subscript 0. The wave spéefbund by eliminating these quantities from
(C.12), giving

=0 (C.22)
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which reveals the three wave types in MHD. The Alfvén wavesthose with
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These are transverse waves which travel along the field liffesterm in square brackets in (C.22) gives
a quartic forv (or a quadratic for?), with roots
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which are the fast(+) and slow(-) magnetosonic waves.



