
Appendix A

Discretization scheme for non-relativistic equations

The discretization scheme used in Chapter 2 for the non-relativistic fluid equations is summarised in

Figure 2.1. Fluxes are calculated on the half grid points while the other terms are calculated on the

integer points. We solve (2.1)-(2.5) in the following manner: The numerical equations are solved first

for velocity on the half grid points (dropping the superscript r for convenience),
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where the superscriptn refers to thenth timestep and the subscripti refers toith grid point (vi+1/2,ρi+1/2

thus being points on the staggered velocity grid). The quantity ρi+1/2 is calculated using linear interpola-

tion between the grid points, ie.ρi+1/2 = 1
2(ρi +ρi+1). We then solve for the density and internal energy

on the integer grid points using the updated velocity,
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and similarly,
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where∆t = tn+1− tn and the timestep is regulated according to the Courant condition

∆t <
min(∆r)

max(|v|)+max(cs)
(A.3)

wherecs is the adiabatic sound speed in the gas given byc2
s = γP/ρ . We typically set∆t to half of this

value.
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Appendix B

SPH stability analysis

In this appendix we perform a stability analysis of the standard SPH formalism derived in§3.3. Since

the SPH equations were derived directly from a variational principle, the linearised equations may be

derived from a second order perturbation to the Lagrangian (3.46), given by
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where the perturbation toρ is to second order in the second term and to first order in the third term. The

density perturbation is given by a perturbation of the SPH summation (3.42), which to second order is

given by1
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The derivatives of the thermal energy with respect to density follow from the first law of thermodynamics,

ie.
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The Lagrangian perturbed to second order is therefore
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The perturbed momentum equation is given by using the perturbed Euler-Lagrange equation,

d
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where

∂L
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= mava (B.5)

1Note that the first order term may be decoded into continuum form to give the usual expression

δρ = −ρ0∇ · (δr)

whereρ0 refers to the unperturbed quantity.
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162 Appendix B. SPH stability analysis

∂L
∂ (δxa)

= −ma ∑
b

mb

(

Pa

ρ2
a

+
Pb

ρ2
b

)

δxab
∂ 2Wbc

∂x2
a

−ma ∑
b

mb

[(

c2
s −

2Pb

ρb

)

δρa

ρ2
a

+

(

c2
s −

2Pb

ρb

)

δρb

ρ2
b

]

∂Wab

∂xa
(B.6)

giving the SPH form of the linearised momentum equation
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Equation (B.7) may also be obtained by a direct perturbationof the SPH equations of motion derived in

§3.3.2. For linear waves the perturbations are assumed to be of the form

x = x0 + δx, (B.8)

ρ = ρ0+ δρ , (B.9)

P = P0+ δP. (B.10)

where

δxa = Xei(kxa−ωt), (B.11)

δρa = Dei(kxa−ωt), (B.12)

δPa = c2
s δρa. (B.13)

Assuming equal mass particles, the momentum equation (B.7)becomes
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From the continuity equation (3.43) the amplitudeD of the density perturbation is given in terms of the

particle co-ordinates by
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Finally, plugging this into (B.14) and taking the real component, the SPH dispersion relation (for any

equation of state) is given by
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For an isothermal equation of state this can be simplified further by settingc2
s = P0/ρ0. An adiabatic

equation of state corresponds to settingc2
s = γP0/ρ0.



Appendix C

Linear waves in MHD

In this section we describe the setup used for the MHD waves described in§4.6.4. The MHD equations

in continuum form may be written as

dρ
dt

= −ρ∇ ·v, (C.1)

dv
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= −
∇P
ρ

−
B× (∇×B)

µ0ρ
, (C.2)

dB
dt

= (B ·∇)v−B(∇ ·v), (C.3)

together with the divergence constraint∇ ·B = 0. We perturb according to

ρ = ρ0 + δρ ,

v = v,

B = B0 + δB,

δP = c2
s δρ . (C.4)

wherec2
s = γP0/ρ0 is the sound speed. Considering only linear terms, the perturbed equations are there-

fore given by
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d(δB)

dt
= (B0 ·∇)v−B0(∇ ·v). (C.7)

Specifying the perturbation according to

δρ = Dei(kx−ωt),

v = vei(kx−ωt),

δB = bei(kx−ωt), (C.8)

we have

−ωD = −ρ0(v ·k) (C.9)
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164 Appendix C. Linear waves in MHD
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−ωb = (B0 ·k)v−B0(k ·v). (C.11)

Considering only waves in the x-direction (ie.k = [kx,0,0]), defining the wave speedv = ω/k and using

(C.9) to eliminateD, equation (C.10) gives
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wherebx = 0 since∇ ·B = 0. Using these in (C.11) we have

vby = −Bx0vy + By0vx, (C.15)

vbz = −Bx0vz + Bz0vx. (C.16)

We can therefore solve for the perturbation amplitudesvx,vy,vz,by andbz in terms of the amplitude of

the density perturbationD and the wave speedv. We find
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where we have dropped the subscript 0. The wave speedv is found by eliminating these quantities from

(C.12), giving
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which reveals the three wave types in MHD. The Alfvén waves are those with

v2 =
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, (C.23)
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These are transverse waves which travel along the field lines. The term in square brackets in (C.22) gives

a quartic forv (or a quadratic forv2), with roots
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which are the fast(+) and slow(-) magnetosonic waves.


