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ABSTRACT

In this paper we investigate the use of the vector potergialmeans of maintaining the diver-
gence constraint in the numerical solution of the equatidMagnetohydrodynamics (MHD)
using the Smoothed Particle Hydrodynamics (SPH) methodd&vee a self-consistent for-
mulation of the equations of motion using a variational gipite that is constrained by the
numerical formulation of both the induction equation and turl operator used to obtain
the magnetic field, which guarantees exact and simultanramservation of momentum, en-
ergy and entropy in the numerical scheme. This leads to al fiorraulation of the MHD
force term, unique to the vector potential, which diffei@frprevious formulations. We also
demonstrate how dissipative terms can be correctly fortadléor the vector potential such
that the contribution to the entropy is positive definite #meltotal energy is conserved.

On a standard suite of numerical tests in one, two and threerd§ions we find firstly
that the consistent formulation of the vector potentialatguns is unstable to the well-known
SPH tensile instability, even more so than in the standardd®ned Particle Magnetohydro-
dynamics (SPMHD) formulation where the magnetic field isleed directly. Furthermore we
find that, whilst a hybrid approach based on the vector piatiesolution equation coupled
with a standard force term gives good results for one and imeisional problems (where
dA./dt = 0), such an approach suffers from numerical instability reéhdimensions related
to the unconstrained evolution of vector potential compdsieNe conclude that use of the
vector potential is not a viable approach for Smoothed &artilagnetohydrodynamics.

Key words: (magnetohydrodynamics)HD — magnetic fields — methods: numerical — stars:
formation — shock waves

1 INTRODUCTION

Magnetic fields are important at some level in almost eveep &f astrophysics and their effects are commonly accodotdd numerical
simulations by solving the equations of magnetohydrodyogrtMHD). The solution of the MHD equations throws up a numdkchal-
lenges for any numerical method, most notably because afitkegence-free (“no monopoles”) constraint on the magrietd, which does
not appear explicitly in the MHD equations but rather as atiainrcondition which, if satisfied initially, should remasatisfied for all time
(Toth 2000; Price & Monaghan 2005).

Attempts to solve the equations of MHD using the SmoothetidfaiHydrodynamics (SPH) method (for recent reviews séeeR2004;
Monaghan 2005) have a long and somewhat tortured histoginhi@g with one of the earliest SPH papers by Gingold & Mdreg(1977),
though not seriously developed until Phillips & Monagha®88). The latter authors discovered that the equations afoimed Particle
Magnetohydrodynamics (SPMHD) contained a catastrophieanical instability (now known as the “tensile instabifitflonaghan 2000)
when written in a form that conserved momentum exactly,ialin@y in a certain regime (magnetic pressure greater tt@npgessure).
Despite detailed investigation by Morris (1996) and Mdglid995), these problems meant that, apart from a few iedlapplications (e.g.
Dolag et al. 1999), SPMHD did not find widespread adoption.

More recently, progress has been made on a number of frontsrticular with regards to formulating dissipative termsorder
to handle MHD shocks (Price & Monaghan 2004a, hereafter PApnd in formulating the SPMHD equations self-considiefitom
a variational principle (Price & Monaghan 2004b, hereaRaper II). In Paper Il we have furthermore derived the equatiof motion
accounting for terms related to the smoothing length grasgiehich are necessary for exact simultaneous consemvafiboth energy and
entropy. There is also a reasonable consensus on good appsd@ removing the tensile instability in SPMHD, usindheitformulations
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proposed by Morris (1996) or by Bgrve, Omang & Trulsen (200h)ch forgo the exact conservation of momentum slightly ides to
attain numerical stability, the latter method simply by tabtting off the term in the force equation which is propamal to the non-zero
divergence. Application of the Monaghan (2000) fix for thesite instability (Paper ) turned out to be unsuccessfudampressible flows
(Price 2004).

In Price & Monaghan (2005) (hereafter Paper lll), an extengivestigation was made into methods for addressing tergknce
constraint in the context of SPMHD, using either projectinathods or hyperbolic cleaning schemes. However, whitst sechemes could
be made to give good results on test problems (which can alsudtcessfully run without any form of divergence cleaniitgyas found
that they performed poorly for “real” applications such laattof star formation where length and time scales can chbypgeany orders
of magnitude (Price & Bate 2007). For this reason our atvenshifted to an earlier formulation adopted by Phillips & hghan (1985)
(though later discarded due to poor accuracy when calcllaih the spatially constant smoothing lengths and simpdelignt operators
used by these authors) whereby the magnetic field was fotetlila terms of the so-called “Euler potentials” (Stern 1,91/976) (referred
to as “Clebsch variables” by Phillips & Monaghan 1985); and g, where the magnetic field is expressed as

B = Vag x Vi3z. 1

The advantages are twofold - the first is that the divergenosteaint is satisfied by construction (that is, taking themence of (1) gives
zero). The second is that the induction equation in ideal Mtiliten in terms of the Euler potentials takes a particylainple form, namely

dop _ o dBe
dt ’ dt
which corresponds physically to the advection of magnetidfines by Lagrangian particles (Stern 1966).

Using the Euler potentials formulation together with thesiative terms and force equation proposed in Paper Binteant that the
SPMHD algorithm has been successfully applied to a numbéeaf-world” problems, including neutron star mergersi¢er& Rosswog
2006}, star formation (Price & Bate 2007, 2008) and the dynamiapohl galaxies (Dobbs & Price 2008; Kotarba et al. 2009)ti&rmore
this has led to the development of at least two “magnetic-Sfdes (Rosswog & Price 2007; Dolag & Stasyszyn 2008), ttteriadding
MHD to the widely used GADGET code for cosmological simwas (Springel 2005).

However there are also important limitations to the Eulgeptals approach, namely that the magnetic helicity

=0, 2

/A~B dv, (3)

where A is the magnetic vector potential alRlis the magnetic field, is constrained to be zero by a simpleseguence of the fact that
A = agVi3E (equivalentlyA = —(3gVag by a change of gauge) is exactly perpendiculaBtamplying thatA - B = 0. In practise
this means that firstly it is simply not possible to represmntain fields using Euler potentials, as they would becomél valued. For
example, one can easily represent either a toriodal or adablield using Euler potentials (Stern 1976) but not a caration of bot3. The
corollary is also that such complex fields cannot be createithg the simulation. A better way of understanding thistation in practise is
to recognise that equation (2), since there is no time eleniudf the potentials on the particles, represents a mapgitige magnetic field
on the initial particle configuration dt= 0 to a new arrangement on the particle configuration at soree fiimme¢, and can change the
geometry of the field only insofar as a one-to-one mappingftioe initial to the final particle distribution exists (i.¢he field can only be
followed for < 1 dynamical time). Thus important physical processes saatirgding up of fields by differential rotation are largelysséd
by the Euler potentials formulation (see Brandenburg 2@03dme examples) and this motivates us to consider a moegaexpproach.

In this fourth paper we examine the question of whether a fitation of SPMHD based on the magnetic vector poteliglan resolve
the difficulties associated with the Euler potentials folation whilst at the same time maintaining the divergenaestaint on the magnetic
field. In the vector potential formulation the magnetic fieddjiven by

B= Bint + Bewt =V x A + Bewt, (4)

whereB;,,: = V x A is the magnetic field due to internal currents i.e., thoskiwithe computation domain, and here we assumeBhat
is a time-independent externally applied field. The timdw@imn of A can be derived from the induction equation for the magnetid fi

%—?ZVX(VXB)—VX(T}J), (®)
wheren is the magnetic resistivityy(= 1/(ouo) whereo is the conductivity angio is the permeability of free space) adid= V x B/uo
is the current density. ‘Uncurling’ this equation, we have

0A

E:VXB—?’]J-%-VQZS7 (6)

1 Although it later turned out that there were problems in gingl the Euler potentials formulation in the context of mentstar mergers.
2 One possible way around this restriction is to note that are apnstruct any given magnetic field by a linear combinatib®B’s, where eactB is
determined by a separate set of Euler potentials, as domsdonple by Yahalom & Lynden-Bell (2008).
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MHD in SPH using the Vector Potential 3

where ¢ is an arbitrary scalar representing the freedom to choosaugeg In Lagrangian form, and expandiByin terms of internal
B.n+ = V x A and externaB..: (i.e., produced by currents outside the simulation domamponents this is given by

%:VXVXA+(V'V)A+V><Bewt_77J+V¢' %

Part of the difficulty in assessing the usefulness or ottewif the vector potential is that differences between tHerEpotentials
and the vector potentianly occur in three dimensions, since for one and two dimensipralems the two formulations are identical
(e.g. Rosswog & Price 2007), since in two dimensions theorgmbtential has only one componest = ar which evolves according to
dA./dt = 0 (for the Euler potential§/ 3 = z in 2D). However a rigourous formulation of the SPMHD equasi@f motion has not been
derived for either the vector or Euler potentials which helewance to both formulations even in one and two dimensions

The approach we take is to use a Lagrangian variational ipten¢similar to the approach taken in Paper Il for the staddmse) in
order to derive the equations of motion in a manner that isttaimed by the exact numerical formulation of both (4) ame numerical
representation of the induction equation for the vectoeptil 2.1). This means that exact conservatioalbphysical quantities (linear and
angular momentum and energy) is guaranteed in the resaltamérical equations provided that the appropriate syniesefi.e., invariance
to translations, rotations and time, respectively) arsgmein the Lagrangian and the equations used to constraieifind that this very
powerful approach leads to a novel formulation of the fosrentwhich is already different to previous SPMHD formulatmf the MHD
force in one and two dimensions and indeed conserves momeaa energy exactly. We demonstrate that these symmetgeslso
respected in three dimensions provided an appropriateegehajce is made in thA /dt equation in order that it is Galilean invariant.

Secondly, in§3 we show how dissipative terms should be constructed faiovgmtential SPMHD in order that total energy is con-
served and that the second law of thermodynamics is obeyegaipositive definite contribution to the entropy resditsese terms, which
are derived independently of the equations of motion, diffem previous formulations of dissipative terms that héeen used for the
vector/Euler potentials in SPMHD.

Finally, we examine the new vector potential force formolatand the dissipative terms on the suite of one and two diineal
test problems §4). Whilst the hope was that by constructing the SPMHD equatisuch that the divergence-free constraint was inbuilt,
instabilities would not appear in the equations. Howevéurits out that the consistent formulation of the vector pitié force has similar
—in fact, much worse — problems with the tensile instabilitgn even the standard conservative SPMHD force. Whilstave managed to
obtain reasonable results on a range of numerical testgh@tbonsistent vector potential equations of motion, wetfiadia better approach
is to use the vector potential in conjunction with a stablermn-conservative force such as those employed in PapandliBgrve et al.
(2001). The main practical improvement in this paper isdfae in the formulation of the dissipative terms.

2 A CONSISTENT FORMULATION OF SPMHD USING THE VECTOR POTENTI AL
2.1 \Variational Principle

We start from the Lagrangian for MHD, which in continuum foisrgiven by (e.g. Newcomb 1962)

L= / (lpvz — pu — iB2> dv, (8)
2 2110

which is simply the kinetic minus the thermal and magnetiergies. The SPH Lagrangian is obtained, following Papendl llonaghan &
Price (2001) by replacing the integral by a summation andrtass elemerndV by the mass per SPH particte, giving

Lo a 1, 1 B? 9
sph = ;mb |:§'Ub - Ub(Panb) - %E} . 9)
wherev = x is the velocity,p is the densityu is the thermal energy per unit mass (in general a functiorotf densityp and entropys)
andB is the magnetic field.

The equations of motion can be derived using the Euler-lragraquations provided that all variables appearing in tngrdngian
can be expressed as a function of the particle coordinaselncities (e.g. Monaghan & Price 2001; Price & Monagha@7)0Whilst
for hydrodynamics the density can be written directly asrecfion of the particle coordinates via the SPH density sullligvis an exact
solution of the continuity equation), for MHD the magnetieldiB (in this case the vector potential) can only be written as a function of
thechangein particle coordinates (i.e., we do not have an exact smiut the induction equation). In this case (as in Paper lIyarederive
the equations of motion by perturbing the Lagrangian andipeg that the change in action is zero, i.e.,

58 = / SLdt = 0. (10)

where the variationd L is with respect to a small change in the particle coordinétesmportantly conservation properties (e.g. momentum
conservation) in this case will only follow provided thaethespective symmetries (e.g. invariance to translatiom)paeserved in the
numerical representation of the perturbation.
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Perturbing the Lagrangian (Equation 9) with respect to aghan the position of particle, i.e.,dx,, we have

] 3 (B 1B
5L—mava~5va—zmb[ﬂ 5Pb——<—b) 5Pb+%p—2b'5(pbBb) , (11)
b

Ops s 210 \ po b

where we have expressed the perturbation for the magnéeticifieerms ofd(pB) for reasons that will become clear. The equations of
motion are obtained by using (11) in (10) and integratingvislecity term by parts with respect to time, i.e.,

dxq dva
/mava -0 ( o ) dt = [mava -5Xa]f) - /ma 7 - 0xqdt, (12)

giving (in tensor notation to avoid confusion of indices)

dvé Pb (5/)17 3 Bb 2 (5/)17 1 BZJ) 6 (PbBZ)
f{mtiopm [t (2)

Py 0xh 20 \ py ) Oxlh  po py  OTh
where we have used the first law of thermodynamics to vititgdp|; = P/p* (see Paper II).

What remains is to express, as SPH summations over neighlberperturbation§p, andd(p,Bs) taken with respect téx,. The
derivation here is more complicated than that presentedapel| because in this case we must expid3dn terms ofé A (via the SPH
expression of Equation 4) and in turdA in terms ofdx (via the SPH version of the induction equation for the vegotential). We
thus formulate the SPH expression of each of these equatig2s2, below, with the corresponding perturbations presemé2.4.1. The
equations of motion are derived §2.4.4.

} dxldt =0, (13)

2.2 SPH formulation
2.2.1 Density sum

We base our SPMHD formulation for the vector potential onvidigable smoothing length formulation of SPH presenteddgyePIl; Price &
Monaghan (2007) (see also Monaghan 2002, 2005). The denisityalculated on particle from neighbouring particles via the summation

pa =Y myW(|ra — rp], ha), (14)
b

whereW is the SPH kernel function, details of which are given in Apglig B. Key to the variable smoothing length formulation ikilst
the kernel function depends on the smoothing lerigthitself is defined as a function of the particle positions,regsped most conveniently
as a function of the density sum itself, via the relation

1/v
ha = <@> , (15)

Pa

with derivatives

Oha _ ha ha _ ha (v+1 (16)
pa  vpa’ opz  p2 \ w2 )’

wherev is the number of spatial dimensions anis a dimensionless constant specifying the smoothing teimgterms of the mean inter-
particle spacing. Equation (15) in turn determines the “benof neighbours” in the SPH calculation. Unless otheninsiicated we use
n = 1.2 throughout this paper, corresponding~d8 neighbours in 3D for kernels with a compact support radiughof

The density summation is therefore a non-linear equatiobdith p andh that we solve using a Newton-Raphson scheme as described
in detail in Price & Monaghan (2007). Enforcement of the tieleship betweer andp is a necessary requirement for energy conservation,
since hereafter we will assume that the smoothing lengtlifereintiable with respect to particle position.

222 VxA

In principle we have a number of choices for the numericainfdation of both equation (4) and the induction equationpriactise these
choices are constrained by the requirement that symmetridee Lagrangian are preserved by the constraint equatksrsexample, in
calculating (4) we can in principle use any of the SPH curlrafmes as discussed e.g. in Price (2004). The basic opeffati@ curl in SPH
is given by

my
(VXA)=—-> —Ap x VaWap, 17)
whereW,, = W(|ra — rp|, h) is the SPH kernel. In principle the kernel used for the cudgioot have to be the same kernel as used in the
density summation, though in this paper we assume thatsttieicase. Since the time evolution of (and thus the pettarbto) A is not in
itself invariant to translations im (for example in the case of an external field, see below), weire a curl operator fo¥ x A such thaB
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MHD in SPH using the Vector Potential 5

is invariant to the addition of an arbitrary constantAcsuch that the Lagrangian is Galilean invariant and theegtfloat the resultant force
will conserve momentum. In the variable smoothing lengtimigdation of SPH, this can be achieved using

1

B.=(V XA+ B = G ;mb(Aa — Ap) X VaWap(ha) + Beat, (18)
where(2, is a normalisation factor related to the smoothing lengtdignt, given by
aha aW(Lb
Qo=1- , 19
50, 2" 3 (19)

which can be calculated alongside (18) and the density sdinbte that we could equally have chosen the alternativé &P formulation
which has al /p, inside the summation instead of the above (see e.g. Prie® 20@&quation (18) has the advantage that it does not require
prior computation of the density (which involves a sumnmatwer the particles) and depends only on the particle’s awoathing length
(i.e.,hs). The symmetric formulation of the curl, i.e.,

Aa X vaWab(ha) Ab X vﬂW(lb(hb)
VXA)=—pa + , 20
(5% Ao = = S |2 e (20)

is ruled out by the requirement thBtbe invariant to the addition of an arbitrary constaniAtpas discussed above.

2.2.3 Time evolution ok

For the induction equation we have freedom to choose not thie\S§PH formulation of the derivatives in Equation (7) bsoalo choose
an appropriate Gauge for the evolution of the vector patkfitie., a choice ofs in Equation 7). Again here, our choice is constrained by
physical requirements. Most importantly, in three dimensiin order to obtain momentum conservation in the equatadrmotion, we
require that the induction equation is invariant to tratigfes (i.e., is Galilean invariant). A gauge choice whichiages this, first suggested
to us by Axel Brandenburg (2007, private communicationpishioosep = v - A, which leads to the induction equation in the form

%:—A><(va)—(A~V)v—|—v><BeM—7]J. (21)

It turns out that there are other good reasons for this ctajigauge - most notably that this in fact represents the coloe-speed4 << c)
and magnetically dominated’(< < ¢B) limit for electromagnetism (de Montigny & Rousseaux 200FYitten in tensor notation, equation
(21) can be expressed by

dAL o _é)vj
dt A ol

wheree; 1, is the Levi-Civita permutation tensor and repeated indicggdy a summation. Compare this with a “naive” gauge chdice= 0,

which gives (from equation 7)

dA; _ 04,

= + €0’ BE,, —nJi. (23)

It is worth commenting that both (7) and (21) are significamiore complicated than the evolution equations for the Hub¢entials
in 3D (2). The number of derivatives that require numericalation for a Lagrangian code is also one more than woulefeired in an
Eulerian scheme, since here we must compute not only thei&ulieerm but also a “reverse advection” term to obtain thgraagian time
derivative on the left hand side. Since advection terms eanelly the source of the most difficulty in Eulerian codébe-main advantage
of SPH is that these terms are not present — the accuracy withvthese derivatives can be computed in practise on SPitlparis a
concern. Whilst in the Galilean invariant gauge (21) theérse advection” term becomes a derivativerahther thanA , the same concerns
apply.

With regards to the SPH formulation of equation (22) we faseralar choice of SPH operators for computing both the cod gradient
terms as ir§2.2.2. In this case we are again constrained by the physiqainement that the SPH expression of (22) should be invaita
the addition of an arbitrary constant g which is achieved using a similar operator to that usedHeraurl of A. Neglecting dissipative
terms (discussed separatelyB), we have

+ €ijiv’ Bl — 0 (22)

a A? B . W o .
dAZ = ; Zmb(vj - vj)aw b(h ) + EijkvéBgzt,a7 (24)

dt ~ Qapa @ b ozl

b

where in the above and throughout this paper, we adopt theention thata, b, ¢, d refer to particle labels whilst j, k, [, m andn refer to
vector/tensor components. Again, in principle we could alsoose the form with /p, inside the summation rather than the above. As in
§2.2.2, we choose the above expression because it does nwerpror knowledge of the density to compute and can tloeedie computed
efficiently alongside the density summation.
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2.3 Hybrid approach

At this point a hybrid approach would be to compute the timagion of the vector potential using equation (24), cadtella magnetic field
B using (18) and then simply use tH& in the equations of motion using (any of) the usual SPH exspwass) for the Lorentz force (e.g.
Paper II; Paper Ill), for example the Morris (1996) formidat

P, + 3B P, +1B2 B — (B:B.). O~
% _ Z + 5B /10 OW,ap(ha) b+ 3 21, /1o 8Wab(hb) n 1 Zmb (BiBj)y — (BiBj)a 8VVavb7 (25)
Qap? oz’ Qup3 oz’ Ho Papb O
where
Way 1 [0War(ha) = OWap(hs)
oxi 2 { OxJ * Oxi ’ (26)

Alternatively one can use the stable MHD force formulatedBlayve et al. (2004), that is, where the source térBl(V - B) is subtracted
from the conservative force, giving

dvi M OWap(ha) MY OWap(hy) 1 B! Bl OWap(ha)  B] OWap(hs)

dt Zmb [Qapg OxJ + pr?, oxJ + 2 Mo Zmb Qapg 8:03; QbP§ 8:03; (27)

where

Mij:_P(;ij_’_i(BiBj_lBQ(;’ij)_ (28)
Ho 2

Indeed this is exactly the approach taken using the Eulampials by e.g. Price & Bate (2007, 2008). The flaw in this radtiogy
is that, since the equations of motion are not derived wighabnstraint of the numerical formulation of the inducti@uation, there iso
guaranteethat total energy will be conservédand indeed, using either the Morris force or the Barve €28I04) approach, total momentum
conservation is not guaranteed either, though the errergute small even for shock-type problems, see Price 2004his context total
energy conservation means that

dF d 1 dvz7 duy 1 B? dpp B, de
_— = — - 7, A - 0 29
dt dtzb:m <2vb+ub+2u pb) Zmb (Vb o @ 2 dt dt ’ (29)

Hopb

wheredB/dt is the time derivative of (18) which in turn involves the timherivative ofA and thus our induction equation (24) (we derive the
expression fotiB /dt in Appendix A). What is required is that thi /dt term in the above is consistent with tHiB /d¢ term resulting from
the vector potential evolution. Needless to say, guarargetbe conservation of energy in a vector potential apgras¢hus a complicated
business, and one which is best achieved by following a tvanial approach.

Whilst the hybrid approach works reasonably well for thedEpotentials (where the time evolution is zero accordingdoation 2),
for the more complicated evolution of the vector potentidation 24), using the induction equation to derive and tanstrain the MHD
force term is more important. Furthermore, as we show belois,leads to a novel formulation of the Lorentz force in SPhick has
not previously been considered and which has a number ofsttag properties. In fact it should be possible to derhe d¢orresponding
formulation for the Euler potentials also, however we défiés to a future work. We compare the hybrid approach desdrdbove to the
consistent vector potential formulation described belowhe numerical tests presentecyh

2.4 Variational formulation
2.4.1 Perturbations

In order to derive the equations of motion from (10)-(11)itmains to express the perturbatidips andd(p,Bs) in terms of the change in
particle position$x,. The change in density is obtained by a perturbation of timsidesummation, giving (Paper II)

1
5p1, = Q_b gmc(dxb — 5XC) . V;,W;,c(hb), (30)
which, when taken with respect to partielegives
5pb
Sx. = o ch Oba — 0ca) VeWpe(hs), (31)

3 An important aside with respect to Eulerian codes is due. Wielst in principle it is possible to enforce total energynservation irany SPH scheme
by simply evolving the total energy equation instead of thernal energy equation, if the system is not Hamiltonidrthaé does is push the errors to
another quantity (for example the entropy in the case of diyginamics) and in practise would simply lead to negativesqrees where ‘total conservation’
is violated. The very power of a Hamiltonian formulation d?1$is thatexactandsimultaneougonservation oéll physical quantities is achieved (i.e., with
zero dissipation) something which is never possible in@dgased scheme. The caveat is that dissipation terms arexpécitly addedto the SPH scheme in
order to capture shocks and other discontinuities, theetresk of which in practise often makes the schemeedissipative than its grid-based counterpart.
However there is natrinsic dissipation in SPH.
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whered,,, is the Kronecker delta referring to the particle labels.
The derivation of the Lagrangian perturbation for the maigrfeeld from (18) is a little more complicated and is giverAppendix A.
The result, including all terms relating to gradients in $heoothing length, is given by

3(psBs)

Qib S me(As — Al) X [(9%6 — 0%0) - VIVsWae (o)

1
+ oo Z me (0Ay — 5A.) X VeWae(ho) + Beatdps

By int By, intps Ohy OWye(hs)
H, + —2="(| ¢ —_— e [(0xp — 0%c) - —_— 32
+ [ b+ o Cb] Pb+ 0% O; ;m [(0xp xc) - Vi) i (32)
where we have assumed ti¢.; is spatially constant (i.edB..: = 0). The termdH and(, defined in Appendix A, are higher order terms
related to the gradient in the smoothing length which aressary for strict conservation of energy — hence we retamthere — though
they are generally expected to be negligible in practiskinfgthe perturbation (32) with respectde’, and using tensor notation gives

S(peB]) e b . 0 ] Wie(hy) €5k SAL  SAL\ OWie(hs) i 9pb
Srh @ Zc:mc(Ak ~ A O = 0ee)r | =50 T, 2 me\ 5o~ ocl et
- BJ 5 B} .ePb O 0 1 OWpe(hs)
j bint Pb b,int _b i s\ 2 be\ltb
b (e S| S Dl B S, (6o = 8 | 2elle) (39
The perturbation to the vector potentied can be expressed as a functionaf from (24), by
Ab OWya(hs)
SAb = Zm S — Sal) —= ) T B b 34
" Copn ;md( Ty zg') b + €Ekmn0Tp tb (34)

At this point it is worth briefly pausing to examine the conseices of (32) for the equations of motion. In particular & gonsider
(32) and (34) together, ignoring the last two terms relatmmgmoothing length gradients, then one may observe thes tire essentially
three separate terms that will contribute to the force. Werefier to these as the ‘2D’, ‘external’ and ‘3D’ force ternihe 2D term arises
from the first term in equation (32) and follows only from thetsformulation of the curl used to constru8tfrom A (i.e., Equation 18).
We refer to this as the 2D term because it isahéy term which is present for purely two dimensional simulasiorthered A = 0 (i.e., there
is no external field). The ‘external’ term is present in theecaf external fields and arises from the combination offthex B...: term in
(34) and the second term in Equation (32), plus the third tieomm Equation (32). Finally the 3D term arises from the camalion of our
choice both of gauge and SPH formulation of the inductioratiqu (i.e., the first term of equation 34) and the curl opmraia the second
termin (32).

Whist the derivation of the 2D force is simply a matter of githing the first term in (33) into (13) and simplifying, tleternal and
3D force terms are more complicated since they involve firesstuting the terms in (34) into the second term of (33) iartdirn into (13).

2.4.2 2.5DB..+ component

For the ‘external’ force term, we can substitute the secenu in (34) into the second term of (32) and add the third teamf(32) to obtain,

j €jkl€kmn mpn mpn OWpe(h j
5(pbB;)ezt = % Z me (55617 Bezt,b - 6‘rc Bezt,c) # + Béztapb‘ (35)
. b

[

Using the standard identity for the Levi-Civita tensgg; exmn = 6ndim — 0jmdin We have

OWpe(h 1 J j
) $ = zc:mc (623 Bluvs — 622 Bluv.c)

OWpe(hs)

o+ Blodpe.  (36)
b

5(png) ext Qib Z Me (5wéBgzt,b - 5wiBgzt,c
The astute reader will note that Galilean invariance in thitysbation (and thus momentum conservation in the equatid motion)only
follows if we make the simplifying assumption that the ert@rmagnetic field is spatially constant (and therefore iethelent of the particle
positions). This is in fact physical since an external fielthwpatial gradients can impart momentum to the fluid ancetipgtions in that
case would not be expected to show Galilean invariance isdrpdper we will deal only with spatially constant externelds, for which the
above simplifies to (in vector form, where we have also stuistl forép, using 30)

2Becvt

5(PbBb) ext = Qb

1
> e (0% — 0%c) - Vo Wae(ho) — o > " me (6%, — 0%c) Bear - Vi Wae(hy). (37)

Taking the above perturbation with respecbid,, the resultant term in (33) is given by

5(puB})
oxl,

Qb 8:1:;7 Qb 81’5)

ext c

J 7 nl
= 2Bee 5oy Woclhe) (5 5, — OBt 5, OWoelho) (5 5., (39)
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2.4.3 3D component

The 3D force contribution is given by substituting the fiesth in (34), taken with respect ¢, into the second term of (33), giving

5(png) €jkl Al? aWbd(hb) aWbc(hb)
—b = e ———5—(0ba — 0da) | —57—
och |, Q% 2" Qup 2 (o = daa) | =50
€jkl Af 8ch(hc) aI/Vbc(hb)
_ Uml . 2 (Seq — Oda) | ——2. 39
2, =" 0epe > m ok ) D %9

The fact that thédx is so deeply nested in the perturbation®fin the 3D case (i.e., via a summation for the curl&fequation 32], and
via a second summation farA [equation 34]), as we will see below, leads to a force termcivlis somewhat complicated to calculate.
Nevertheless, it is a force term which preserves the basmrstries that we asked for, namely momentum and energy c@ti®s in the
SPMHD equations. For example, using the naive or ‘standgadge choice (Equation 23) involves one fewer summationeshejx is not
nested inside a derivative in the perturbatiomtoHowever, the perturbation is not Galilean invariant aral loa straightforwardly shown to
lead to a force that does not conserve momentum.

2.4.4 Equations of motion

Putting the perturbations (31) and (33) [the second termiithvhas been expanded into (38) and (39)] into (13) we have

e _ P 3 & Waelhs)
/{ " Z f 2410 <pb) T 2 me (3ba = dca)

- ozt
o *Wie(h
- _Z EJklch Ak A )ngéb)(&a—&a)
_ Z mp By ant b 8hb Z mc 617@ _ a M/ibc(hb)
1o b apb 8xb8hb

- - Z Qb p [25 Be]izt - 5JBecvt] chavv;ifcéhb) (517‘1 - 60@)

c
o Z Y p; EJM chﬂbpb

Zm OWaa(lho) 5 %)] OWae(hs)

dzk ol
aWGd(hC) _ aI/Vbc(hb) i _
+ 1o Z Qb p Ejkl ch Zd:md a:I)'Ic‘ ((5ca 5da) 781’2 (SCCadt = O7 (40)
where we have collected the isotropic terms relating to shiog length gradients into a single term by defining
= G
&= — m {B]HJ—FBJBmt XN (41)

whereH? and¢ are defined in Appendix A. Since the perturbatiar is arbitrary, upon simplification (40) implies that the mijple of least
action is satisfied by the equations of motion in the form

dvs

P(L_ 3 B2+ a P B +
2o : awab(h“)+ b 3 D 6 OW () }isotropicterm

02Q, ox}, pECY, ozl
?*Wap(ha)  Bj b O Wap ()
- = A} — A} e boeini(Af — A ° 2D t
Z |: E]kl( k) 8‘1.:18:1?51 + prg E]kl( k ) ax 8 erm
Y Z BiBlut Oha O Wan(ha) | BBl Ohs 0°Wan(hy) R
apa 8Pa amaaha prb apb 8mfzahb
; Bl OWap(ha) = Bl 0Was(hs)
_ i _ sl a b b b i
/’L [25 Bezt 61 Bezt] Z my Qapg aﬁCé + pr% aﬁCé 2. 5D/Beatt term
b
AY  OWap(ha) A, OWap(hs)
zb:mb {Qapa Jk Sak + 2 oak , 3D term (42)
where the currenf” is defined according to
ko €kl Bl OWap(ha) Bi OWap(hs)
= —po—= , 43
Ja P Ho ;m Qqp2 Ozl Myp? Ozl (43)
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noting that the swapping of indices in the permutation telasn — ex;; leads to a change of sign in the corresponding term in equatio
(42). Although the curl operator in the above definition (#3letermined entirely by the variational principle, rekadaly this is simply the
standard SPH symmetric curl operator in the presence ofiablarsmoothing length (i.e., Equation 20). The equatidn@ation can be
expressed in a more compact notation by writing the isott@5D/B..: and 3D terms in terms of a stress tensor and the 2D an¥ 2D
terms in terms of differential operators, giving

dva:zmb [( Si +(Ab><B) i.%—%é} 0 )8Wab(ha)+<3b +(Az,><Bb) o + J8h>M] (44)
b

dt 0280 pop2Qa O}, Oha ozl P Lop3Sh ozl

whereA ., = A, — A, and we have defined

§9 = —ps5i4 [B Bl +6Y ( B?* - 2B - Beut — g)} — A7, (45)
o
1 B Bin 0ha
L = D Dint 46
v o Qupa Opa (40)

Note that because the 2D terms cannot be represented bgsitsineorS™ doesnotrepresent the usual MHD stress tensor, since the Lorentz
force in this case is composed of the divergence of the sieassr plus the 2D terms.
For the case of a constant smoothing Iength, the equatiom®tdn simplify to (in vector notation)

dv, . P, — mB2 P, — 2#0 Bg
dt - - Xb:mb < pa + pb V(LWab
1 B, B
— —Zmb{<—2+—2b>-[(Aa—Ab)xV]}VGWab
Ko Pa P
1 B, B
- —Z < ;>~Bmvawab+—2mb< + b)BmvaWab
pb Mo 3 pa pb
A,
- Zmb —J - VaWay + —Jb VaWas | (47)
where
B
JGEME—&Zm {B_+Bb} X VaWas. (48)
Ho Ho b pa pb

At this point it is worth stepping back to consider the SPHfokations encapsulated by the force terms in (42) or eceivb), (44)
or (47). The most fundamental question is whether or not thgnatic force terms in the equations of motion derived aliogeed are a
representation of the Lorentz force when translated todh&rmuum limit. Since the proof is somewhat involved, théadle and a translation
of each of the terms into continuum form are given in Apper@ixGiven that the equations of motion are indeed correcterctntinuum
limit, the following comments can be made about their nuoaniepresentation:

(i) The isotropic term in (42) is similar in form to the hydnothmic SPH force and the usual isotropic MHD force in SPH. Ehgav,
in this case the magnetic term is subtracted from the hydraayc pressure which implies that this term may be unstabiee clumping
(tensile) instability caused by negative pressures in¢game Wherez% B?*>P.

(i) The 2D and 3D terms present a novel formulation for thisatnopic magnetic force in SPH (strictly these terms alsatain part of
the isotropic force term — see Appendix C). The 2D term varsdbr constanA and is perpendicular tA yet remarkably both the 2D and
3D terms conserve linear momentum exactly since they argyamnetric in the particle index — implying that , m.dva./dt = 0.

(iii) Calculation of the 2D term involves use of the secondwive of the SPH kernel which is problematic using theicpline because
the second derivative has discontinuous gradients. Hawhigecan be resolved using smoother kernels.

(iv) For a purely external magnetic field the stress tensootesS™” = —P§* + 1/po(BL,Bl,, — 6" 2 BZ,,) which is identical to
the usual conservative SPMHD force term (as derived, eydPaper I1). This part of the force, whilst conservative, istable to the tensile
instability when the external magnetic pressure exceeelgdls pressure. The solution proposed by Paper Il for thie was to simply
subtract the constant terB{,,, BZ_, /o from the stress when a constant external magnetic field isseqh

(v) Calculation of the 3D term involves a triple summatioreothe particles — first, to calculate the density and sinmeltausly the
magnetic field according to (18); second to calculkteia (43) or (48); and third, to calculate the force term. U$ehis approach is
therefore 1/3 more expensive than a standard SPMHD scheme.

2.4.5 Instability correction

As implied by items i) and iv) in the above discussion, we findi4 that the consistent variational formulation of the vegtotential
equations of motion (42) are in practise highly unstabléntotensile instability known to plague conservative SPMidBriulations in the
standard case where the induction equation for the maginetidB is evolved (Phillips & Monaghan 1985; Paper I; Paper III).rééostill,
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we find that the equations are unstable for lower values ofrtagnetic field strength compared to the gas pressure (ighehplasmas)
than in the standard case, consistent with our conjectuiterimi), above. That is, we find that the 2D term in (42) doesprovide any
significant stabilising influence over the negative stressrg from the isotropic term.

For this reason we consider below ways of correcting thesftgom such that the net stress is positive in order to ssaiiie formulation
against the tensile instability. An obvious approach isitopdy revert to the hybrid scheme discussed;3. Indeed in the end%) we
conclude that this is the best approach to implementing #wotov potential in SPH, though one is left with the same @olsl that the
consistent formulation given i§2.4 was constructed to solve, namely that energy is not coedexactly and that there is no (Hamiltonian)
constraint on the overall evolution of the system (see disiom in§2.3). To this argument it may be countered that the congisigoroach
is no better in this respect once the correction terms betevadded.

In this paper, we stabilise the vector potential formulatiee use the method proposed by Bgarve et al. (2001), nameiyagtitk “source
term” —B(V - B)/p to the (conservative) force, giving

i i . J g o Bj a
W iy, Bi OWap(ha) | Bl 0Was () (49)

dt ~ dt TR T el R oad

This method violates both the conservation of momentum aedgg, but only to the extent that the numerical estimat® ofB according
to the above is non-zero. Whilst the proof that this cormecterm indeed stabilises the standard SPMHD equationsg®asdiven by Barve
et al. (2004), it is unclear why it should also work for the teeqotential formulation. Empirically, we find that sulattimg theB(V - B)
term can indeed stabilise the vector potential force, blit tna limited range of circumstances, the limitations ofigthare unclear. For
example, the 1D shock tube problenid.Q) are stabilised effectively by this method and simyldhle circularly polarised Alfvén wave in
2D (84.2). However the 2D Orszag-Tang Vorté@ (3) remains unstable even with the correction term addksally a full stability analysis
of the vector potential equations of motion (42) should kreied out, though such a task is well beyond the scope of djep

A more severe alternative would be to use the original mettigthillips & Monaghan (1985), namely to correct the strgssubtracting
the maximum value over all the particles,

59 =89 — S ae. (50)

Whilst this method conserves momentum but not energy, tirection to the stress can become arbitrarily large. FoOtrszag-Tang Vortex
problem §4.3) we find that the stress correction required to stahitisesolution starts to produce unphysical features in theisa and is
therefore an unacceptable alternative.

3 DISSIPATIVE TERMS

In Papers | and Il the need to introduce dissipative ternteémmagnetic field in order to account for discontinuitieBimvas discussed. For
the magnetic field this means adding an artificial resistitgtm. The key constraints on deriving such a term are thatatld i) conserve
total energy and ii) result in a positive definite increasernitropy — or equivalently — thermal energy. Paper | usedethesstraints to derive
appropriate artificial resistivity terms for the standaRMHD approach (i.e., usinB or B/p in the induction equation).

3.1 Resistivity using the vector potential

The formulation of resistivity in the vector potential foatation is considerably simplified since the derivativeg db not enter the evolution
equation for the vector potential (c.f. equation 21). Therapriate dissipative term in the vector potential evalatis therefore given by

dA, .
(dt )diss_ Nada, (51)

where the resistivity), and an SPH expression fdrremain to be defined.
The constraint of total energy conservation is expressestjogtion (29). Since the magnetic dissipation (physitalbes not enter the
equations of motion nor the continuity equation, we arevatf the requirement that

dua Ba dBa
E Ma + . =0. 52
a |:< di )diss HopPa < dt )di35:| ( )

The reader should note that — whilst we do not consider disisip terms as part of the derivation of the equations of amofiom the
Lagrangian irg2.4 — the above would be equivalent to stating that the daution to the Lagrangian from the perturbation to the magnet
evolution is exactly balanced by the contribution from tleetprbation to internal energy (from an increase in entyapy11), thus having
no effect on the equations of motion. Writid@ /dt in terms ofd A /dt using (A1) gives

du, B. dA, dA,
;ma " —;mam~;mb< o _W) X VaWap(ha), (53)
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where the above expression is determined by our choice of&fekator forV x A (see Appendix A) and we have dropped the subscript
diss from the time derivatives assuming we are referring to thgmetic dissipation terms only. Using (51) in the above gives

dua B(L
2@: Ma— = za: Mg Xb: mi (Nada — M) X VaWap(ha). (54)

Adding half of this term to half of the same term with the iree andb exchanged, using the antisymmetry of the keNigiWs (hs) =
~VaWas(hy) and the vector identitl - (nJ x VW) = —nJ(B x VW) gives

dug 1 B. B,
ga Ma dt = _5 ga Ma gb mey (naJa) . l:m X VaWab(ha) + prﬁ X V(LWab(hb)]
+1 E Ma E mep (m,.]b) . Ba X VaWab(ha) + & X VaWab(hb) . (55)
2 P b Qaﬂ% pr?,

Swapping summation indices in the second term and combthmgvo terms, we have,
> ma e
— " dt

giving the contribution to the thermal energy equation farticle a as

B. B,
=Y (3 [W X VlWaa(le) + s vawab(hb)] , (56)

dua _ Ba Bb
= (Nada) - ;mb {Qapg X VoWap(ha) + 7 X VaWab(hb)} ) (57)

If we defineJ in (51) using the symmetric curl (equation 20), then we havply

dug nan
— =—2, (58)
( dt >diss Pa

which is exactly the continuum expression. Furthermoradtegipation is guaranteed to be positive definite so londj ias(51) (and in 58)
is calculated using the symmetric curl operator.

As an aside, it is interesting to note that, as in the equatammotion, in the dissipation we are required to use the sgtrimcurl
operator forJ to obtain energy conservation, where in this case our onbfcehof SPH formalism was to specify the operator used in
B =V x A. The reason for the appearance of the symmetric curl is lsedie curl operators in (18) and (20) form a conjugate pais T
conjugacy in SPH operators has been noted earlier by Cun@rftigdman (1999) in the context of divergence cleaning, thowgt with the
variable smoothing length formulation.

The disadvantage of the symmetric curl is that it can givea pepresentation af if the particles are disordered. In particular on the
shock tube test$4) we find problems using the symmetric curl for the dissgrath combination with the consistent SPMHD equations of
motion derived ir§2.4.4, though using exactly the same dissipation in contioinavith either (25) or (27) gives good results. A comproenis
approach is to use the usual curl operator (as in equatioard) in (51) and (58). Provided thak? is used in (58) (rather than using 57)
then the dissipation will be guaranteed to be positive defifiowever energy conservation will only be approximateabse the energy-
conserving expression is given by (57). Alternatively gyaronservation can be enforced by using (57), wherebyipitgiof the dissipation
is only guaranteed so long as thestimate used in (51) and the symmetric curl estimatkgifen by the summation in (57) have the same
sign.

3.2 Choosingy corresponding to an artificial resistivity

The remaining issue is to formulate the resistivity paranegppropriately for arartificial resistivity, that is where the resistivity acts only
on the smallest scales in the calculation to diffuse disnaittes in the magnetic field. We propose the following:

Na = aBVA Na, (59)

whereas is a dimensionless factor of order unity is the Alfven speed andl is the particle’s smoothing length. An alternative which is
second order in the smoothing length would be to use

o J?
Pa

7711 =aB hi ’ (60)

wherelJ is the current density. This gives a resistive diffusiort teanonlinear in the smoothing length and responds onlyrgelgradients
in B. In general we find§4) that (60) gives insufficient dissipation at discontifast though perhaps some combination of (59) and (60)
could be a reasonable compromise.
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3.3 Comparison with previous formulations

The above formulation for the vector potential differs ddesably from that required in the usual SPMHD approach ¢P8sincer cannot
be defined using the pairwise signal velocity between gastiand their mutual separation. The derivation given alads@ shows that the
naive dissipative terms previously formulated by Rosswdgr&e (2007) and Price & Bate (2007) for the vector/Euleeptals, involving
the pairwise signal velocity, have no guarantee of posi@fnite contributions to the thermal energy. The dissgraterm used by Rosswog
& Price (2007) was given by

dAa o mp ] _ —_

whereF,, = 3 [Fus(ha) + Fas(hs)] is the scalar part of the kernel gradient term (see Appenjli¥@ilowing the analysis given above, it

can be shown that the appropriate term to be added to thedhenargy equation in order to conserve total energy is diyen

dug, 1 QBUsi =
( y ) == mp =27 (3, —J) - (Aa — Ap) . (62)
t diss 2 Pab
(£} b
The dot product betweeh,;, and A ., has no guarantee of being positive definite, and indeed irenged tests on the shock tube problems
discussed g4 we find that negative thermal energies can result. InsteadWog & Price (2007) and Price & Bate (2007) add the term used
in the usual SPH formulation by Paper lll, i.e.,

dug 1 QBVsig 25—
(%), = e @ - T 3
which is positive definite, but when combined with (61) haggnarantee of conserving energy. Thus, this approach slheuttiscarded in
favour of the correct formulation given by equations (51d é8). Note that (51) and (58) should be used regardless ethehthe equations
of motion derived ir§2.4.4 are implemented. That is, even using an alternatpresentation for the force terms such as (25), the dissipati
for the vector potential should still be implemented usiggations (51) and (58), the expressionsXan which are determined entirely by
the choice of curl operator iB = V x A (see§2.2.2). There are similar implications for the dissipatiens used with the Euler potentials,
though these will be discussed elsewhere.

4 NUMERICAL TESTS

We have implemented the vector potential formulation of $#Mnto the N-dimensional SPH code (hereaftaipspMHD) that we have
previously used to test the standard SPMHD formulation ineR{2004) and Papers I-lll. The code evolves the SPMHD émpstising a
standard leapfrog predictor-corrector scheme, wheredbtowpotentialA is evolved alongside the velocity field. The timestep is called
globally as described in Paper Ill, where unless specifiedseea Courant factor @'....- = 0.30.

Use of the vector potential compared to the standard varisiploothing length SPMHD scheme (Paper 111) involves tHieong
changes to the code:

(i) During the iterated loop over the particles to calculad¢h density, smoothing length affrom (19), calculaté using (18) and the
smoothing length gradient ternk& and ¢ using (A4) and (A9) respectively. Note thEE and( can be combined witlB at the end of the
summation loop to construgtaccording to (41) and thus stored only as a single scalaablari

(ii) Inthree dimensions an extra loop over the particleg¢uired to calculate the currefitusing the symmetric curl (equation 43).

(iii) The force is calculated in the main loop according t@)4alongside which the time derivative of the vector patns evaluated
using (24), with dissipation according to (51) and (58).

(iv) Where external fields are used, boundary (ghost) pastiequire that the boundary value of the vector potentialives according to
the second term in (24).

In the following sections we examine the performance of thesistent formulation of the vector potential on a rangeesf problems
that are commonly used to test (both grid based and SPH) MHIBd he tests are identical to those described in Papérsypart from
the 3D version of the Orzsag-Tang Vortex which has also beesidered by Dolag & Stasyszyn (2008). Our first aim is to caraghe
energy-conserving or “consistent” formulation derived4 both to the standard SPMHD scheme (Paper Ill) but alsbetortore naive
hybrid approach§2.3) used in previous papers (Price & Bate 2007; Rosswog 8eR007), where in this paper we use (27) though results
are similar with the Morris force. For this purpose, one and timensional problems suffice since the equations of mqd@) already
differ from the hybrid approach using (27) or (25) in one disien. Shock tube problems are particularly valuable fgeasing the role
of dissipative terms, for which the formulation used in thaper also differs from those used previously ($88), as well as the effect
of the “2.5D” terms in (42) relating to an external magnetédi The Orszag-Tang Vortex in 2D, though the most compditat terms of
dynamics, is the simplest test problem in terms of implemgom, since the only non-zero terms present from (42) aréstbtropic and 2D
terms.

Our second aim is to examine the accuracy of the vector patémgeneral, using either the energy-conserving (“cstesit”) or hybrid
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Figure 1. Results of the Brio & Wu (1988) shock tube problem using theségient vector potential formulation (42), correcteddtability using (49), using
the quintic kernel instead of the cubic spline and repla¢hey symmetric curl operator required in the MHD dissipatierms with a more accurate but
non-conservative estimate. Artificial viscosity, condlitt and resistivity have been applied, the first of thesegis switch, the second using the formulation
of Price (2008) and the third as §3 usinga.g = 0.75.

approach. Testing of the vector potential evolution equia(P4) as distinct from the Euler Potentiafd ) requires a three dimensional test
problem, for which we consider a 3D version of the OrszaggTdéortex. Since we find that this problem cannot be effecyivathbilised
using the consistent formulation, we consider it only wite hybrid approach.

4.1 1.5D shock tube problems

The shock tube described by Brio & Wu (1988) is perhaps thet mwitely used test problem for MHD codes. We set up the problem
exactly as described in Paper II, with no smoothing of théahtonditions and using approximately 800 equal massagbestin the domain
x = [—0.5, 0.5]. Conditions to the left of the shock are given gy P, v., vy, By) = [1, 1,0, 0, 1] and to the right by p, P, vs, vy, By) =
[0.125,0.1,0,0,—1] with B, = 0.75 andy = 2.0. For the vector potential this means that weBet; = [B.,0,0] and A, = —Byz
initially.

The results using the consistent formulation of the vecttemtial force (equation 42) are shown in Figure 1 and maydbepared to
the exact solution given by the solid line. There are numeissues. To produce a reasonable solugiball on this problem, we have had
to:

e Stabilise the force term using (49),
e use the quintic kernel (B3) instead of the cubic spline (B2
e use a more accurafeestimate in the dissipation term (51) rather than the symionadrl.

The solution shown in Figure 1 also requires a relativehhtdgssipation parameterv = 0.75) that isnot applied using a switch. The
fact that we have not used the symmetric curl means that Hsgpdition term does not conserve energy exactly — we hatesihiensured
that the contribution to the entropy is positive definitee(88.1). We also checked whether or not simply subtracting dmstant external
component from the stress tensor as discussed in point $2.4f4 would stabilise the result instead of (49) but fourid tot to be the case.
The results using the hybrid approach (i.e., using (27)Herforce) are shown in Figure 2 and were obtained with far feweaks —
that is, using the cubic spline,z = 0.5 and the dissipation applied using the symmetric curllfas required for energy conservation. The
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Figure 2. Results of the Brio & Wu (1988) shock tube probelm using a lybut non-conservative approach. In this case we have bd#enause the usual
cubic spline kernel and the correct curl formulation to eaghat the MHD dissipation is both positive definite and ggeronserving. Artificial viscosity,
conductivity and resistivity have been applied as in Figurthough with a slightly lower resistivity parameterg = 0.5).

remaining issues with over-smoothing of the fast rarefacsire similarly present in the standard SPMHD formulatsee(Paper Il) and are
mainly due to the fact that the resolution is very low in thégion due to the density jump. The oscillations around the shagnetosonic
shock can be calmed further by increasing the resistivitapater, though at the expense of further smoothing therdastaction. The
results in this case are similar to those presented by Ras&®rice (2007) which is to be expected since the only difieeeis in the
correct formulation of the dissipative terms used here.rEkalts in Figures 1 and 2 are an improvement over thosergegsa Paper | and
Paper Il although this is mainly because of a better undwiaig of how to apply dissipation terms developed in Pageather than being
an intrinsic improvement due to the use of the vector paaénti

As the Brio & Wu (1988) problem is more difficult in SPH becao$éhe density contrast, we consider two further shock tubblpms
in this paper, both of which have also been used to test thelatd SPMHD formulation (Price 2004; Paper ).

The second shock tube illustrates the formation of severodtmuities in the same problem (Figure 3). The Riemanblpro is set up
with initial conditions to the left < 0) of the shock given byp, P, v., vy, v., By, B.) = [1.08,0.95,1.2,0.01,0.5, 3.6/ (47)'/? 2/ (47)"/?],
whilst to the right ¢ > 0) (p, P, vz, vy, vs, By, B2) = [1,1,0,0,0,4/(47)*/?,2/(47)"/?] with B, = 2/(47)/? andy = 5/3. Using
the vector potential we s&..: = [B.,0, B.] andA. = — By initially. Since the velocity in the x-direction is non-zeat the boundary,
we continually inject particles into the left half of the daim with the appropriate left state properties. The resmiutherefore varies from
an initial 700 particles to 875 particles@at= 0.2. The results are shown in Figure 3 at time- 0.2, using the consistent vector potential
force formulation. As with the Brio-Wu problem, we find thais necessary to correct the force term according to (49yderoto obtain
stability, though in this case the solution is obtaineds$atitorily using the cubic spline kernel, the symmetrid quthe dissipation and a
low resistivity parametetiz = 0.15. Figure 3 may be compared with Figure 4 in Paper |, though #siiBrio-Wu problem the differences
compared to that paper are more due to the improvements m&per 1l rather than anything specific to the vector péériResults with
the hybrid formulation §2.3) are similar.

The final shock tube problem we consider has initial conditit the left of the shock given iy, P, vz, vy, By) = [1, 20, 10, 0,5/ (4m)"/?]
and to the right by(p, P, vz, vy, B,) = [1,1,—10,0, 5/(47)'/?] with B, = 5.0/(4x)/? and = 5/3. The vector potential is set up using
Bext = [Bz,0,0] and A. = — B,z initially. The results computed using the consistent veptiiential formulation are shown at= 0.08
in Figure 4 and may be compared with the exact solution takem Dai & Woodward (1994) given by the solid line. We have used
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Figure 3. Results of the adiabatic MHD shock tube problem showing ¢dheaétion of seven distinct discontinuities related to thappgation of MHD waves.
The solution has been computed using the consistent vectentrl force, corrected for stability with (49), usingetbtandard cubic spline kernel and an
artificial resistivity parametetvg = 0.15.

particles in the domain. Figure 4 may be compared with Figdré8 and 4.19 of Price (2004) for the standard SPMHD fortimriaFor
this problem, apart from applying the stability correcti@®) we have nonetheless used the cubic spline kernel, theith the consistent
formulation satisfactory results could not be obtainechgighe symmetric curl in the dissipation and thus we havertesdeo the more
accurate (asymmetrid) estimate, forgoing exact energy conservation. Here we &pphked both artificial viscosity and resistivity using the
switches discussed in Paper lll, and artificial condugtias described in Price (2008) with, = 1.

4.2 2.5D Circularly Polarised Alfven wave

The circularly polarised Alfvén wave is an exact, non-tinsolution of the MHD equations. It is particularly usefslatest problem as it
allows one to compute the evolution of a non-linear wave biteary amplitude indefinitely, since the wave does not caeag the gas and
therefore does not steepen into a shock. The parametensefoest problem used here are identical to those describd@atiy(2000) for
Eulerian codes and the setup for SPH is identical to thatridestin Paper Il for the standard SPMHD scheme except tha tve set up
the magnetic field in terms of the vector potential.

Whilst the reader is referred to Paper Ill for further detaive briefly recap the setup parameters: The wave is setupvimdimensional
domain with a unit wavelength along the direction of propiange(ie. in this case along the line at an anglgof with respect to the x-axis).
The initial conditions are = 1, P = 0.1, vy = 0, By = 1,v. = By = 0.1sin (277) andv, = B, = 0.1cos (2rr)) withy = 5/3
(wherer| = xcos 6 + ysin ). Thex— andy— components of the magnetic field are therefore givelBpy= B cos — B sin ¢ and
By = B sinf + B, cos® (and similarly for the velocity and vector potential compats). Converselyi3| = B, sin 6 4 B. cos ¢ and
B, = Bycosf — B, sinf.

For the vector potential we set up two componerts, = 0.1[sin (27r))]/27 and A, = 0.1[cos (277 )] /2, together with theB,
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Figure 4. Results using the consistent vector potential formulatibthe MHD shock tube problem with a strong compression arakereshearing disconti-
nuities. Here we have added the correction to the force termsthbility, the standard cubic spline kernel and an moceirate but non-conservative curl in
the MHD dissipation terms which are applied using a switdie Tesults may be compared with the exact solution given dgdkid line.

component added as an external field. As the external fieleisiominant component of the magnetic field, this is mainkysa of the 2D
and 2.5DB.,: terms in (42) together with the evolution of the magnetiadfi@tcording to (24). Furthermore, since the magnetic pressu
exceeds the gas pressure, this test is unstable to the SEilé iastability in the standard formulation (Paper I). ktsour consistent vector
potential formulation (equation 42) we expect the force éoubstable in the regime whefe > 3/2B? (see note i. ir§2.4.4). In order
to assess whether or not this was true in practice we computaties of tests adjusting the value of the gas pressuree(tie test is
non-compressive and the wave travels at the Alfvén spefidsting the gas pressure should have no effect on the sgslitleed we find
that, in the absence of instability corrections the testéged unstable to the tensile instability and that this far all simulations where
P <3.

4.3 2D Orszag-Tang vortex

The compressible version of the Orszag & Tang (1979) vortexdiso been widely used as a test problem for both grid bast&@aH
MHD codes (e.g. Ryu et al. 1995; Dai & Woodward 1998; Londr@ Del Zanna 2000; Téth 2000; Paper IlI; Rosswog & Price 20DFe
setup we use, identical to that in Ryu et al. (1995) and Ldlod& Del Zanna (2000) consists of an initially uniform detysiperiodic

1 x 1 box given an initial velocity perturbation = wvo[— sin (27y), sin (27z)] wherevy = 1. The magnetic field is given a doubly
periodic geometryB = B[ sin (27y), sin (47z)] where By = 1/+/4w, which for the vector potential is achieved by settilg =
—Bo/7 |4 cos (2my) + § cos (4mz)] initially. No external fields are present for this problenheTflow has an initial average Mach number
of unity, a ratio of magnetic to thermal pressure®f= 10/3 and ratio of specific heats = 5/3. The initial gas state is therefore
P =5/3B% = 5/(12r) andp = yP/vo = 25/(367). In this paper we have usd@8?® particles, initially placed on a cubic lattice, which
is sufficient to demonstrate energy conservation and thiglgmms with numerical stability faced by the energy-consgrformulation.

We have considered the problem in its original 2D form and aisa 3D geometry following Dolag & Stasyszyn (2008). As dissed
above the Orszag-Tang Vortex in 2D is the simplest test prolibr the vector potential in terms of implementation, siitds purely two
dimensional — in the magnetic field (i.e., no external fiels)vell as the spatial coordinates. As there is no inflow abthandaries it is
also a good test for checking energy conservation in the.code
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Figure 5. Results of the circularly polarized Alfvén wave testtat 5 (corresponding to 5 wave periods). The plots show the pelipelar component

of the magnetic field vectoB, = B, cosf — B, sin 0 for all of the particles, projected against a vector paratiethe direction of wave propagation
T = xcosf + ysind (whered = 30° in this case). The SPMHD results are shown at five differestltgions which are, from bottom to to,x 16,

16 x 32, 32 x 64, 64 x 128 and128 x 256. The exact solution is given by the solid line. The left pastews the results using the conservative vector potential
formulation with the constant external stress subtracteisthe right panel shows results using a ‘hybrid approadhat is, evolving the vector potential
but with a standard SPMHD force term. Artificial viscosityssapplied using a switch, though no artificial resistivithelresults are indistinguishable except
that the highest resolution calculation in the left panaftstto show noise in the particle distribution at late timelated to the excitation of compressible
modes, most likely related to the poor accuracy in the keseebnd derivatives.

We find that the calculation using the energy-conservingoregotential formulation becomes unstable to the tensistability at
relatively early times# = 0.1), manifested by the usual symptom of particles clumping@lthe field lines in the low density, high
magnetic pressure regions. The development of the inggaisilclear byt = 0.2 as shown in the density field in the left panel of Figure 6.
Worse still, adding the correction term (49) doex stabilise the instability for this problem. In fact the orfii-safe method we have found
of removing the instability in this case is to subtract thex<mmaum value from the stress tensor as in (50)— and we find thiaigdso in this
case produces unphysical artefacts in the solution. Thusrevenable to produce a stable and accurate solution to Sm@iTang Vortex
using the consistent vector potential formulation.

Using the hybrid approach the solution has no such diffiesilfright panel), identical to the results presented in Rogs& Price
(2007). What is remarkable though is that despite the sewareerical instability present with the consistent forntiola, energy is in fact
much better conserved than using the hybrid scheme, as deraiedl in Figure 7. This figure shows the evolution of thaltehergy (left)
and magnitude of the linear momentum (right) for the two @latons shown in Figure 6 and also for two calculations gignsmaller
Courant factor. For the consistent formulation, it can kensieom Figure 6 that energy is conserved exactly, i.e. n@stepping accuracy
— meaning that the energy conservation can be improved twambprecision by decreasing the Courant factor. By astirdecreasing the
timestep further in the hybrid case produces essentiallghamge in the energy conservation, indicating that theaamservation derives
from the SPH scheme itself. Indeed we find that this is a rigetest of the implementation of the energy-conserving ébation in the
code, since even by neglecting the high-order terms relatithe smoothing length gradients discussed in AppendixeAimd that the total
energy rises rapidly to unphysical values once the instalsiéts in.

In fact, a very good solution to the 2D Orszag-Tang Vortexbfgm can be obtained using the hybrid approach, as has wlbesmh
demonstrated by Rosswog & Price (2007). We do not feel thatriecessary to repeat those results here, referring temréa Rosswog
& Price (2007) for details. Instead, in this paper we skigedily to the three dimensional version of the problem sineeave interested in
differences between using the vector potential comparéutive Euler potentials, in particular the effect of solv{@gd) instead of (2).
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Figure 6. Density in the 2D Orszag-Tang vortex problent at 0.2 in a1282 particle calculation, showing development of the numétiasile instability in
the energy-conserving formulation of the vector poter{tift), compared to a hybrid approach using a stable butcurservative force formulation (right).
The instability develops in the low density regions of thevflehere the magnetic pressure exceeds gas pressure. Whilstandard SPMHD formulation
evolving B suffers from similar problems in thé < 1 regime when a conservative force is used, the onset of thabiti/ for the conservative vector
potential formulation occurs at lower magnetic field sttesg3 < 3).
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Figure 7. Energy conservation in the 2D Orzsag-Tang problem, comgagi8? particle calculations using the consistent formulatiafi@gblack, dashed/red
lines) to the hybrid approach (dot-dashed/green, dotigglfines), for two different settings for the Courant fadtothe timestepping@co..» as indicated).
The corresponding density fieldiat= 0.2 is shown in Figure 6. Despite the strong numerical instidslipresent in the solution with the consistent formutatio
(Figure 6), energy is conserved exactly to the accuracyedfithestepping scheme and linear momentum (right panedniserved to machine precision. Total
energy and momentum are not conserved regardless of thet¢imeith the hybrid approach because of the non-consegvatiurce term in (27). However,
the solution does not suffer from numerical instabilitiegy(re 6, right panel; Rosswog & Price 2007).

4.4 3D Orszag-Tang vortex

Given that the consistent (energy conserving) vector piaieiormulation is unstable to the clumping instability fine Orzsag-Tang Vortex
problem §4.3) — which we expect (and find) is equally true 3D as much &siit 2D — we consider only the hybrid formulation in 3D,
by which we mean using equation (27) for the force instead!®j.(The advantage of a 3D problem is that the evolution égudibr the
vector potential, rather than simply beidg. /d¢t = 0in 2D, is given by (21), implemented as (24) which also d#feonsiderably from the
evolution equations for the Euler potentials (2).

In 3D we set up the problem similarly to Dolag & Stasyszyn @00y adding a shorteneddimension to the 2D box, placing particles
initially on a cubic lattice in the domain, y € [—0.5, 0.5] andz € [—0.0625, 0.0625]. The setup parameters are identical to the 2D problem
described ir§4.3 apart from the 3D domain. We have first computed the pnohising the samabsPMHD code that we have used above
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Figure 8. Results of the Orszag-Tang Vortex evolution in 3D, usi2§ x 128 x 16 particles (top, using oukbsSPMHD code)100 x 100 x 10 particles
(middle, usingPHANTOM) and200 x 200 x 20 particles (bottom, usingHANTOM). Here we have adopted the hybrid vector potential formarathat is
stable to clumping instabilities and gives good resultsin B 3D we observe exponential growth of ths, and A, components of the vector potential
(right panel, showing the maximum value as a function of timlengside the evolution of total energy). When these corapts grow to the same order of
magnitude asi., large, low density voids appear in the solution (left pajebgether with an exponential divergence in total enérigit panels).

for the 2D problems, using zero artificial resistivity astie 2D solution shown in Rosswog & Price (2007). Given our figdibelow, we
have also computed the solution as a consistency check tignmplementation of the hybrid scheme in estaANTOM SPH code (used in
Kitsionas et al. (2009) and Price & Federrath (2009)), whieing parallelised, was also used to compute a higher tésolersion. We
show results in Figure 8 using®8 x 128 x 16 particles withNDSPMHD (top row),100 x 100 x 10 particles usingpHANTOM (middle row)
and200 x 200 x 20 particles (bottom row), also USIHANTOM.

The results initially (not shown) are similar to the 2D résul- and therefore quite reasonable — but only for a finite tivive find
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that in the 3D case the initially zerd, and A, components of the magnetic field grow exponentially withetirilustrated in the right
panels of Figure 8 which show the maximum (absolute) valub®fi.., A, and A. components of the vector potential as a function of time
(bottom panel in the right hand figures), alongside the diaiwof the total energy (top panel in the right hand figur@$le growth of these
unphysical components is initiated by simple round-oféerevident from the differing starting values betweenfh@NToOM results (bottom
two rows) which stores the velocity and magnetic fields ayté-lariables (giving a starting value of mak., 4,) ~ 10~%), compared
with theNDsPMHDresults (top row), which stores both fields to 8-byte precisgiving a starting value of méd.,, A,) ~ 10~'6 similar to

the round-off error in (e.g.) momentum conservation (FégZirusing double precision variables. The grovete is exponential in all cases,
with max(A,, A,) oc~ e for the top and bottom rows in Figure 8 and mayx, A,) oc~ ¢! for the middle row.

At the point where thel, and A, components become similar in magnitude to the (physidalfomponent, large low density voids
appear in the density field (left panels of Figure 8) and amoedingly exponential growth in the total energy is obsdr{right panels
of Figure 8), bringing the simulation rapidly to a halt. Wealffind the same outcome, though with variations in the exaet &t which
the simulation is disrupted, regardless of whether thel&@aliinvariant gauge (22) or the standard gauge (23) is usedoive the vector
potential. In general the exact nature of the disruptiorsediby the growth of unphysical components of the vectompiaten 3D depends
on small details such as round-off error in the code and ther@af the problem studied, however we find similar problettempting to
use the vector potential in 3D star formation problems. dusth be noted that no such problems arise with the use of ther patentials for
the 3D Orszag-Tang Vortex, since tid . /dt = 0 evolution corresponds to thix/dt = 0 part of (2) whilst the3 variable is initially set to
the z position of the particles, in which we observe no changeesmonding to thé3/dt = 0 part of (2).

Actually the results shown in Figure 8 bring our investigatiull circle. In fact, we started our examination of the tee@otential as an
alternative to the Euler potentials by studying the 3D Ogstang Vortex, finding the results discussed above. The hvagahat a consistent
formulation of the vector potential from a variational miple, that guarantees exact energy conservation in the aad furthermore
directly couples both the gauge (21) and the numerical ftatimn of A /dt equation (24) to the force formulation (42) would resolve th
instabilities observed in Figure 8. However, as has alrdmhn discussed, the consistent formulation turns out tésk# unstable to the
tensile instability known to plague conservative formigias of standard SPMHD. The journey is summarised below.

5 DISCUSSION

In this paper we have considered the use of the vector patestia representation for the magnetic field in the contett@lagrangian
Smoothed Particle Magnetohydrodynamics method. In pdaticwe have addressed the question of whether using thenmatential may
resolve the issues relating to the restrictions placed eretlolution of 3D magnetic fields using the Euler potenti@sthis end we have
derived a consistent, Hamiltonian formulation for vectotgmtial SPMHD that guarantees both the conservation of embum and energy.
The formulation itself relies only on the choice of SPH fotations for the density summatio§2.2.1), for obtaining the magnetic field
from the vector potential vilB = V x A (§2.2.2) and for the evolution equation far (§2.2.3), the latter of which involved an appropriate
choice of gauge, which we required to be Galilean invariamtrder to obtain momentum conservation in the equationsobiom.

From these three simple definitions, for which we have usantistrd variable-smoothing-length SPH operators, we Haw@rsin§2.4
that the equations of motion can be derived self-consistémtim a Lagrangian variational principle, resulting inarh that, reflecting the
symmetries inherent in the Lagrangian and associatedraamstquations, indeed conserves momentum, energy arapgisimultaneously.
The result is an expression for the MHD (Lorentz) force in SRé&t is unique to the vector potential and which differs fralinprevious
SPMHD force formulations. The force, given by (42), or moeenpactly by (44) can be broken down into components that anezero
either for different numbers of spatial dimensions or delr@m on whether or not an external magnetic field is applied.

The expression for the force given by (42), particularly tBB” component, initially gave us hope that it might, aftél, aave been
possible to formulate equations of motion for SPMHD that lbogh conservative and stable with respect to the tensilecluniping”
instability (Monaghan 2000) that prevents the use of eyxahservative force formulations in the standard SPMHDre@gh (Bgrve et al.
2004; Paper I; Paper Ill) and was the cause of many initiddleras with SPMHD (Phillips & Monaghan 1985). This was not aneasonable
expectation, since the tensile instability in standard $#ENks caused by non-zerg - B terms in the equations of motion — whereas for the
vector potential the knowledge th&t- B = 0 can be “built-in” to the equations of motion which are dedfeomB = V x A. However
it turns out that the 2D term is balanced by a highly unstadaéropic term, for which the net pressure is negative (tiggér point for the
tensile instability) wher3 /282 /o > P, that is, worse than for the standard SPMHD case and not elated solely to the anisotropic part
of the force (Price 2004). In numerical tesgg (particularly§4.2 and§4.3) we have found that the instability indeed sets in at mdahe
above threshold. Whilst we find that adding correction teionike force §2.4.5) — though immediately violating the conservationganties
we so desired — does provide stability for certain problenesfind that the degree of correction required by other probl§4.3) starts to
modify the solution unphysically. In principle a full stéibi analysis of the consistent vector potential formwat{42) would at least yield
insights into the exact regime of stability, though we areaomfident that much would be gained from such an analygigldae a suitable
correction.

The form of the isotropic term causing the tensile instapil (42) arises primarily from the weighting with respeotgdinherent in
our SPH expression fdB = V x A, equation (4), for which we have used a standard curl opefatg. Price 2004). It is possible that
re-formulating this equation using different weightings)de.g., usingl / o inside the summation) would result in a stable formulatamg
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this would certainly be an approach worth pursuing. Howeweralso find problems with the vector potential evolutionatépn even using
a standard SPMHD forcé4.4), so it is not clear that solving the tensile-instabitiélated problems with the consistent formulation would
necessarily solve all of the problems.

An issue not addressed in detail in this paper given the #ggwdrother problems was the fact that the 2D term in (42) lnee direct
second derivatives of the kernel, which are known to be qaeily poor using the cubic spline kernel (B2) since it isagintinuous in
the second derivative. We have side-stepped the issuesipéfer by using the smoother quintic kernel (B3) where apjate, though
remarkably we find quite reasonable results could be olddmenany cases (for example the 1D shock tube problenid.ih) even using
the cubic spline. The issue of formulating second derieatig well known in SPH (see e.g. Brookshaw 1985; Price 20@hdghan 2005),
however it is fairly straightforward to show that the usuab&shaw formulation is equivalent to simply choosing a enmppropriate form
of the kernel for use in the second derivative calculationhat ts, using the second derivative of a bell-shaped keplogriate to density
estimates is perhaps not the best approach. For the vettotigd we have the freedom to choose the kernel that erttersetcond derivative
term, which arises from the kernel in (18), completely safey from the kernel used in the density sum. That is, witfose of consistency,
the kernels in (18) and (14) do not have to be the same (we havelynrassumed that they were in this paper for simplicitjug an
investigation into the best form of the kernel for computthg curl operation (18) separate from the density sum, psrhdth the second
derivative estimate (42) in mind, would be a worthwhile eiss.

Perhaps the most useful aspect of this paper — apart fromgaati a warning to the reader intent on similar endeavours theis
formulation of dissipative terms for the vector potentieégented ir§3. In particular it is clear from this section that the disgipe terms
formulated by Price & Bate (2007) and Rosswog & Price (2007 }He Euler potentials were not correct, containing terms which should
not be present, and more seriously not guaranteeing pesi¢ifinite dissipation (though both those papers used a tetine ithermal energy
equation thats positive definite, but which instead violates the exact eovation of energy). From an SPH algorithms perspec§8e/ery
nicely illustrates the conjugate relationship betweenstaadard (18) and symmetric (20) SPH curl operdtddsing the standard curl for
A necessitates the use of the symmetric curllfam order to obtain both energy conservation and positivendefiissipation. We have also
shown in§3 how the resistivity parametgrmay be constructed appropriate to an artificial resistisgtyn, demonstrating that this approach
works well on standard shock tube probler§4.1) where dissipation is important.

In terms of finding a satisfactory approach to maintainirgdivergence constraint in three dimensional SPMHD sirraratwithout
the restrictions associated with the Euler Potentials €dation, we intend to examine generalised forms of the ERtgentials which can
represent arbitrary MHD fields and which can be more easiyptat for non-ideal MHD. This is deferred to a future paper.

6 CONCLUSION

In summary, we find that using a hybrid formulation of the wegiotential in SPH, evolving\ using (24) and calculating the force using
one of the standard stable SPMHD force expressions (27)59r i€the approach with the fewest difficulties, and givesdyeesults on one
and two dimensional test problems — identically to the Eplatentials in 2D. However, we also find problems with thisrapgph for 3D
problems, leading us to conclude that use of the vector fiatés not a viable approach for SPMHD.
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APPENDIX A: PERTURBATION TO THE MAGNETIC FIELD

The derivation of the Lagrangian perturbation for the maigrfeld, discussed i§2.4.1 and used in equation (32), is easier to understand if
one considers that the Lagrangian perturbadian A + §x - V is similar to taking a Lagrangian time derivatigg¢dt = 9/9t+ v - V (more
preciselyd/dt = ¢ /6t). Taking the time derivative of (18), assumidB..:/dt = 0, gives

dB, 1 d
i = oo ;mb (A = Ap) X = [VaWay (ha)]
1 dAa dAb Bint dpa, Bint an
* gy e (g i) X Ve Wanthe) - et e Rt T By

4 This has been noted previously by Cummins & Rudman (1999 Me have demonstrated the equivalent relationship fovahiable smoothing length
SPH operators.
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The time derivative of the kernel gradient can be shown (AgdpeB) to be given by

d B OVWas(ha) dhq
dt (vaWab) — (Vab V)VWab(ha) + 8}10, dt ) (AZ)
the latter term arising only in the case of a variable smogthéngth. Using this expression in (A1) and assuniing h(p) gives
dB,
dt = apa Zmb A Ab [( — Vb) . V]VaWab(ha)
1 dAa dAb Bint dpa Bint an Ha dpa

. zb:mb < dt dt ) X VaWab(ha) e At Qu At pa dt’ (A3)

where we have defined
8V(LWab(ha)

Ha = (9pa . Zmb A Ab 8ha . (A4)
Replacingv with 5x/5t and time derivatived/dt with § /5t we have
6B, 5o Zmb A, — Ay) X [(0%4 — 6%3) - V]VaWas(ha)

+ Zmb (A4 — 6AL) X VaWap(ha) — Bin: 8pa — Bint 500 + Eapa, (A5)

flpfl Pa Qa Pa
This is an SPH expression for the Lagrangian perturbatidgheofmagnetic field, i.e.,
0B =V X [0A — (0x-V)A]+x-V(V x A). (AB)
The perturbation required §2.4.1, i.e.5(psBv) = pp0By + dpp By is thus given by
1
0(psBy) = N ch(Ab —A.) X [((5)(17 —0xc) - V]VbWbc(hb)
b c
o > me (6Ay — 6AL) X VeWae(hs) + Beatdpy — =220 500, + Hyop, (A7)
Qb - Qb

The higher order perturbation$? relating to the smoothing length gradients are of order rilnectation error of the SPH method (i.e.,
O(h?)) and thus may be justifiably neglected from the analysis.H@rother hand, to obtain a method that conserves energy estipping
accuracy it is necessary to include these terms. Thus, foplaieness, the perturbation(® from Equation (19), is given by

= logp, — Oha - OWap(ha)
5Qa - pa 6pa apa - [(5){0« 5X1,) v] aha ’

(A8)

where we have defined the dimensionless quantity
| 9%ha OWap(ha) [ Oha\’ *Wap(ha)
Ca = pa [ o o  (G) | (A9)

Combining (A8) and (A7), the full perturbation including &rms relating to the smoothing length gradients is given b

S(mBy) = o Y melAs — Ac) X (6% — %) - VIVi Wi ()

1
+ oo Z me (A — 0Ac) X VeWie(hy) + Beatdpy

Bu,intpp Ohs

B . OWie(hs)
o pb;mc [(6xp — 0Xc) - V] —nl

Ohy

+

B in
[H,, 4 B fg,] 5on + (A10)
Qp
APPENDIX B: KERNEL FUNCTIONS AND DERIVATIVES

In this appendix we describe the various kernel functioredus this paper and derive the derivatives required in thetovepotential
formulation, showing how they may be computed from the disimmriess kernel functions.

B1 Kernel function
Itis common to express the SPH kernel in the form

Was(h) = 371 (@), (B1)
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whereo is a normalisation constan,is the smoothing length, is the number of spatial dimensions afigy) is a dimensionless function
of the variabley = |r, — r3|/h. For the standard SPH cubic spline kernel (e.g. Monaghag)18@ functionf is given by

12-9°-(1-9?° 0<q<1;
fle)=1432-q)°, 1<g<2; (B2)
0, q>2.

with normalisationr = [2/3,10/(7x),1/=] in [1, 2, 3] dimensions. In this paper we also use the quintic splinegtginen by (e.g. Morris
1996)

B-q)°—6(2—q)°+15(1—¢)° 0<q<1;
(B3-q)°—-6(2—¢q)°, 1<g<2;
f(q) = . (83)
(3-a)7, 2<q<3;
0, q=3.

with normalisationo = [1/24,96/(11997), 1/(207)]. The advantage of the quintic is that it more closely appnates the Gaussian by
extending the compact support radiusstoand has smooth second derivatives — important here sincesevtha second derivative directly
in the force (equation 42). The disadvantage is that it isict@mably more expensive to compute, particularly in tliiegensions, where the
neighbour number, and thus the cost, increases by a fact8y?f° ~ 3.4.

B2 Kernel first derivatives

The derivative of the kernel with respect to the particlerdomates, holding the smoothing length constant is given by

g ’ N g ’
VaWap = ﬁf (@)Vg= rabﬁf (@) (B4)
where we have used the fact thaty = V(|rqs|/h) = Fab/h, definingr,, = ro — rp. The kernel derivative can also be written in the form
VaWap = f'abFab7 where Fa, = #f’(q) (BS)

Note that the definition we use fdft,; differs slightly from that used by Monaghan (1992) since we the unit vector in our definition,
reflecting the implementation in our code.
The derivative of the kernel with respectfas given in terms off (¢) by

TR = v )+ S @Rt = 5 (vl @)+ af (@) o

B3 Second derivatives

The second derivative of the kernel with respect to partiolerdinates is given by

g

ViViWa, = V. [f{;bhy+1f’(q)],

ez | @+ (57 = iiar) L1 @) ®7)

For the Laplacian this reduces to

VW = 125 |10+ -0 3] (=)

The time derivative of the kernel gradient can be derivedchfemuation (B4), giving

d _ Vab(rab ‘ vWab) (Vab ‘ vWab)rab (Vab ° rab) Uf”(q) _
T (VaWab) = |7'ab|2 |7'ab|2 + |7'ab| 2 Top = (Vab V)VWab. (B9)
The mixed second derivative of the kernel with respect ttiglarcoordinates andl is given by
1s) _ o ., A o L, . 0q.
ET (VaWa) = —(v+1) =2 (@)Fab + o (Q)%Pam
v+1 N o .
= W )Fabrab - qu”(q)rab. (B10)
Finally, the second derivative with respect to the smoathémgth is given by
o*W, o o q oq’
onz o= w4 1)Wf(Q) Sy v+ (v+2)] Efl(Q) t (@),
v(r+1 2w +1 oq?
_ vlvtl) = Jyp,, + A - Vg, + thH #"(q). (B11)
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APPENDIX C: TRANSLATION OF THE SPH EQUATIONS OF MOTION IN THE ~ CONTINUUM LIMIT

The MHD equations of motion are given by
d VP JxB
v _ Vr L 9X3

dt — p p
In this appendix we show that the SPH equations of motiorvediin §2.4.4 translate to the above in the continuum limit. Writitreterms

of the vector potential, (C1) becomes
dv VP Jx(VxA) JXBe
=—-——+ + )

(C1)

- = (C2)
dt p p p
or, in tensor notation,
i ) J . i .
dv* 19P 1] ;047 ;04 n EiijJszt. (C3)

dt _; ozt p ozt oxJ
The terms in the SPH equations of motion (42), (44) or (47)lmdecoded into continuum form using the SPH summationgotent

ZmbﬂWab ~ Aa, (C4)
b Py
the derivatives of which give
Ay OWeap  0A, Ay 0*Wap %A,
— — ~ — —— ~ . C5
Zmb Py Ox}, ox}, z " Py Ozixl  Oxix) (9

b
In translating the equations of motion we firstly neglecttatins relating to gradients in the smoothing length — thatvis provide the
translation of (47) rather than (42). Whilst in principlestextra terms in (42) could also be translated, the proofttiat are correctly
derived lies in the fact that the numerical equations demnatesthe conservation of energy to timestepping accuralcizh we have shown
in §4. For a constant smoothing length, the SPH equations obm¢4i7) can be written in tensor notation (akin to equationid4he form

dvé Slij Sij E)Wab €5kl a b Bg Blj) 82Wab

2 = S L —Ap) | =&+ = . C6

dt zb:mb [p% - pﬁ] oz, Lo zb:mb( k ) p2  pi| Oxiozl’ (C6)

where

SY = _psi 4 ui {Bingt + 64 @32 —2B- Bm) - Ai.ﬂ] . (c7)
0

The first term in (C6) is similar to the usual conservative $fMforce (e.g. Paper Il), albeit with a different stress tenand can be
straightforwardly translated tb/p S /9’ . Expanding this using (C7), we have
dv' 1[ oP _; OB’ ;0B ; 0BT _JOA" 07
i~ p { gui T Bemgyy 138 G ~2Bentym — Ty — AT,y | +endterm (C8)
The second or “2D term” in (C6) can be translated using (C5dkmwvs
e 0B Pp e w0 [0 (BN] g B ONpAY) w0 [0 (ATBIN] (C9)

p? 0xioxt o Ozt |9zt \ p Ox! p

where in the third term we obtain a change of sign becausentliesis; and k& have changed order with respect to the Levi-Civita tensor.
Expanding the derivative terms and collecting/canceliergns where appropriate, after some straightforward atgete are left with

ew B OPAY e 0AF OB i 0A" OBY

wo p? Oxidxl | o Oa

2nd term=

2 po p Oxixl | pop Oxl Ozt pop Ozt Ozt (€10
which, usingB?, , = ¢;,10A* /0z' andJ* = 1/poer;; 0B /' gives

J J J J k
B 0Bl Bl OB 104* 1

top Oxt pop Ozt | p Oz

Putting this together with (C8) and collecting terms, ngtihat B’ = B/ . + B’ , and that we have previously assuni@f? , /dz = 0

int

we have
dv' 1[ oP B!, (0B 0B QAT LOAT AT
E*;{_% 110 (axj_axi) o) " e N e | (C12)

The last term is zero in the continuum limit since it is theedgence of acufV - J) = V - (V x B)/uo. This completes the proof, giving
the equations of motion in the form

dv' 1[ 9P B, (dB' 9B’\  0A’ ; L OA
{ ox? Ho (3351' 8xi)+ (%ciJ 7 oxi |’ (C13)

dt ~ p
which, upon expandinf(V x B) x B..:|' = B (8B /0z’ — B’ /d«"), is identical to (C3).
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