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ABSTRACT
Artificial resistivity is included in Smoothed Particle Magnetohydrodynamics simulations to
capture shocks and discontinuities in the magnetic field. Here we present a new method for
adapting the strength of the applied resistivity so that shocks are captured but the dissipation
of the magnetic field away from shocks is minimised. Our scheme utilises the gradient of
the magnetic field as a shock indicator, setting αB = h|∇B|/|B|, such that resistivity is
switched on only where strong discontinuities are present. The advantage to this approach is
that the resistivity parameter does not depend on the absolute field strength. The new switch
is benchmarked on a series of shock tube tests demonstrating its ability to capture shocks
correctly. It is compared against a previous switch proposed by Price & Monaghan (2005),
showing that it leads to lower dissipation of the field, and in particular, that it succeeds at
capturing shocks in the regime where the Alfvén speed is much less than the sound speed
(i.e., when the magnetic field is very weak). It is also simpler. We also demonstrate that our
recent constrained divergence cleaning algorithm has no difficulty with shock tube tests, in
contrast to other implementations.

Key words: methods: numerical – MHD – shock waves – stars: formation – ISM: magnetic
fields – turbulence

1 INTRODUCTION

Magnetised shocks and discontinuities pervade the interstellar
medium (Elmegreen & Scalo 2004; Gaensler et al. 2011). Cap-
turing these properly in numerical simulations is critical to ac-
curately predicting the formation of stars from turbulent, mag-
netised, molecular clouds (Federrath & Klessen 2012). On the
other hand, estimates of the microscopic viscosity and resistivity
in the interstellar medium suggest very high values of the kine-
matic and magnetic Reynolds numbers, respectively, typically or-
ders of magnitude higher than can be achieved in numerical codes
(c.f. Elmegreen & Scalo 2004). Thus, it is important to minimise
numerical dissipation in simulation codes.

Magnetic fields in astrophysics can be described with the
equations of magnetohydrodynamics (MHD), given here in the
ideal (non-dissipative) limit as,

dρ

dt
= −ρ∇ · v, (1)

dv

dt
= −1

ρ
∇
(
P +

B2

2µ0
− BB

µ0

)
, (2)

dB

dt
= (B · ∇)v −B (∇ · v) . (3)
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where d/dt ≡ ∂/∂t + v · ∇, ρ is the density, v is the velocity, P
is the pressure and B is the magnetic field.

The basic procedure for solving the MHD equations in the
context of the Smoothed Particle Hydrodynamics (SPH) method
was developed by Phillips & Monaghan (1985) and Price & Mon-
aghan (2004a,b, 2005), as summarised in the recent review by
Price (2012). The main issues are: i) removing the tensile insta-
bility, achieved by subtracting the −B(∇ ·B)/ρ source term from
Eq. 2 as proposed by Børve et al. (2001); ii) to formulate dissi-
pative terms for capturing shocks and other discontinuities (Price
& Monaghan 2004a, 2005; Price 2008); and iii) maintaining the
solenoidal constraint on the magnetic field. We have recently ad-
dressed the last issue by formulating a constrained version of Ded-
ner et al. (2002)’s hyperbolic/parabolic divergence cleaning algo-
rithm (Tricco & Price 2012), avoiding problems associated with
earlier approaches involving the Euler potentials (Price & Bate
2007; Rosswog & Price 2007) or the vector potential (Price 2010).
Here we address issue ii) in more detail.

The usual approach to shock-capturing in SPH (see reviews
by Monaghan 2005; Price 2012) is to treat discontinuities in fluid
variables by adding dissipation terms which smooth the variable
across sharp jumps in order to resolve the discontinuity. Artificial
viscosity for treatment of hydrodynamic shocks was developed by
Monaghan & Gingold (1983). In this paper, we use the form of
artificial viscosity by Monaghan (1997), developed by analogy with
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Riemann solvers, giving an additional term in Eq. 2 of the form(
dva
dt

)
visc

=
∑
b

mb
αvsig

ρab
(va − vb) · r̂ab∇aWab. (4)

This is an SPH representation, using the gradient of the smooth-
ing kernel W , of a viscosity term with dissipation parameter ν ∝
αvsigh. The parameter α is dimensionless and of order unity. The
characteristic velocity of the shock is represented using the signal
velocity, vsig = 0.5(ca + cb−βvab · r̂ab) with β ∼ 2, which is the
maximum speed of information propagation between each pair of
particles. The dissipation term is thus first order with respect to the
resolution length, h (hence ‘artificial’ rather than physical viscos-
ity, because the diffusion parameter is proportional to resolution).
Monaghan (1997) also proposed an artificial thermal conductivity
term that turns out to be important in simulating contact discon-
tinuities, where incorrect treatment can affect the development of
Kelvin-Helmholtz instabilities (Price 2008; Wadsley et al. 2008).
For a full discussion on discontinuities in SPH, see Price (2008,
2012).

To reduce unwanted dissipation away from discontinuities,
Morris & Monaghan (1997) allowed α to be spatially variable, us-
ing a switch so that α→ 1 only in the presence of shocks. In their
work, α for a given particle, a, is integrated according to

dαa
dt

= max(−∇ · va, 0)− αa − αmin

τ
, (5)

where τ = hvsig/C, h is the smoothing length, and C ∼ 0.1 cor-
responds to a decay scale of approximately 5 smoothing lengths
to the minimum αmin = 0.1. A limiter to suppress viscosity
in the presence of shear flows was also introduced by Balsara
(1995). Recently, several authors have proposed improved α vis-
cosity switches to improve shock detection while reducing dissipa-
tion away from shocks. Cullen & Dehnen (2010) suggest monitor-
ing d/dt(∇ · v) as the shock indicator which they find activates α
earlier when a shock is approaching, and leads to less overall dissi-
pation. Read & Hayfield (2012) proposed a similar approach using
∇(∇ · v).

In SPMHD, an artificial resistivity for the magnetic field is in-
cluded to capture magnetic shocks and discontinuities (i.e., current
sheets). The standard implementation of Price & Monaghan (2005)
(hereafter PM05) adds a term to the induction equation of the form(

dBa

dt

)
diss

= ρa
∑
b

mb

αB,abv
B
sig

ρ2ab
(Ba −Bb)r̂ab · ∇aWab, (6)

where αB is similarly a dimensionless quantity of order unity and
vBsig is a signal velocity. As for artificial viscosity, this is sim-
ply a standard representation of a diffusion term in SPH (see e.g.
Monaghan 2005; Price 2012) but where the diffusion parameter
η ∝ αBv

B
sigh. However, the choice of signal velocity in this case

is less clear. Ideal MHD has three wave solutions but without re-
constructing the full Riemann state it is not possible to determine
the type of shock. Thus, this is typically chosen to be the speed of
the fast MHD wave. Since this is rather dissipative, Price (2012)
instead suggested using the averaged Alfvén velocity as the choice
of signal velocity.

Similar to viscosity, a switch may be employed for αB to re-
duce dissipation away from shocks. By analogy with Morris &
Monaghan (1997), PM05 suggested using

dαB,a

dt
= max

(
|∇ ·Ba|√
µ0ρa

,
|∇ ×Ba|√

µ0ρa

)
− αB,a

τ
. (7)

This switch works satisfactorily for many problems, leading to

sharper jump profiles and a decrease in the overall dissipation of
the magnetic field. However, Price, Tricco & Bate (2012) noted in
their star formation simulations that, even with this switch, excess
dissipation could suppress the formation of protostellar jets.

Our need for a new resistivity switch is motivated by the fail-
ure of the PM05 switch in the limit where the Alfvén speed is much
smaller than the sound speed, as will be shown in section 3.6. Since
αB ∝ |∇×B| (assuming∇·B is negligible), this means that αB is
related to the magnitude of the magnetic field. Thus, for weak fields
αB may remain quite small even in the presence of strong shocks.

In this work, we present a new switch for αB that captures
shocks in the magnetic field in both weak and strong fields. This
addresses the deficiencies of the previous switch and results in less
overall dissipation of magnetic energy. The paper is organised as
follows: In Sec. 2, the new resistivity formulation and implemen-
tation is described. Sec. 3 contains a suite of tests designed to test
the efficacy of the new switch and to compare results against the
previous switch. Results are summarised in Section 4.

2 FORMULATION

Our approach is to utilise ∇B, the 3 × 3 gradient matrix of B,
as the shock indicator. For each particle, αB is directly set to the
dimensionless quantity

αB,a =
ha|∇Ba|
|Ba|

, (8)

which is restricted to the range αB ∈ [0, 1].
By using the norm of the gradient of the magnetic field nor-

malised by the magnitude of the magnetic field, the dependence on
magnetic field strength is removed and this gives a relative measure
of the strength of the discontinuity. This allows shocks and discon-
tinuities to be robustly detected in both the weak and strong field
regimes. It naturally produces values of αB in the desired range
and of the appropriate size for the discontinuity encountered, with
regions away from shocks having negligible αB values.

The numerical dissipation of the magnetic field should scale
quadratically with resolution when using this switch. Artificial re-
sistivity without using a switch scales linearly with resolution,
which is evident from Eq. 6. The new switch adds an additional
linear scaling with h hence, in principle, quadratic scaling should
be obtained.

The switch produces the same αB values for multiplicative in-
creases in magnetic field strength, important for dynamo-type prob-
lems where the magnetic field grows in strength. This represents a
significant advantage over the PM05 switch. Additive increases to
the magnetic field, however, will yield different values of αB, and
using this switch in relativistic contexts would require further con-
sideration.

An obvious issue is what happens when |B| → 0. This situa-
tion occurs in current sheets or null points where the magnetic field
undergoes a reversal in direction. In these cases, αB → 1, which
is the correct behaviour for current sheets since they represent a
discontinuity in the magnetic field, but is not so for null points. Di-
viding by zero can be avoided by adding a small parameter ε to
|B|.
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2.1 Implementation

Each component of the gradient matrix is estimated using a stan-
dard SPH first derivative operator (e.g. Price 2012),

∇Ba ≡
∂Bia

∂xja
≈ − 1

Ωaρa

∑
b

mb(B
i
a −Bib)∇jaWab(ha), (9)

where Ωa accounts for variable smoothing length terms. This op-
erator yields an estimate which is exact for constant functions. We
also investigated using an operator that is exact for linear functions,
which may be obtained by performing a Taylor series expansion
about ra and solving a matrix inversion of the second error term
(see Price 2012). However, no difference was found for any of the
tests shown in this paper, suggesting that this is unnecessary.

The norm of∇B is calculated using the 2-norm,

|∇B| ≡

√√√√∑
i

∑
j

∣∣∣∣∂Bia∂xja

∣∣∣∣2. (10)

Several choices for computing this norm were investigated, such as
the 1-norm, but no significant differences were found.

We investigated using the curl of the magnetic field as the
shock indicator. While tests found it to be just as effective at detect-
ing isolated shocks, we found that it did not measure discontinuities
as well as the full gradient in complicated shock interactions. The
full gradient has further advantage in that the trace of the matrix
produces the divergence of the field, meaning that dissipation will
be applied if large divergence errors are present.

Finally, a Cullen & Dehnen (2010)-like approach was also in-
vestigated, whereby a time-dependent decay term for αB, similar
to that in Eq. 7, was added. In this case, αB was set using Eq. 8
whenever this exceeded the current value, otherwise the existing
value was retained and subsequently reduced on the next integra-
tion timestep using the decay term. The aim was to let αB smoothly
decay after a shock had passed to improve representation of the
post-shock field. We found that using Eq. 8 alone already gives a
smooth distribution in αB about the centre of the shock, indicating
that a decay term is not necessary for resistivity.

2.2 Choice of signal velocity

Similar to Price (2012) we take the signal velocity to be an average
of the wave speeds between the two particles

vBsig = 0.5(va + vb), (11)

where v is an appropriate MHD wave speed. The−βvab · r̂ab term
used in the viscosity signal velocity, which corrects for the rela-
tive velocity of the particles and prevents particle interpenetration,
is not included. We find that for resistivity it is unnecessary and
causes excessive dissipation. It may be noted that use of the aver-
aged Alfvén speed for a signal velocity by Price (2012) also ex-
cluded this term.

Unlike Price (2012), we find that the best choice is to use the
fast MHD wave speed, as in the original Price & Monaghan (2004a)
formulation, such that

v2a =
1

2

(
c2a + v2A,a

)
+

1

2

√
(c2a + v2A,a)2 − 4c2av

2
A,a(B̂a · r̂ab),

(12)

which is a composition of the sound speed, c, and the Alfvén speed,
vA = B/

√
µ0ρ. If c� vA, we find that Price (2012)’s suggestion

to use the Alfvén speed in the applied resistivity is insufficient to

capture fast wave shocks (see Sec. 3.6). When vA & c, the Alfvén
speed and the fast wave speed will differ by less than a factor of 2.

2.3 Switches using a second derivative

In principle, a switch constructed using a higher derivative should
provide a more reliable measure of the presence of a discontinuity
in the magnetic field. One suggestion by the referee of this paper,
Walter Dehnen, is to use αB = h|∇2B|/|∇B|. Another option
could be αB = h2|∇2B|/|B|, which would scale quadratically
with resolution.

The main difficulty in implementing higher derivative
switches is calculating the second derivative in a way which is suf-
ficiently free of noise from particle disorder. We investigated cal-
culating∇2B using the Brookshaw (1985) form, that is,

∇2Ba =
2

Ωaρa

∑
b

mb (Ba −Bb)
Fab(ha)

|rab|
, (13)

where∇Wab ≡ (ra − rb)Fab, and also by taking two first deriva-
tives as in Eq. 9, which, by taking two successive first derivatives,
should lead to a more smooth estimate of the second derivative.
However, both of these simple estimates are significantly noisy
when the particles are disordered, leading to high αB and excessive
dissipation. The M6 quintic spline kernel was used in an attempt to
reduce this noise, both by yielding a more regular particle distribu-
tion and a more accurate derivative estimate, but did not change the
results.

Therefore, a switch utilising the second derivative must use a
higher order estimate in order to reduce noise from particle disor-
der, a conclusion similarly reached by Cullen & Dehnen (2010) and
Read & Hayfield (2012). The most straightforward approach is to
use two exact linear first derivatives which removes the O(h) error
term by taking a Taylor series expansion about ra and performing
a matrix inversion of the second error term. Specifically, after first
calculating∇B in such a manner, we compute

χσγ
∂∇Bαβ

a

∂xσ
=
∑
b

mb

[
(∇B)αβb − (∇B)αβa

]
∇γWab (14)

to obtain ∇2B, where χσγ =
∑
bmb(rb − ra)σ∇γWab is the

3× 3 matrix that must be inverted (see Price 2012). This signifi-
cantly improves the quality of the second derivative estimate, but
requires two loops over the particles prior to the main loop where
the resistivity term is calculated, meaning that it makes the overall
SPMHD scheme ∼ 1.5× more expensive. This is a hefty price to
pay for a switch that only marginally improves over Eq. 8. The sec-
ond derivative evaluation proposed by Read & Hayfield (2012) is
even more expensive, requiring a 10 × 10 matrix inversion, and a
minimum of 400 neighbours under the kernel.

Our overall conclusion is to prefer the simple switch of Eq. 8
for general use. It performs robustly and effectively (see Sec. 3),
yet is simple to implement and cost-effective.

3 NUMERICAL TESTS

Our choice of tests are designed to study the ability of the switch
to i) properly capture and model shock phenomena, and ii) sup-
press dissipation in areas away from shocks. We have used three
shocktube tests to study the former, using tests introduced by Dai
& Woodward (1994) and Brio & Wu (1988) (corresponding to tests
1B, 2A, and 5A in Ryu & Jones (1995) (hereafter RJ95) whose
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Figure 1. Shocktube test 1B from RJ95 performed in 2D with left state (ρ,
P , vx, vy , By) = (1, 1, 0, 0, 5/

√
4π) and right state (ρ, P, vx, vy , By) =

(0.1, 10, 0, 0, 2/
√
4π) with Bx = 3/

√
4π at t = 0.03. Black circles are

the particles and the red line is the solution from RJ95.

naming convention we adopt). These tests contain fast and slow
shocks, fast and slow rarefactions, rotational discontinuities, and
compound shock structures and are chosen to test the switch’s abil-
ity to model all these separate shock types. We then compare the
new switch to the PM05 switch for three separate test problems:
Propagation of a circularly polarised Alfvén wave, the Orszag-Tang
vortex, and Mach 10 shocks in a fluid with an extremely weak field.
The last test is of particular interest because, as will be shown, the
PM05 switch fails to recognise shocks in this weak field regime
causing unphysical behaviour.

All our tests employ the constrained divergence cleaning al-
gorithm of Tricco & Price (2012). The tests presented here serve to
further validate this scheme.

3.1 Shocktube 1B

The first shocktube is a 2D test from Dai & Woodward (1994)
which creates fast and slow shocks travelling in the -x direction,
fast and slow rarefactions travelling in the +x direction, with a con-
tact discontinuity in the centre. The initial state for x < 0 (the ‘left
state’) is (ρ, P , vx, vy , By) = (1, 1, 0, 0, 5/

√
4π), while for x > 0

(the ‘right state’) is (ρ, P, vx, vy ,By) = (0.1, 10, 0, 0, 2/
√

4π) with
Bx = 3/

√
4π and γ = 5/3.

For this particular test, the initial density profile was used to
calculate the initial thermal energy so that it forms a smooth transi-
tion between the two states. This mitigates the presence of artificial
pressure spikes in the initial conditions due to the high density con-
trast (10:1), seen also by Hubber, Falle & Goodwin (2013) in their
studies of Kelvin-Helmholtz instabilities.

The shocktube has been simulated with 800×26 particles for
the left state and 260×8 particles for the right state arranged on a
triangular lattice. Results at t = 0.03 are shown in Fig. 1 and may
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Figure 2. Shocktube test 2A from RJ95 performed in 3D with left state (ρ,
P , vx, vy , vz , By) = (1.08, 0.95, 1.2, 0.01, 0.5, 3.6/

√
4π) and right state

(ρ, P, vx, vy , vz , By) = (1, 1, 0, 0, 0, 4/
√
4π) with Bx = Bz = 2/

√
4π

at t = 0.2. Black circles are the particles and the red line is the solution
from RJ95.

be compared with the RJ95 solution for the fast and slow shock and
rarefactions (red line). The L1 error in the By profile is 8.911 ×
10−3. This compares to 9.547×10−3 if the shocktube is run using
the PM05 switch.

For this shocktube, it is worth noting that no difficulties were
found with our divergence cleaning algorithm. Recently, Stasyszyn,
Dolag & Beck (2013) published a different implementation and
found that for this test it resulted in significant errors unless the
cleaning was artificially limited. This is due to the sharp 10 : 1
density ratio that is unstable for their formulation, an issue that
has been addressed and fixed in our cleaning algorithm without the
need for artificial limiters (see Tricco & Price 2012).

3.2 Shocktube 2A

This 3D problem originally introduced by Dai & Woodward (1994)
has three dimensional velocity and magnetic fields generating two
fast and slow shocks travelling in both directions, two rotational
discontinuities, and a contact discontinuity in the centre. It has left
state (ρ, P , vx, vy , vz , By) = (1.08, 0.95, 1.2, 0.01, 0.5, 3.6/

√
4π)

and right state (ρ, P, vx, vy , vz , By) = (1, 1, 0, 0, 0, 4/
√

4π) with
Bx = Bz = 2/

√
4π and γ = 5/3.

To fully capture the 3D velocity and magnetic fields, the test
has been simulated in 3D with 800×12×12 particles on the left
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Figure 3. Shocktube test 5A from RJ95 performed in 2D with left state (ρ,
P , vx, vy , By) = (1, 1, 0, 0, 1) and right state (ρ, P, vx, vy , By) = (0.125,
0.1, 0, 0, -1) withBx = 0.75 at t = 0.1. Black circles are the particles and
the red line is the solution obtained with the Athena code using 104 grid
cells.

state and 500×12×12 particles on the right state arranged on close-
packed triangular lattices. Results at t = 0.2 are presented in Fig. 2
with all shock features, with the red line giving the solution from
RJ95. No post-shock noise in the magnetic field is evident, indicat-
ing that the applied artificial resistivity is sufficient. The L1 error in
the By profile is 3.086 × 10−3, compared to 3.358 × 10−3 if the
PM05 switch is used instead, and for the Bz profile is 5.33× 10−3

for our new switch and 6.203× 10−3 for the PM05 switch.

3.3 Shocktube 5A

The final shocktube originates from Brio & Wu (1988). It is another
2D shocktube, however it is of particular interest as it contains a
compound shock/rarefaction structure. It has the same initial den-
sity and pressure profile as the standard Sod shocktube (Sod 1978),
but with the addition of a magnetic field. The left state is (ρ, P , vx,
vy , By) = (1, 1, 0, 0, 1) and right state (ρ, P, vx, vy , By) = (0.125,
0.1, 0, 0, -1) with Bx = 0.75. Here we use γ = 5/3 instead of 2 to
follow the results of RJ95.

The shock has been simulated with 800×30 particles for the
right state and 300×10 particles for the right state. Results at t =
0.1 are presented in Fig. 3. For this test, the Riemann solution of
RJ95 does not contain the slow compound structure, so instead we
compare our results against those from the Athena code (Stone et al.
2008) using 104 grid cells. As previously, no post-shock noise in
the magnetic field is found. The L1 error profile for By is 4.231×
10−3 when using our new switch, compared to 6.259×10−3 if the
PM05 switch is used.
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Figure 4. Results of the polarised Alfvén wave propagation test in 2D, with
the exact solution in black, and at t = 2, 4, 6 corresponding to 2, 4, and 6
periods. On the left, the PM05 switch has been used whereas on the right
the new resistivity switch has been used. The maximum αB values are 10×
higher for the PM05 switch than the new switch, and after 6 periods the am-
plitude of the wave has decayed over 40% for the PM05 switch compared
to only 10% for the new switch.

3.4 Polarised Alfvén Wave

We now examine the ability of the switch to reduce dissipation
when no shocks are present. The test problem used is a circularly
polarised Alfvén wave travelling in a 2D periodic box, following
Tóth (2000). This is an exact solution to the ideal MHD equations,
so the wave should return to its original state after each crossing.
There are no discontinuities in the magnetic field in this test, but
gradients in the magnetic field may cause the αB switch to activate.

The simulation is set up using 1682 particles arranged on
a triangular lattice in a periodic domain of lengths [x, y] =
[1/ cos(ω), 1/ sin(ω)] using ω = π/6 which sets the direction of
wave motion. The initial density and pressure are ρ = 1 and P =
0.1 with γ = 5/3. The velocity and magnetic fields parallel and
perpendicular to the wave are [v‖, v⊥] = [0, 0.1 sin(2πxξ)], and
[B‖, B⊥] = [1, 0.1 sin(2πxξ)] where xξ = x cos(ω) + y sin(ω).
Velocity and magnetic field components oriented out of the plane
are vz = Bz = 0.1 cos(2πxξ).

The value of αB produced using the new switch can be cal-
culated from the initial conditions, which give |∇B| = 0.2π and
|B| = 1. Thus, for a smoothing length h = 1.2∆xwhere ∆x is the
particle spacing, the new switch gives αB ∼ 0.02 at this resolution.
By contrast, the simulations using the PM05 switch produce max-
imum αB values approximately 10× higher (0.22 vs 0.02), mean-
ing that in this case the PM05 switch is an order of magnitude more
dissipative at t = 0.

After 6 periods, the amplitude of the wave has decayed by over
40% using the PM05 compared to only∼ 10% for the new switch.
Although the maximum αB is 10× higher with the PM05 switch
than the new switch, this is not reflected in the wave amplitude after
6 periods because |∇B| and the source term in Eq. 7 are reduced as
the wave is damped. The rate of this reduction differs between the
two switches since the PM05 switch damps the wave more heavily.

3.5 Orszag-Tang vortex

The Orszag-Tang vortex (Orszag & Tang 1979) is a widely used
test for many astrophysical MHD codes (e.g., Stone et al. 2008;
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PM05 switch New switch

P
m
ag

Figure 5. The density (top), magnetic pressure (middle), and αB (bottom)
of the Orszag-Tang vortex at t = 1 for the old (left) and new (right) re-
sistivity switches. The new switch effectively traces the shock lines, with
little or no dissipation between shocks. The low density regions are more
sharply defined using the new switch due to the decreased dissipation of the
magnetic field structure.

Fromang et al. 2006; Dolag & Stasyszyn 2009). The problem has an
initial vortex structure creating several classes of interacting shock
waves which evolve into turbulence. The initial structure has ρ =
25/(36π), P = 5/(12π), v = [− sin(2πy), sin(2πx)], and B =
[− sin(2πy), sin(4πx)] with γ = 5/3.

The test has been simulated using 5122, 10242, and 20482

particles initially arranged on a square lattice. The initial condi-
tions are set up by first creating the particles in one quadrant of
the domain, then mirroring the configuration to the other quadrants
with appropriate sign changes in the velocity and magnetic fields as
needed. This removes the slight discrepancies from floating point
arithmetic, retaining exact symmetry in the initial conditions.

Results are presented at t = 1 in Fig. 5 which shows render-
ings of the density, magnetic pressure, and αB in the domain for
10242 particles. The new switch is effective at activating resistivity
along the shock lines, yet keeps αB minimal between shocks. By
contrast, the PM05 switch results in broad regions with αB ≈ 1
near shocks and a mean αB twice as high (∼ 0.2 to ∼ 0.1). This
leads to a smoothing away of subtle magnetic features, particularly
noticeable around the central magnetic feature, and in some of the
low density regions which are less sharply defined.

Fig. 6 shows the evolution of the magnetic energy as a function
of time for 5122, 10242, and 20482 particles. This shows that the

Figure 6. Evolution of the magnetic energy for the Orszag-Tang vortex us-
ing the PM05 resistivity switch (black, solid lines) and the new resistivity
switch (red, dashed lines) at resolutions of 5122, 10242, and 20482 parti-
cles. The new switch is much less dissipative than the PM05 switch, pro-
ducing an effect similar to increasing the resolution.

magnetic energy is dissipated less at higher resolution. Using the
new artificial resistivity switch also leads to a lower dissipation rate
compared to the PM05 switch, producing an effect equivalent to
running the test at higher resolution.

3.6 Mach 10 MHD turbulence

Our final test is of supersonic magnetised turbulence which is
representative of conditions in molecular clouds (see reviews by
Evans 1999; Elmegreen & Scalo 2004; McKee & Ostriker 2007).
A stochastic, solenoidal driving force is applied, generating turbu-
lence with a root-mean-square Mach number of 10. It has an ini-
tially weak magnetic field, with the kinetic energy approximately
10 orders of magnitude larger than magnetic energy, which grows
through dynamo amplification by the conversion of kinetic to mag-
netic energy (see review by Brandenburg & Subramanian 2005).
Our simulations follow the SPH Mach 10 turbulence study of Price
& Federrath (2010), but in the MHD case of turbulent dynamo am-
plification studied by Federrath et al. (2011).

The simulation is set up at a resolution of 1283 particles. The
initial density is ρ = 1 with an isothermal equation of state using
a speed of sound of c = 1. The gas is initially at rest, and has
a uniform magnetic field Bz =

√
2 × 10−5 such that the initial

plasma β = 1010.
To drive the turbulence, an acceleration based on an Ornstein-

Uhlenbeck process is used (Eswaran & Pope 1988; Federrath et al.
2010), which is a stochastic process with a finite autocorrelation
timescale that drives motion at low wave numbers. The driving
force is constructed in Fourier space, allowing it to be decomposed
into solenoidal and compressive components and for this case we
only use the solenoidal component.

The column integrated x& z components of the magnetic field
are shown in Fig. 7 at t = 2 turbulent turnover times. The PM05
switch fails to raise αB to appreciable levels (αB ∼ 10−5), and as
demonstrated in Fig. 7, the shocks in the magnetic field fail to be
captured. This leads to break-up of the shocks, causing unphysical
magnetic field growth until such a time as the field is strong enough
to activate the switch. By contrast, the new switch is invariant to
field strength meaning that it turns on resistivity in the shocked
regions and the shocks are captured.

We also found for this simulation that using the averaged
Alfvén speed as the signal velocity for resistivity produces the same
behaviour (shocks breaking apart). In this instance, it is due to the
large disparity between the Alfvén and sound speed meaning that
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Fixed αB = 1 PM05 switch New switch
t=0.1

t=0.1

Figure 7. The column integrated x & z (top, bottom) magnetic field com-
ponents using fixed αB = 1 (left), the PM05 switch (centre), and the new
switch (right) after two turbulent turnover times (i.e., the regime of fully de-
veloped turbulence). The magnetic field structure using the previous switch
is dominated by unphysical noise due to the shocks failing to be captured
(centre), whereas the new switch is able to capture the shocks and the mag-
netic field retains its physical structure (right).

the applied resistivity is too weak to capture the strong shocks prop-
erly. With the fast MHD wave speed in the signal velocity (Eq. 12),
the shocks are captured correctly.

4 SUMMARY

We have developed a switch to dynamically regulate the amount
of artificial resistivity applied to the magnetic field in Smoothed
Particle Magnetohydrodynamics simulations. Since the purpose of
artificial resistivity is to model magnetic shocks and discontinuities,
the key is to minimise spurious dissipation in smooth parts of the
field. Our switch accomplishes this by setting the artificial resistiv-
ity parameter αB equal to the dimensionless quantity h|∇B|/|B|.
This yields a simple, powerful and robust method for reducing mag-
netic dissipation away from shocks with no loss in shock-capturing
ability. Importantly, it responds appropriately at all magnetic field
strengths, a particular improvement over the PM05 switch which
was found to inadequately capture shocks in weak fields.

Alternative switches using the second derivative of the mag-
netic field were also investigated, in particular h|∇2B|/|∇B| and
h2|∇2B|/|B|. The key requirement to their success is a high order
estimate of the second derivative, otherwise noise from particle dis-
order overwhelms the derivative estimate and causes excessive dis-
sipation. Obtaining this higher order estimate, however, adds sig-
nificant computational expense. In general, we recommend our first
derivative switch for normal use since it is simple, yet performs ro-
bustly and effectively.

Three shocktube tests (Sections 3.1, 3.2, and 3.3) were used
to establish that the switch correctly models a range of shock phe-
nomena, including fast and slow shocks, fast and slow rarefactions,
rotational discontinuities, and compound shock structures. The L1
error of the magnetic field profiles for all tests was lower when
using this new switch compared to using the PM05 switch. These
tests also demonstrated that the Tricco & Price (2012) divergence
cleaning algorithm is stable and robust in shock tube problems, in
contrast to the version proposed by Stasyszyn et al. (2013).

In Section 3.4, the propagation of a travelling Alfvén wave
was used to gauge the switch’s ability to reduce unwanted dissi-

pation in situations not involving discontinuities, and was found to
result in maximum αB values 10× smaller than the PM05 switch
(∼ 0.02 compared to ∼ 0.22). After 6 periods, the amplitude of
the wave using the PM05 switch was four times lower than using
the new switch.

The Orszag-Tang vortex was used in Section 3.5 to examine
the performance of the new switch when there are multiple inter-
acting shocks, producing regions of αB ∼ 1 that closely traced
the shock lines. The new switch was found to decrease the spuri-
ous dissipation in smooth regions compared to the PM05 switch,
leading to the subtle magnetic features being more sharply defined,
equivalent to running the test at higher resolution.

Finally, in Section 3.6, a simulation of Mach 10 MHD turbu-
lence was used to demonstrate the switch’s ability to capture mag-
netic shocks when a weak magnetic field is combined with strong
hydrodynamic shocks. The PM05 switch was found to fail for the
low field strengths present in this problem, causing the magnetic
field to be dominated by unphysical noise. With the new switch the
magnetic shocks remain coherent.

We found that it is very important to use the fast MHD wave
speed as the characteristic signal velocity for artificial resistivity.
Using the Alfvén speed as the characteristic signal velocity, as
proposed by Price (2012), was found to inadequately capture fast
MHD shocks in the highly super-Alfvénic regime, leading to un-
physical effects (Fig. 7).

Our new switch is widely applicable to astrophysical SPMHD
simulations, in particular for simulations involving weak fields such
as in galaxy and cosmological simulations, and also for dynamo
processes. In every case we tested, it produced lower magnetic dis-
sipation than the PM05 switch, making it possible to achieve higher
magnetic Reynolds numbers in simulations of the interstellar and
intergalactic medium. The new switch thus supercedes the PM05
in every respect.
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