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Abstract—We present a new approach to simulating mixtures
of gas and dust in smoothed particle hydrodynamics (SPH). We
show how the two-fluid equations can be rewritten to describe
a single-fluid ‘mixture’ moving with the barycentric velocity,
with each particle carrying a dust fraction. We show how this
formulation can be implemented in SPH while preserving the
conservation properties (i.e. conservation of mass of each phase,
momentum and energy). We also show that the method solves two
key issues with the two fluid approach: it avoids over-damping
of the mixture when the drag is strong and prevents a problem
with dust particles becoming trapped below the resolution of the
gas.

We also show how the general one-fluid formulation can be
simplified in the limit of strong drag (i.e. small grains) to the
usual SPH equations plus a diffusion equation for the evolution
of the dust fraction that can be evolved explicitly and does
not require any implicit timestepping. We present tests of the
simplified formulation showing that it is accurate in the small
grain/strong drag limit. We discuss some of the issues we have
had to solve while developing this method and finally present a
preliminary application to dust settling in protoplanetary discs.

I. INTRODUCTION

A. Gas/dust mixtures

Multiphase flows where particulate matter is carried by

a fluid are crucial to many problems in astrophysics and

engineering. Perhaps the simplest example is that of gas and

dust, described by

∂ρg
∂t

+∇ · (ρgvg) = 0, (1)

∂ρd
∂t

+∇ · (ρdvd) = 0, (2)

ρg

[

∂vg

∂t
+ (vg · ∇)vg

]

= −∇P +K(vd − vg), (3)

ρd

[

∂vd

∂t
+ (vd · ∇)vd

]

= −K(vd − vg), (4)

∂u

∂t
+ (vg · ∇)u = −

P

ρg
(∇ · vg) +K(vg − vd)

2,

(5)

where the subscripts g and d refer to the gas and dust, respec-

tively, ρ and v refer to density and velocity and u and P are the

specific thermal energy and pressure of the gas, respectively.

The basic physics is that gas is affected by pressure where

gas is not, and that the two fluids are coupled by a drag term

(with drag coefficient K derived from the microphysics of the

interaction) which is dissipative. Additional terms arise when

the particulate size is finite, giving rise to buoyancy forces.

We neglect these since the volume occupied by dust grains

is negligibly small in most astrophysical problems. We also

neglect the thermal coupling between the phases.

B. The stopping time

The physics of drag is best quantified by the ‘stopping time’

ts ≡
ρgρd

K(ρg + ρd)
, (6)

which is the characteristic timescale on which the two fluids

dissipate their relative motion and stick together at a common

velocity. It is inversely proportional to the strength of the

mutual drag force. Short stopping times mean that the mixture

moves together at a common velocity (the velocity of the

barycentre), long stopping times mean that the two fluids move

separately, but intermediate stopping times produce the most

dissipation, since drag acts to dissipate the relative motion.

C. Gas/dust mixtures in SPH

The traditional approach to gas/dust mixtures in Smoothed

Particle Hydrodynamics (SPH) is to discretise these equations

using a different set of particles for each phase of the mixture

[1], giving ( [2], [3])

ρag =
∑

b

mbW (|ra − rb|, ha), (7)

ρid =
∑

j

mjW (|ri − rj |, hi), (8)

dva
g

dt
=−

∑

b

mb

[

Pa

Ωaρ2g,a
∇aWab(ha) +

Pa

Ωbρ2g,b
∇aWab(hb)

]

− ν
∑

j

mj

vaj · r̂aj
(ρa + ρj)tsaj

Daj(ha), (9)

dvi
d

dt
=− ν

∑

b

mb

vib · r̂ib
(ρi + ρb)tsib

Dib(hb), (10)

du

dt
=−

Pa

ρ2g,a

∑

b

mbvab · ∇aWab(ha) (11)

ν
∑

j

mj

(vaj · r̂aj)
2

(ρa + ρj)tsaj
Daj(ha), (12)

where we use labels a,b and c to refer to gas particles; i, j and

k to refer to dust particles and ν is the number of dimensions.
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Fig. 1. Linear waves in a dust-gas mixture (the ‘DUSTYWAVE’ problem),
showing the SPH two fluid solution with 2×100 particles (black circles=gas;
open circles=dust) after 5.5 periods, compared to the analytic solution for the
gas (solid red line) and dust (dashed red line). At low and intermediate drag
the solution is accurate, but at strong drag the numerical solution because the
short lengthscale separating the two fluids is not resolved.

In recent work [2], [3] we made a number of key im-

provements to the discretisation of this set of equation in

SPH. We found a factor of 10 improvement in accuracy at

no additional cost by employing a double-hump shaped kernel

(Daj in equations 9 and 10), to compute the drag terms instead

of the usual bell shaped kernel (Waj). We also presented

an improved implicit integration method and generalised the

earlier methods of [1], [4] to spatially variable smoothing

lengths.

D. Two problems with two fluids

1) Overdamping: The first problem we found with devel-

oping algorithms for dust/gas mixtures was that there were

few simple test problems which could be used to benchmark

the numerical solution. This led one of us (GL) to derive the

complete analytic solution for linear waves in the mixture,

which we published in [5]. We found this immensely useful

and enlightening, and indeed it revealed a rather fundamental

limitation to the two fluid formulation. Figure 1 shows a

typical SPH two-fluid solution after 5 1
2

wave periods, solving

Equations (7)–(12) for a one dimensional linear-wave in an

equal mixture of dust and gas while varying the drag parameter

K , in each case compared to the analytic solution in both the

gas (solid red line) and dust (dashed red line).

The behaviour of the analytic solution is intuitive — when

the drag is small the solution corresponds to an undamped

sound wave propagating in the gas. At very strong drag the
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Fig. 2. Gas (left) and dust (right) column density in a two-fluid simulation
of material orbiting in a protoplanetary disc. Once the dust smoothing length
becomes smaller than the typical gas smoothing length (solid red circle shows
a 2h for a representative gas particle) the dust particles become artificial
‘trapped’ in high density rings, due to the lack of mutual repulsion between
SPH dust particles.

solution also corresponds to an undamped soundwave, with

the only effect being a change to the effective sound speed

because of the weight of the dust being carried along by the

gas. Importantly it is only at intermediate drag (stopping times

comparable to the wave period) that the solution should be

strongly damped.

The SPH solution, by contrast, shows a strongly damped

solution at high drag. The reason is that to accurately capture

the physics when the drag is strong, one must resolve the

(very) short lengthscale separating the two fluids. Indeed, we

show in [2] that using a very large number of particles (up

to 10,000 in 1D) does reproduce the analytic solution, but

the resolution requirement is prohibitive (corresponding to

h . tscs, where cs is the sound speed). The effect of under-

resolving this length scale is to mimic the effect of a much

larger separation length, giving a solution closer to that of

an intermediate drag which is highly dissipative. This spatial

resolution requirement is in addition to the usual stability

constraint on the timestep ∆t < ts from the drag terms. In

other words, the two fluid method requires an infinite number

of particles and an infinite number of timesteps to correctly

resolve the limit of a perfectly coupled mixture.

2) Artificial trapping of dust particles: Because they do

not feel any mutual repulsion, dust particles can also become

artificially ‘trapped’ in high density regions. We found this

to occur whenever the dust collects on a scale smaller than

the local smoothing length of gas particles. An example is

shown in Figure 2, showing the dust particles in the centre

of a protoplanetary disc simulation forming artificial ‘rings’

once the dust smoothing length is smaller than the typical

gas resolution (shown by the red circle). This problem could

be only partially mitigated by using the maximum smoothing

length of the two fluids in the drag terms (Equations 9 and

10) — the simulation shown in Figure 2 does this but we still

found particle trapping to occur.

Both of these issues motivated us to develop an alternative

approach that correctly captures the limit of strong drag/short

stopping time, which is the subject of the present contribution.
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II. DUSTY GAS WITH ONE FLUID

From the DUSTYWAVE analytic solution one can intuitively

understand the physics of the mixture in the limit of infinite

drag/short stopping time. This is the limit in which the fluid

behaves as a single fluid mixture with a modified sound speed.

This motivated us to rewrite the mathematical equations in

such a way that the limit of ts → 0 is obvious from the

mathematics.

A. One fluid to rule them all

To do this, we simply employed a change of variables.

Instead of solving for ρd, ρg, vg and vd, in [6] we rewrote

the equations in terms of the total density ρ, the dust fraction

ǫ ≡ ρd/ρ, the barycentric velocity v and the relative velocity

between the fluids ∆v, where

v ≡
ρgvg + ρdvd

ρg + ρd
, (13)

and

∆v ≡ vd − vg. (14)

The original variables can be written in terms of the new

variables according to

ρg = (1− ǫ)ρ, (15)

ρd = ǫρ, (16)

vg = v − ǫ∆v, (17)

vd = v + (1 − ǫ)∆v. (18)

The evolution equations in the new variables, written in

Lagrangian form with the time derivative defined for a single

fluid moving with the barycentric velocity,

d

dt
≡

∂

∂t
+ (v · ∇) , (19)

are given by

dρ

dt
=− ρ(∇ · v), (20)

dǫ

dt
=−

1

ρ
∇ · [ǫ (1− ǫ) ρ∆v] , (21)

dv

dt
=−

∇P

ρ
−

1

ρ
∇ · [ǫ (1− ǫ) ρ∆v∆v] + f , (22)

d∆v

dt
=−

∆v

ts
+

∇P

ρg
− (∆v · ∇)v

+
1

2
∇
[

(2ǫ− 1)∆v
2
]

. (23)

du

dt
=−

Pg

ρg
(∇ · vg) + ǫ (∆v · ∇) u+

ǫ∆v
2

ts
, (24)

where f represents body forces such as a gravitational poten-

tial. This change of variables entails no loss of information

but reveals a great deal of the physics.
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Fig. 3. Solution to the DUSTYWAVE problem using the general one fluid
SPH method, showing gas and dust properties reconstructed from the SPH
mixture particles (black points and circles) compared to the analytic solution
(red solid and dashed lines for gas and dust, respectively). The SPH solution
is in excellent agreement with the analytic solution in all cases, unlike for the
two fluid method (Figure 1).

B. Physical interpretation

First, we see that in the limit of ∆v → 0 and ǫ → 0
the equations reduce to the usual equations of fluid dynamics,

which we know can be solved using standard SPH techniques.

Second, we see the physics of the drag clearly in Equation 23

— the pressure gradient acts as the ‘source term’ to grow

the differential velocity, while the stopping time appears as

the characteristic decay timescale. That is, in the absence of

pressure gradients the relative velocity decays exponentially

to zero on the stopping time. Furthermore terms such as the

anisotropic pressure in Equation 22 that are second order in

∆v can be neglected when the differential velocity is small, as

occurs when the drag is strong and the stopping time is short.

So it is clear that a discretisation based on Equations 20–24

will reduce to a standard SPH formulation in the previously

‘impossible’ limit of ts → 0.

C. SPH discretisation of the general one fluid formulation

In principle there is no loss of information in solving

Equations 20–24 instead of 1–5 but the two approaches are

conceptually very different. The key difference is that we

must now consider only one set of particles moving with the

barycentre of the fluid, advected according to

dx

dt
= v. (25)
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These particles represent neither gas nor dust, but rather the

‘mixture’. The dust fraction ǫ and likewise the differential

velocity ∆v are now intrinsic properties of the mixture that

are advected along with the particles. The evolution of u
is modified to express the fact that the particles are no

longer simply gas particles. One must also ensure that the

conservation laws are satisfied — in particular that the mass

of each phase is separately conserved, just as it would be with

the two fluid approach.

Nevertheless it is reasonably straightforward to write down

the SPH discretisation in a way that does satisfy the con-

servation properties. The resulting equations, ignoring for the

moment artificial dissipation terms, are given by [7]

ρa =
∑

b

mbWab(ha), (26)

dǫa
dt

=−
∑

b

mb

[

ǫa (1− ǫa)

Ωaρa
∆va · ∇aWab(ha)

+
ǫb (1− ǫb)

Ωbρb
∆vb · ∇aWab(hb)

]

, (27)

dva

dt
=−

∑

b

mb

[

Pa

Ωaρ2a
∇Wab(ha) +

Pb

Ωbρ2b
∇Wab(hb)

]

−
∑

b

mb

[

ǫa (1− ǫa)∆va

Ωaρa
∆va.∇Wab(ha)

+
ǫb (1− ǫb)∆vb

Ωbρb
∆vb · ∇Wab(hb)

]

+ fa, (28)

d∆va

dt
=−

∆va

ts,a

−
ρa
ρg,a

∑

b

mb

[

Pa

Ωaρ2a
∇Wab(ha) +

Pb

Ωbρ2b
∇Wab(hb)

]

,

+
1

ρaΩa

∑

b

mb(va − vb)∆va.∇Wab(ha)

+
1

2ρaΩa

∑

b

mb

[

(1− 2ǫa)∆v
2
a

− (1− 2ǫb)∆v
2
b

]

∇Wab(ha), (29)

dua

dt
=

Pa

Ωaρaρg,a

∑

b

mb (vg,a − vg,b) · ∇Wab(ha)

−
ǫa

Ωaρa

∑

b

mb(ua − ub)∆va.∇Wab(ha)

+ ǫa
∆v

2
a

ts,a
. (30)

The full set of equations including the modifications to artifi-

cial viscosity necessary for shock capturing are given in [7].

D. Tests of the general one fluid method

Figure 3 shows the solution obtained on the DUSTYWAVE

problem by solving Equations 26–30 instead of 7–12. One

can see immediately that there is no overdamping of the fluid

when the drag is strong. Furthermore, the analytic solution is

v
x

-0.5 0 0.5

0

0.2

0.4

0.6

0.8

******
****
*****
****
*****
*****
******
******
******
*****
*****
*****
*****
*****
*****
****
***
****
****
*****
****
* *

*
*

*

*

*

*

t=0.2

ρ

-0.5 0 0.5

0.5

1 ***************************************************************************************
**** * *********

*
*
*
******* *

x

u

-0.5 0 0.5

1

1.5

2

2.5

x

P

-0.5 0 0.5

0.5

1

Fig. 4. Solution to a dust-gas shock problem with strong drag, showing the
solution with the one fluid method (black points) compared to the analytic
solution in the limit where the stopping time is small (red line).

now correctly reproduced in all cases, including the limits of

both strong and weak drag (i.e. for both ts → ∞ and ts → 0).

It is intuitive why this should be the case, since the resolution

problem with the two fluid method referred to in Section I-D1

was related to the need to resolve the physical separation

length between gas and dust particles. In the one fluid method

there is no physical ‘separation’ of the ‘gas’ particles from the

‘dust’ particles — every particle carries information about both

phases. (Very!) careful inspection of Figure 3 would reveal

this, since to visualise the gas and dust ‘particles’ we have

simply made two copies of the same set of mixture particles,

one with the gas properties reconstructed using (15) and (17)

and one with the dust properties reconstructed using (16) and

(18).

A further confirmation that the one fluid method solves the

resolution issue is shown in Figure 4, showing the propagation

of a shock in the mixture when the drag is strong. The solution

in this case should be identical to a hydrodynamic shock but

with the shock propagating at the modified sound speed due

to the weight of the dust. It can be seen that the one fluid

method gives results in excellent agreement with the analytic

solution (red line), whereas in [2] we found that around 10,000

particles in one dimension were needed to produce the correct

solution with the two fluid method.

It is also intuitively obvious that the one fluid approach also

solves the dust trapping problem — there is no separate set

of ‘dust’ particles, so they cannot become trapped below the

resolution of the gas. Instead, the resolution of both phases

is now tied to the density of the mixture rather than being

separate for each phase. Thus by definition the gas and the dust

components are resolved with the same resolution (smoothing)

length.
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E. Limitations of the general one fluid approach

Despite the general nature of the one fluid formulation and

the removal of the spatial resolution criterion at high drag,

there remains the stability constraint on the timestep from the

stopping time if explicit timestepping is used to solve (26)–

(30), i.e.

∆t < ts. (31)

As discussed in [6], implementing implicit timestepping to

solve Equations 29 and 30 when ts is small is considerably

simpler than implementing an implicit method for the two

fluid method ( [3], [4], [8]). Nevertheless it represents an extra

complication to the algorithm.

A further limitation is that the single fluid description is

a fluid description. In particular the velocity field is assumed

to be single-valued. This assumption breaks down in the limit

where there is little or no drag (ts → ∞) and the dust particles

act as a pressure-less independent set of particles, uncoupled

from the gas. For astrophysics this occurs for large km-sized

planetesimals in protoplanetary discs, which oscillate freely

around the midplane and form structures which are supported

by the velocity dispersion of their constituent particles. The

velocity field in this case can be multi-valued which can

be captured when representing the dust as a separate set of

particles but not if represented as part of a mixture.

This means that the one fluid formulation is mainly useful

in the limit where the stopping time is short compared to

other timescales in the simulation, which is the limit of

small (cm sized and smaller in protoplanetary discs) grains

in astrophysics. However, in this limit we can also derive a

much simpler method.

III. THE DIFFUSION APPROXIMATION FOR THE MIXTURE

A. The terminal velocity approximation

In the limit where ts is smaller than the computational

timestep, Equations 20–24 can be simplified by neglecting

terms that are second order in ∆v [6]. This is known as the

‘terminal velocity’ approximation (e.g. [9], [10]), since the

time-dependence in ∆v can be neglected and for the case of

hydrodynamics we simply have

∆v ≈ ts
∇P

ρg
, (32)

with (20)–(24) simplifying to ( [6], [11])

dρ

dt
=− ρ(∇ · v), (33)

dv

dt
=−

∇P

ρ
+ f , (34)

dǫ

dt
=−

1

ρ
∇ · (ǫts∇P ) , (35)

du

dt
=−

P

ρg
(∇ · v) −

ǫts
ρg

(∇P · ∇u) . (36)

In this limit we simply recover the usual equations of hydro-

dynamics supplemented by an evolution equation (35) for the

dust fraction and an additional term in the energy equation

(36). The pressure is also modified by the presence of the

dust since it depends on the gas density rather than the total

density, giving for example

P = (γ − 1)ρgu = (1− ǫ)(γ − 1)ρu. (37)

The above change to the pressure, and hence the sound speed,

produces the zeroth order effect of a ‘heavy fluid’ seen in the

analytic solution for the DUSTYWAVE (Figs. 1 and 3).

If desired, one can simplify the formulation even further by

making the approximation that ts = 0. This leaves only the

‘heavy fluid’ effect, giving precisely the limit of sound waves

propagating at the modified sound speed. This limit would also

imply — from Equation 35 — a constant dust-to-gas ratio,

which is what is commonly assumed when interpreting most

astronomical observations of dust in space.

B. SPH discretisation

The SPH discretisation is also much simpler. Both (33)

and (34) are identical to the usual hydrodynamic equations,

so the only question is how to discretise (35) and the extra

term in (36). There are two possible ways of discretising

these terms; either make the terminal velocity approximation

(32) in (26)–(30), or simply discretise the terms in (35)

and (36) directly. We compare both approaches in [11], but

find only minor differences, and so here present only the

‘direct second derivatives’ version since it is both simpler and

computationally more efficient.

Adopting a standard approach to writing second derivatives

in SPH [12]–[14] we discretise (33)–(36) according to

ρa =
∑

b

mbWab(ha), (38)

dva

dt
=−

∑

b

mb

[

Pa

Ωaρ2a
∇aWab(ha) +

Pb

Ωbρ2b
∇aWab(hb)

]

+ fa, (39)

dǫa
dt

=−
∑

b

mb

ρaρb
(Da +Db) (Pa − Pb)F ab, (40)

dua

dt
=

Pa

Ωa(1 − ǫa)ρ2a

∑

b

mbvab · ∇aWab(ha)

+
1

2(1− ǫa)ρa

∑

b

mb

ρb
(ua − ub)(Da +Db)(Pa − Pb)F ab,

(41)

where Da ≡ ǫat
a
s and the scalar kernel function Fab is defined

in the usual manner such that ∇Wab ≡ Fabrab and F ab =
1
2
[Fab(ha) + Fab(hb)].
The second term in Equation 41 is one of the most bizarre

SPH discretisations we have ever come across, but derives

from the discretisation of (40) combined with the need to

conserve energy. A remarkable proof is given in the appendix

of [11] that this is indeed a correct discretisation of the

corresponding term in (36).

As with the general one-fluid method, all of the conservation

properties of the two fluid method are satisfied by (38)–(41).
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Fig. 5. Test problem showing diffusion of the dust fraction in a three
dimensional calculation. The plot shows the SPH solution of the diffusion
equation (42) at various times, compared to the analytic solution(s) given by
the solid red lines.

That is, the mass of each phase as well as the total mass,

momentum, angular momentum and energy are all conserved

exactly.

C. Timestep constraints in the diffusion approximation

In a medium with a uniform density and temperature (such

that P = c2sρg = c2s (1 − ǫ)ρ), Equation 35 becomes a simple

diffusion equation for the dust fraction

dǫ

dt
= ∇ · (η∇ǫ) , (42)

where the diffusion coefficient is given by

η ≡ ǫtsc
2
s . (43)

This implies a stability constraint of the form

∆t <
h2

ǫtsc2s
. (44)

This constraint, while second order in the resolution length,

presents the opposite constraint on the timestep compared to

both the two fluid method (Section I) and the general one

fluid method (Section II). That is, the timestep is inversely

proportional to the stopping time, whereas with the other

approaches the timestep is proportional to ts.
This implies that Equations (38)–(41) require only explicit

timestepping to correctly capture the limit of small grains/short

stopping time/strong drag — a stark contrast to the situation

with the two fluid method.

D. Tests of the diffusion method

1) Diffusion of the dust fraction: The nature of the approx-

imation suggests a simple test problem where the particles

positions are fixed but the dust fraction is allowed to evolve

according to (35). Assuming a pressure proportional to the gas

density such that the evolution reduces to (42), the analytic

log x

lo
g

 L
2

-1.5 -1

-3

-2

-1
two first derivatives
direct second derivatives

Fig. 6. Convergence study on the dust diffusion problem, showing second
order accuracy of the method in L2.

solution is well known. and hence can be used. Although

the problem is not particularly physical (since the other

fluid properties are held fixed) it is useful to benchmark the

discretisation of the diffusion equation.

Figure 5 shows the results of a three dimensional simulation

employing 503 particles where the dust fraction was initially

set to

ǫ(r, 0) = ǫ0

[

1−

(

r

rc

)2
]

, (45)

with the numerical solution compared to the analytic solution

at various times, assuming a constant ts = 0.1 and density

and sound speed of unity. The evolution is indistinguishable

from the analytic solution. This is quantified in Figure 6

which shows the L2 error between the numerical and analytic

solutions as a function of resolution (particle spacing) for

two different discretisations. As expected, the convergence

is second order in the particle separation since the particles

remain in an ordered configuration.

2) Waves: The numerical results using our SPH implemen-

tation of the diffusion method on the DUSTYWAVE problem are

shown in Figure 7, compared to the analytic solution given by

the solid line. The damping in the mixture is correctly captured

both when the drag is strong and even in the regime where the

diffusion approximation is no longer valid. The small phase

error in the solution with K = 10 is not from the method

itself, but from an inconsistency in the initial conditions used

to set up the problem (we start with ∆v = 0 but the diffusion

approximation assumes that ∆v is finite at all times).

3) Shocks: The results on the dustyshock problem obtained

by solving (38)–(41) are indistinguishable from that obtained

with the general one fluid method (Figure 4), with the advan-

tage that only explicit timestepping is required.

4) Fall of a layer of dust: A simple problem to illustrate

that the diffusion method correctly captures the behaviour of
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Fig. 8. Fall of a layer of dust in a stratified atmosphere, comparing results with the diffusion method (left) to the two fluid approach (right).
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Fig. 7. SPH simulation of the DUSTYWAVE problem using the diffusion
approximation, compared to the analytic solutions given by the red solid and
dashed lines (c.f. Figures 1 and 3). The diffusion approximation assumes
that the stopping time is short compared to the timestep and is therefore
only applicable when the drag is strong. However, it requires only explicit
timestepping to correctly capture the limit of small grains.

the dust is the ‘fall of a layer of dust’ problem introduced by

Monaghan [4]. The setup is a box with a vertical gravitational

force, with the gas density stratified to balance the vertical

gravity and periodic boundaries in the horizontal direction.

We use a constant drag coefficient K = 10, an isothermal

equation of state P = c2sρg with cs = 10 and a gas density

ρg = 1 at y = 0. We set the density stratification, and in

the one fluid method the dust location, by slightly altering the

particle mass. The dust is initially confined in 0.6 < y < 0.8
with ρd = 0.1 in the layer and 0 elsewhere.

Figure 8 compares the results using the diffusion approx-

imation (left) to the results obtained with the standard two

fluid method (right). The one fluid method benefits from the

regularisation of the mixture particles by the gas pressure,

whereas discreteness effects are visible in the two fluid method

because the dust particles have no self-interaction. Neverthe-

less, comparable solutions are obtained with both methods.

5) Settling of dust in a protoplanetary disc: Our final test

problem is drawn from our intended application, namely the

settling and migration of dust in discs around young stars

during the planet formation process. We consider a vertical

section of disc at a particular radius, with the gas pressure

in hydrostatic equilibrium with the vertical component of the

gravity from the central star. We perform the test at 50 AU

with mm-sized dust grains using an Epstein drag prescription

(for full details see [11]). The stopping time for grains of this

size is a few percent of the orbital timescale, meaning that the

terminal velocity approximation is valid. However the problem

is still (just) tractable with the two fluid method enabling us

to compare all three approaches.

Figure 9 compares the numerical results with the diffusion

method (top) with the general one fluid method (centre) and

the two fluid method (bottom). The left panel shows the gas

density while the right panel shows the dust density after 20

orbits. Settling of dust to the midplane is expected to occur

on a timescale of ∼ 102 orbits. The dust density is better

resolved with the two fluid method because the resolution in

the dust follows the dust mass (in contrast to being tied to

the total mass in the one fluid case) but it is also more noisy

because there is no pressure force to regularise the dust particle

distribution. Nevertheless the results demonstrate that the basic

physics can be captured with any of the three approaches we

have discussed in the paper.

The solution with the diffusion method is ∼50 times faster

to compute, since it requires only explicit timestepping.
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Fig. 9. Settling of mm-sized dust grains in a vertical section of a protoplan-
etary disc, showing gas density (left) and dust density (right) computed after
20 orbits using the diffusion approximation (top), the full one fluid method
(centre) and the two fluid method (bottom). The solution with the diffusion
method is comparable to the other two approaches but is approximately 50
times faster than the two fluid method to compute since it requires only explicit
timestepping.

IV. CONCLUSION

We have derived a completely new approach to simulating

two-phase mixtures in SPH. Rather than modelling the mixture

with two separate sets of particles, we have shown how the

equations can be rewritten to describe a single fluid mixture.

This solves two key problems with the two fluid approach in

the limit where the drag stopping time is short compared to

the computational timestep. Furthermore the equations in this

limit reduce to simply the usual SPH equations supplemented

by a diffusion equation for the dust fraction and a modification

to the energy equation and require only explicit timestepping

in the limit of small grains. We have so far applied this to

dust settling in protoplanetary discs but expect the method to

be equally applicable for industrial and engineering problems

where particulate matter is carried by a fluid.
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[13] P. Español and M. Revenga, “Smoothed dissipative particle dynamics,”
Phys. Rev. E, vol. 67, no. 2, p. 026705, Feb. 2003.

[14] D. J. Price, “Smoothed particle hydrodynamics and magnetohydrody-
namics,” J. Comp. Phys., vol. 231, pp. 759–794, Feb. 2012.


