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Abstract We present first results of our simulations
of magnetic fields in the formation of single and binary
stars using a recently developed method for incorporat-
ing Magnetohydrodynamics (MHD) into the Smoothed
Particle Hydrodynamics (SPH) method. An overview
of the method is presented before discussing the effect of
magnetic fields on the formation of circumstellar discs
around young stars. We find that the presence of mag-
netic fields during the disc formation process can lead
to significantly smaller and less massive discs which are
much less prone to gravitational instability. Similarly
in the case of binary star formation we find that mag-
netic fields, overall, suppress fragmentation. However
these effects are found to be largely driven by magnetic
pressure. The relative importance of magnetic tension
is dependent on the orientation of the field with respect
to the rotation axis, but can, with the right orientation,
lead to a dilution of the magnetic pressure-driven sup-
pression of fragmentation.
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1 Introduction

Star forming regions are routinely observed to con-
tain magnetic fields of strengths sufficient to play a
significant role in the star formation process, delaying
and perhaps preventing collapse (Crutcher et al. 2004;
Heiles and Crutcher 2005). Furthermore magnetic fields
are the main candidate for producing the ubiquitous
jets and outflows observed emanating from star forming
cores. For this reason it is crucial to be able to include
the effects of magnetic fields into numerical models of
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the star forming process. Furthermore the role which

magnetic fields play in the currently favoured ‘dynam-

ical picture’ of star formation (Mac Low and Klessen
2004) is not well understood and only a limited num-

ber of numerical studies have been performed.

The degree to which magnetic fields can counteract

the gravitational instability is determined, for an en-
closed region of gas threaded by a magnetic field, by

the ratio of the mass contained within the region to the

magnetic flux passing through the surface. This is re-

ferred to as the mass-to-flux ratio, which for a spherical

cloud takes the form:

M

Φ
≡

M

4πR2B0

. (1)

where M is the mass contained within the cloud vol-

ume, Φ is the magnetic flux threading the cloud surface

at radius R assuming a uniform magnetic field B0. The

critical value of M/Φ below which a cloud will be sup-
ported against gravitational collapse is given by (e.g.

Mouschovias and Spitzer 1976; Mestel 1999; Mac Low

and Klessen 2004).
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where G and µ0 are the gravitational constant and

the permeability of free space respectively and c1 is a

constant determined numerically by Mouschovias and
Spitzer (1976) to be c1 ≈ 0.53. Star forming cores with

mass-to-flux ratios less than unity are stable against

collapse (“subcritical”) and conversely, cores with mass-

to-flux ratios greater than unity (termed “supercriti-
cal”) will collapse on the free-fall timescale.

Magnetic fields also play a role in the transport of

angular momentum away from star forming cores, both

by the production of jets and outflows and also by ‘mag-

netic braking’ – that is regions of gas undergoing col-
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lapse and which therefore begin to rotate rapidly re-
main connected to more slowly rotating regions of gas
by magnetic field lines, the induced tension of which
acts to ‘brake’ the star forming core. However, un-
derstanding the role of magnetic fields in the star for-

mation process ultimately requires three dimensional,
self-gravitating, magnetohydrodynamics (MHD) simu-
lations.

2 Numerical method

One of the most widely used methods for simulations of
star formation is that of Smoothed Particle Hydrody-
namics (SPH – for recent reviews see Monaghan 2005;
Price 2004), for the reason that the resolution automat-
ically adapts to the mass distribution which is precisely

where it is required in star formation simulations. The
basis of the method is that fluid quantities are discre-
tised onto a set of moving points (the ‘particles’) which
follow the fluid motion. For example, the density is
computed as a sum over neighbouring particles in the
form

ρ(r) =
∑

j

mjW (|r − rj |, h), (3)

where mj are the masses of neighbouring particles and
W is a weight function (the ‘smoothing kernel’) – some-

thing like a Gaussian although in practice a function
which goes to zero at a finite radius (usually 2h, where h
is the so called ‘smoothing length’) is used for efficiency.
It is a remarkable fact that, writing down the density in
the form (3) actually defines (almost) the entire numer-

ical method. What we mean by this is that, using only

the density sum, it is possible to then self-consistently
derive the equations of hydrodynamics in their numeri-
cal form with only the additional assumption of the first
law of thermodynamics. This is possible because SPH
can be derived from a Hamiltonian variational princi-
ple, where, for hydrodynamics, the Lagrangian takes

the form

L =
∑

j

mj

[

1

2
v2

j − uj(ρj , sj)

]

, (4)

which is nothing more than the difference between the
kinetic and potential (thermal) energies expressed as
a sum over particles (u refers to the thermal energy
per unit mass which is assumed to be a function of the

density and entropy). The Lagrangian can be written
as a function of the particle co-ordinates using the den-
sity summation (3) and the equations of hydrodynamics
thus derived using the Euler-Lagrange equations. Si-
multaneous (unlike in a grid-based code) conservation

of all physical quantities (momentum, angular momen-
tum, energy, entropy and even circulation – see Mon-
aghan and Price 2001) follows, reflecting the symme-
tries present in the Lagrangian.

This is a very powerful principle for development of
SPH algorithms, as it means, fundamentally, that only
one of two things can be changed (without losing some
of the advantage of having a Hamiltonian method): ei-
ther the density summation or the Lagrangian. An
example of the former is the recent development of a
self-consistent formulation in the presence of a spatially
variable smoothing length due to Springel and Hern-
quist (2002) and Monaghan (2002) (see also Price and
Monaghan (2007) for the extension of this formulation
to gravitational force softening). Additional physics is
introduced by changing the Lagrangian.

A method for magnetic fields in SPH can thus be
derived using the Lagrangian

L =
∑

j

mj

[

1

2
v2

j − uj(ρj , sj) −
1

2

B2

j

µ0ρj

]

, (5)

where the additional term is the magnetic energy.
Such a derivation is presented by Price and Monaghan
(2004). However, life is never that simple, and the
derivation of a workable algorithm from that point is
complicated by several factors. The first is that the
momentum-conserving form of the SPMHD (Smoothed
Particle Magnetohydrodynamics) equations proves to
be (violently) unstable in the regime where the mag-
netic pressure exceeds the gas pressure. Second is that
the Lagrangian says nothing about dissipation, which
is a necessary introduction in order to resolve discon-
tinuities in the flow (ie. shocks) which are made more
complicated in MHD by the three different wave types
(slow, Alfven and fast) and correspondingly compli-
cated shock structures. The third complication is the
use of a spatially variable smoothing length, although
this can be incorporated into the Lagrangian deriva-
tion (and was done by Price and Monaghan 2004). The
fourth complication is that nasty fourth Maxwell equa-
tion, ∇ · B = 0, expressing the physical condition that
no magnetic monopoles should exist. A lengthy descrip-
tion of methods for divergence cleaning in SPH which,
for the most part, don’t work very well is given in Price
and Monaghan (2005).

Overcoming each of these complications has been a
somewhat long and tortuous process, consuming a num-
ber of otherwise-healthy PhD students about once per
decade (of which I [Price] am the latest). Without bor-
ing the reader it is sufficient to say that (at least to
our partial satisfaction) each of these issues has now
been resolved. The resolutions are essentially 1) com-
promising the momentum-conserving force slightly in
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Fig. 1.— The influence of magnetic fields on circumstellar disc formation. Plots show results of the single star

collapse calculations at various times in the evolution (left to right) and for a series of runs of increasing magnetic
field strength (top to bottom) with a field initially aligned with the rotation axis. The magnetic field delays the

collapse and leads to smaller, less massive discs which are less prone to gravitational instability.
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order to attain partial momentum-conservation but sta-

bility; 2) formulating dissipation terms for MHD follow-
ing Monaghan (1997) (see Price and Monaghan 2004);

3) deriving the variable smoothing length formulation

from a Lagrangian and 4) using prevention not cure

by formulating the magnetic field in a divergence free
form using the ‘Euler potentials’ αE and βE such that

B = ∇αE × ∇βE . The latter has the further advan-

tage that the Lagrangian evolution of these potentials

for ideal MHD is zero, corresponding to the advection

of magnetic field lines (Stern 1970), although there are
also disadvantages to their use. In practise we add ar-

tificial dissipation terms to the Euler potentials’ evo-

lution in order to resolve (and dissipate) strong gradi-

ents in the magnetic field (see Price and Bate 2007 and
Rosswog and Price 2007 for more details of the Euler

potentials formulation in SPH).

The resulting method gives excellent results on a

wide range of test problems used to benchmark recent

grid-based MHD codes (see e.g. Price 2004; Price and
Monaghan 2005; Rosswog and Price 2007) and is here

applied to star formation problems for the first time.

3 Single and binary star formation

We consider the problem of single and binary star for-

mation starting with a uniform density, spherical core

(R = 4 × 1016cm = 2674AU, M = 1M�) in solid
body rotation and embedded in a warm, low density

medium. The simulations use a barytropic equation of

state which is isothermal (T ∼ 10K) to a density of

ρ = 10−14g cm−3 above which γ = 7/5 is assumed to
approximately represent the transition to gas which is

optically thick to radiation. We model the core using

300,000 SPH particles which is an order of magnitude

more than is necessary to resolve the Jeans mass (and

thus any fragmentation which occurs) in this problem
(Bate and Burkert 1997).

The important parameters to this problem are: i) the

ratio of thermal to gravitational energy, α (expressing

the competition between gravity and gas pressure), ii)
the ratio of rotational to gravitational energy, denoted

βr (gravity vs. rotation) and iii) the mass-to-flux ratio

defined by Eqn. (1) (gravity vs. magnetic fields). We

fix the first two and vary the latter. For the single star

collapse calculations we consider the case α = 0.35,
βr = 0.005 (given by Ω = 1.77 × 10−13 rad/s corre-

sponding to a relatively slow rotation).

Using a supercritical magnetic field initially aligned

with the rotation axis (that is, in the computational
z−direction), at low field strengths we find that the

field lines are dragged inwards by the collapse, whereas

at high field strengths the collapse is directed along the
magnetic field lines. Figure 1 shows the results of a se-

ries of simulations of increasing magnetic field strength
(from top to bottom, where M/Φ refers to the mass-to-

flux ratio in units of the critical value), shown at various

times in units of the initial free-fall time (left to right).
The simulations reveal a clear influence of the magnetic

field on the formation of the circumstellar disc around
the star forming core. In the hydrodynamics simula-

tion (top row) the disc is very massive and as a result
exhibits strong gravitational instabilities in the form of

spiral arms. For runs with increasing magnetic field
strength the disc forms progressively later (e.g. no sig-

nificant disc is visible up to tff = 1.21 in the M/Φ = 4

run), and are substantially less massive, smaller and
thus less prone to gravitational instability. The accre-

tion rate of material onto the disc itself is also slower.
This weakening of gravitational instabilities in discs by

magnetic fields may have implications for the relative
importance of gravitational instability as a planet for-

mation mechanism.
A similar trend is observed in binary star formation

simulations (Figure 2, which shows the results of simu-

lations where an initial density perturbation of the form

ρ = ρ0[1 + 0.1 cos (2φ)], (6)

has been applied with α = 0.26 and βr = 0.16. Collapse
is again delayed by the magnetic field and fragmenta-

tion is suppressed (that is, with increasing magnetic
field the formation of a binary is suppressed and only a

single star is formed).

Whilst it is tempting to attribute these effects to the
transport of angular momentum via magnetic braking

(thus removing material from the central regions, and
in the binary case removing angular momentum from

the binary system), some further investigation is war-
ranted. Figure 3 shows three of the binary collapse

calculations at tff = 1.33 where we have turned off the
magnetic tension force (that is, using only a magnetic

pressure term). The results are nearly (although not ex-

actly) identical to those shown in Figure 2, demonstrat-
ing that it is in fact magnetic pressure that is playing

the dominant role in suppressing binary/disc formation
by increasing the effective thermal energy (ie. the sum

of both thermal and magnetic pressure) of the cloud.
A deeper investigation (Price and Bate 2007) reveals

that this result is slightly qualified by the initial orien-

tation of the magnetic field with respect to the rota-
tion axis. Simulations using a magnetic field initially

aligned perpendicular to the rotation axis (ie. where
the field lies initially in the orbital plane of the binary)

show a much stronger contribution from magnetic ten-
sion which can in fact aid fragmentation (or rather, di-
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Fig. 2.— Results of the binary collapse calculations at various times in the evolution (left to right) and for a series

of runs of increasing magnetic field strength (top to bottom) with a field initially aligned with the rotation axis.

The magnetic field delays the collapse and suppresses fragmentation in this case.
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Fig. 3.— Simulations of binary star formation per-
formed with magnetic tension forces turned off (plots

correspond to the central and bottom three panels of

Figure 2). The results are almost identical, indicating

that it is magnetic pressure that is playing the domi-

nant role in suppressing fragmentation.

lute the effect of magnetic pressure in suppressing frag-

mentation), confirming a scenario which had been sug-
gested by Alan Boss (e.g. Boss 2002) based on ‘approx-

imate’ MHD simulations. This occurs because, when

the field is aligned perpendicular to the rotation axis it

can form a “magnetic cushion” between overdense re-
gions the tension force perpendicular to which prevents

them from merging.

We are currently applying the method to simulations

of star cluster formation from turbulent initial condi-

tions (as in Bate, Bonnell, and Bromm 2003) which
include the effects of magnetic fields.

4 Summary

In summary, we have performed simulations of single

and binary star formation using a recently developed

method for Smoothed Particle Magnetohydrodynamics.

We find that stronger magnetic fields result in a slower
collapse, and that the extra support provided by mag-

netic pressure acts to suppress fragmentation and disc

formation, resulting in smaller, less massive discs. The

net result of this is that the presence of magnetic fields
in the disc formation process can weaken gravitational

instabilities in young, massive circumstellar discs which

may have implications for the relative importance of

gravitational instability as a planet formation mecha-

nism.
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