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ABSTRACT
We derive the single-fluid evolution equations describing amixture made of a gas phase and
an arbitrary number of dust phases, generalising the approach developed in Laibe & Price
(2014a). A generalisation for continuous dust distributions as well as analytic approximations
for strong drag regimes are also provided. This formalism lays the foundation for numeri-
cal simulations of dust populations in a wide range of astrophysical systems while avoiding
limitations associated with a multiple-fluid treatment.

The usefulness of the formalism is illustrated on a series ofanalytical problems, namely
thedustybox, dustyshock anddustywave problems as well as the radial drift of grains and the
streaming instability in protoplanetary discs. We find physical effects specific to the presence
of several dust phases and multiple drag timescales, including non-monotonic evolution of
the differential velocity between phases and increased efficiency of the linear growth of the
streaming instability. Interestingly, it is found that under certain conditions, large grains can
migrate outwards in protoplanetary discs. This may explainthe presence of small pebbles at
several hundreds of astronomical units from their central star.

Key words: hydrodynamics — methods: numerical — protoplanetary discs— (ISM:) dust,
extinction

1 INTRODUCTION

Small but not insignificant: Dust grains play an essential role for
forming stars and planets in the Universe (e.g. Chiang & Youdin
2010; Testi et al. 2014). Dust reprocesses the energy emitted from
surrounding stars and grains grow to build large solid bodies. Dust
in molecular clouds originates from the interstellar medium, where
grains have a typical distribution in size of the formn(s) ∝ s−3.5

(Mathis et al. 1977). Evidence of multiple grain size populations
has also been detected in molecular clouds (e.g. Pagani et al. 2010;
Andersen et al. 2013) and in protoplanetary discs (e.g. Dullemond
& Dominik 2004; Duchêne et al. 2004; Pinte et al. 2007; Lommen
et al. 2009; Banzatti et al. 2011; Ubach et al. 2012). Since the cou-
pling efficiency with the surrounding gas varies with the particle
size, different grain populations may experience very different dy-
namics (e.g. Shariff 2009).

Dust evolution has been studied in astrophysical systems
mostly by modelling the dust phase as a continuous pressureless
fluid and treating the interactions with the gas via a drag force (e.g.
Saffman 1962; Garaud & Lin 2004). However, numerical simula-
tions using this two fluid approach suffer from two severe limita-
tions (Laibe & Price 2012a,b). Firstly, grain collisions are gener-
ally not effective enough to provide support against dust accumula-
tion. Hence, if grains concentrate below the gas resolution(as dur-
ing the planet formation process), they form dead artificialclumps.
Secondly, the presence of small grains requires the use of a pro-

hibitively high spatial resolution in order to resolve the tiny spatial
de-phasing of the two phases. These difficulties limit progress in
simulating complex dust evolution in cold astrophysical systems,
in particular the formation of a planetab initio.

In Laibe & Price (2014a), we have shown that these limita-
tions can be overcome by changing the physical description of the
system, describing the gas and the dust particles as the elemen-
tary constituents of a single fluid — the mixture — whose den-
sity is the total density of its two phases and which is advected at
the barycentric velocity of the particles. The chemical composition
of the system and the relative velocities between the phasesare
treated as internal properties of the mixture. Using this description,
the fundamental difficulties described above disappear, as shown in
our numerical simulations based on this approach using Smoothed
Particle Hydrodynamics (SPH) (Laibe & Price 2014b). A single
resolution length is used in the simulation, meaning that one phase
cannot accumulate below the resolution of the other. Moreover, the
resolution criterion arising from the spatial dephasing between the
two phases is no longer necessary in this description. Finally, no
interpolation between the gas and the dust phases is required and
implicit timestepping is straightforward to implement.

The main limitation of the Laibe & Price (2014a,b) work is
that only a single dust grain population was considered. This is
insufficient for modelling systems where grains of different sizes
mix. For example, a good knowledge of the dust distribution is
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required to compute opacities in radiation-hydrodynamicssimula-
tions of star formation. In this paper, we generalise our previous
work to describe a mixture ofn dust species interacting with a gas
component. The equations are given in their most general form in
Sect. 2. In Sect. 3, the physical properties of multiple dustpopula-
tion mixtures are discussed by applying the one-fluid formalism to
analytical examples relevant to astrophysics. In doing so,we pro-
vide analytic solutions that can be used to benchmark numerical
implementations and which shed light on the rich physics of multi-
ple dust-phase mixtures.

2 ONE FLUID WITH MULTIPLE DUST SPECIES

We address the problem of treating a mixture composed by a con-
tinuous gas phase and any numbern of distinct dust phases (e.g.
made of different grain sizes). Thorough this paper, we use the sub-
script g to refer to the gas phase and d, k to refer to thekth dust
phase,k being an integer taking all the values from 1 ton. In this
study, we restrict ourselves to the case were dust grains do not in-
teract with each other (in particular, they do not grow or fragment).

2.1 Multiple fluid formalism

In a multiple fluid formalism, each phase of the mixture is treated as
a fluid, with elements composed of a mesoscopic volume of parti-
cles of the given species. Those fluid elements move with their own
advection velocities. Hence, with usual notations, the equations for
the conservation of density, momentum and energy for the gasand
then dust phases are:

∂ρg

∂t
+ ∇ ·

(

ρgvg

)

= 0, (1)

∂ρdk

∂t
+ ∇ · (ρdkvdk) = 0, (2)

ρg

[

∂vg

∂t
+ (vg · ∇)vg

]

= ρgfg +

∑

k

Kk(vdk − vg) + ρgf, (3)

ρd

[

∂vdk

∂t
+ (vdk · ∇) vdk

]

= ρdkfdk − Kk(vdk − vg) + ρdkf, (4)

∂u
∂t
+ (vg · ∇)u = −

Pg

ρg
(∇ · vg) +

∑

k

Kk

ρg
(vdk − vg)

2.(5)

The different phases are coupled by drag terms, which exchange
momentum and energy between the gas and the dust phases.Kk de-
notes the drag coefficient between the gas and thekth dust species
and has the dimension of a mass per unit volume per unit time since
it defines a drag force per unit volume. It can be either a constant
or a function of the differential velocities between the phases (see
Laibe & Price 2012b for a discussion on the different astrophysical
regimes).fg and fdk denote the forces that are specific to the gas
and the dust phases respectively (i.e. gas pressure gradient or vis-
cosity, dust radiation pressure, buoyancy forces and so forth). For
simplicity, we assume an ideal gas equation of state given by

Pg = (γ − 1)ρgu. (6)

The total dust densityρd and the dust velocityvd are defined ac-
cording to

ρd ≡
∑

k

ρdk, (7)

vd ≡ 1
ρd

∑

k

ρdkvdk. (8)

Summing Eqs. 2 over all the dust species gives the equation ofcon-
servation for the total mass of dust,

∂ρd

∂t
+ ∇ · (ρdvd) = 0. (9)

Finally, in the multiple fluid formalism, the total density of energy
of the mixture is given by

e=
1
2
ρgv2

g +

∑

k

1
2
ρdkv2

dk + ρgu. (10)

2.2 One-fluid formalism

In the one-fluid formalism, particles of different species are treated
as being part of the same continuous fluid called the mixture.The
mixture’s fluid elements are thus made of particles of different types
that are advected with a single velocityv (x, t). Each fluid element
is constructed so that its mass is rigorously conserved, while the
composition may vary since one species can replace another one.
Differential velocities between the gas and the dust phases are not
kinematic quantities anymore, but intrinsic properties ofthe fluid.
This approach, developed by Laibe & Price (2014a) for the specific
casen = 1 we now generalise to any number of dust phases.

2.2.1 Physical quantities

The mixture’s densityρ is defined as being the total density of its
constituents

ρ ≡ ρg + ρd = ρg +

∑

k

ρdk. (11)

The mixture’s advection velocityv is chosen to be the barycentric
velocity of the different phases

v ≡
ρgvg +

∑

k

ρdkvdk

ρ
=
ρgvg + ρdvd

ρ
. (12)

The relative chemical composition of the mixture is expressed via
the dust fractions of each speciesǫk

ǫk ≡
ρdk

ρ
, (13)

such that the total dust fraction is given by

ǫ ≡
∑

k

ǫk =
ρd

ρ
, (14)

which sets the gas fraction as(1− ǫ) to conserve the total mass of
a fluid element. This definition also ensures the following relation

ǫvd =

∑

k

ǫkvk. (15)

The differential velocities between thekth dust phase and the gas
are defined according to

∆vk ≡ vdk − vg. (16)

Inverting Eqs. 12 and 16, the gas and dust velocities can be ex-
pressed as functions of the mixture’s quantities as follows

vg = v −
∑

k

ǫk∆vk, (17)

vdk = v + ∆vk −
∑

k

ǫk∆vk, (18)

vd = v +
(1− ǫ)
ǫ

∑

k

ǫk∆vk. (19)
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Introducing the total differential velocity∆v defined according to

ǫ∆v ≡
∑

k

ǫk∆vk, (20)

Eqs. 17 – 19 can be rewritten

vg = v − ǫ∆v, (21)

vdk = v + ∆vk − ǫ∆v, (22)

vd = v + (1− ǫ)∆v. (23)

Eqs. 21 and 23 are fully consistent with the definition of∆v in
the limiting casen = 1. Similarly, by substituting Eqs. 17 – 18 in
Eq. 10, the total density of energy of the mixture becomes

e =
1
2
ρv2
+

1
2
ρ















∑

k

ǫk∆v2
k − (ǫ∆v)2















+ (1− ǫ) ρu. (24)

The physical quantities defined above reduce to the one used for the
one fluid formalism with a single dust species for the casen = 1.

2.2.2 One-fluid equations

Expressing Eqs. 1 – 5 with the new physical quantities provides the
system of equations describing the evolution of the mixturein the
one-fluid formalism

dρ
dt

= −ρ(∇ · v), (25)

dǫk
dt

= −1
ρ
∇ · [ρǫk (∆vk − ǫ∆v)

]

, (26)

dv
dt

= (1− ǫ) fg +

∑

k

ǫkfdk + f

−1
ρ
∇ ·















ρ
∑

k

ǫk∆vk (∆vk − ǫ∆v)















, (27)

d∆vk

dt
= − ∆vk

ǫktbk
−

∑

l

∆vl

(1− ǫ) tbl

+(fdk − fg) − (∆vk · ∇)v

+
1
2
∇ [∆vk · (∆vk − 2ǫ∆v)] , (28)

du
dt

= −
Pg

(1− ǫ) ρ∇ · vg

+ǫ∆v.∇u+
∑

k

∆v2
k

(1− ǫ) tbk
. (29)

where the comoving derivative refers to a particle moving with the
barycentric velocityv, i.e.

d
dt
≡ ∂
∂t
+ (v.∇), (30)

and the drag stopping timestbk are given by

tbk =
ρ

Kk
. (31)

Eq. 25 shows that, locally, the mass of the mixture is con-
served exactly. This property has been obtained by construction,
using the properties of the centre of mass of a physical system
(Eqs. 11 – 12). Eq. 26 expresses the fact that although the mass of
a fluid element is constant, its composition may evolve, depending
on the relative dust and gas fluxes. Eq. 27 shows that the mixture
evolves under the action of all the forces acting on its constituents,

as well as a generalised anisotropic pressure term due to momen-
tum transferred through composition modification. Differential ve-
locities evolve under the action of both conservative and dissipative
terms (Eq. 28), which both transfer energy from a dust to the gas
phase (Eq. 29). This system of equations reduces exactly to the one
studied in Laibe & Price (2014a) in the specific casen = 1.

2.3 Conservative terms

Similar to then = 1 case, it is physically enlightening to derive the
conservative part of Eqs. 25 from integral conservation laws and
put the system in a conservative form. From a numerical pointof
view, it should be noted that switching from a primitive to a con-
servative form preserves the hyperbolic structure of the equations,
as discussed in Laibe & Price (2014a).

2.3.1 Conservation of mass

The total mass of gas, of any dust species as well as the total mass
dust contained in a given volumeV are

Mg ≡
∫

V
ρgdV =

∫

V
(1− ǫ) ρdV, (32)

Mdk ≡
∫

V
ρdkdV =

∫

V
ǫkρdV, (33)

Md ≡
∑

k

Mdk =

∫

V
ǫρdV =

∫

V
ρddV. (34)

The mass conservation for every species over the volumeV (in-
cluding the gas) can be expressed as

dgMg

dt
= 0, (35)

ddkMdk

dt
= 0, (36)

where
dg

dt
=
∂

∂t
+ vg · ∇ and

ddk

dt
=
∂

∂t
+ vdk · ∇ are the comov-

ing derivatives for the gas, then dust species and the entire dust
phase respectively. Applying the transport theorem and thediver-
gence theorem (similarly to Laibe & Price 2014a) on Eqs. 35 – 36
gives

∂ρ (1− ǫ)
∂t

+ ∇ · [ρ (1− ǫ) (v − ǫ∆v)
]

= 0, (37)

∂ρǫk

∂t
+ ∇ · [ρǫk (v + ∆vk − ǫ∆v)

]

= 0. (38)

Summing Eqs. 37 and then equations of Eq. 38 gives

∂ρ

∂t
+ ∇ · (ρv) = 0, (39)

which is rigorously equivalent to

dM
dt
= 0, (40)

whereM is the total mass of material contained in the volumeV.
This result is not surprising since the mixture has been constructed
to exploit the conservative properties of the centre of massof the
system. Similar to the casen = 1, the mass of each species or phase
taken individually isnot conserved since

dMg

dt
=

∫

S
ρ (1− ǫ) ǫ∆v · ndS, (41)

dMdk

dt
= −

∫

S
ρǫk (∆vk − ǫ∆v) · ndS. (42)
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The right-hand sides of Eqs. 41 – 42 represent the fluxes of mass
of each species through the surfaceS of the volumeV. By con-
struction, those fluxes cancel each other when summing over the
different species.

Summing only over then equations of Eq. 38 leads to conser-
vation relations related to the evolution of the entire dustphase

∂ρǫ

∂t
+ ∇ · [ρǫv + ρ (1− ǫ) ǫ∆v

]

= 0, (43)

which is equivalent to

dMd

dt
= −

∫

S
ρ (1− ǫ) ǫ∆v · ndS, (44)

or

ddMd

dt
= 0, (45)

where
dd

dt
=
∂

∂t
+vd · ∇ is the comoving derivative of the entire dust

phase. It is worth noting that the terms in Eqs. 43 and 42, though
here with generalised meaning, are the same as in then = 1 case.

2.3.2 Conservation of momentum

The total momentum of gas, of dust of each species and the total
momentum of dust in the volumeV are

Pg ≡
∫

V
ρgvgdV =

∫

V
ρ (1− ǫ) (v − ǫ∆v) dV, (46)

Pdk ≡
∫

V
ρdkvdkdV =

∫

V
ρǫk (v + ∆vk − ǫ∆v) dV, (47)

Pd ≡
∑

k

Pdk =

∫

V

[

ρǫv + ρ (1− ǫ) ǫ∆v
]

dV,

=

∫

V
ρdvddV. (48)

UsingP to denote the gas pressure, the conservation of momentum
for every species reads

dgPg

dt
≡ −

∫

S
PndS, (49)

ddkPdk

dt
≡ 0. (50)

Eqs. 49 – 50 therefore result in local conservation equations given
by

∂ρ (1− ǫ) (v − ǫ∆v)
∂t

+∇ · [ρ (1− ǫ) (v − ǫ∆v) (v − ǫ∆v) + PI
]

= 0, (51)
∂ρǫk (v + ∆vk − ǫ∆v)

∂t
+∇ · [ρǫk (v + ∆vk − ǫ∆v) (v + ∆vk − ǫ∆v)

]

= 0. (52)

Summing over all the phases of the mixture (including the gas)
gives the local and the integral equations of conservation for the
total momentum of the mixture

∂ρv
∂t
+ ∇ ·















ρvv + PI + ρ
∑

k

[ǫk∆vk (∆vk − ǫ∆v)]















= 0, (53)

and

dP
dt
= −

∫

S
PndS −

∫

S
ρ
∑

k

[ǫk∆vk (∆vk − ǫ∆v)] · ndS, (54)

whereP ≡ Pg + Pd. In contrast to the total mass, the total mo-
mentumP is not conserved since the momentum fluxes transported

by the mass fluxes specific to each species do not counterbalance
each other. As for the special casen = 1, the overall contribution is
equivalent to an anisotropic pressure gradient term, but the contri-
bution arises here from the balance between two terms. Following
the same argument, the total dust momentum carried at the dust
velocity is not conserved either, i.e.
∑

k

ddkPdk

dt
,

ddPd

dt
. (55)

2.3.3 Conservation of energy

The total energy for the gas phase and then dust species over the
volumeV are given by

Eg =
1
2

∫

V
ρgv2

gdV =
1
2

∫

V
(1− ǫ) ρ (v − ǫ∆v)2 dV, (56)

Edk =
1
2

∫

V
ρdkv2

dkdV =
1
2

∫

V
ρǫk (v + ∆vk − ǫ∆v)2 dV. (57)

Conservation of energy can therefore be expressed as

dgEg

dt
= −

∫

S
P (v − ǫ∆v) ndS, (58)

ddEdk

dt
= 0. (59)

Combining the two local equations of conservation induced by
Eqs. 58 and 59 leads to

∂e
∂t
+ ∇ ·

{















1
2
ρv2
+

1
2
ρ















∑

k

ǫk∆v2
k − (ǫ∆v)2





























v

+
ρ

2















∑

k

ǫk∆v2
k (∆vk − ǫ∆v) + 2

∑

k

ǫkvg · (∆vk − ǫ∆v)∆vk















+ρ (1− ǫ)
(

u+ Pg

)

vg

}

= 0,(60)

where the total energy densitye is given by Eq. 24. This expression
reduces to the one found in Laibe & Price (2014a) for the case
n = 1.

2.3.4 Conservation of physical quantities over the entire space

If the volumeV used in the equations above represents the entire
space, the surface terms of the previous integrals go to zeroand

dM
dt
=

dP
dt
=

dE
dt
= 0. (61)

Eq. 61 provides important constraints for any conservativenumeri-
cal methods. For example, these conservation relations provide the
basis on which one could derive the SPH equivalent of Eqs. 1 – 5in
a form which is fully conservative, implying that Eq. 61 is satisfied
to machine precision (see Laibe & Price 2014b).

2.4 Drag terms

2.4.1 Drag coefficients

Various drag regimes are encountered in astrophysical systems, de-
pending on the properties of the grains and of the gas (see e.g.
Laibe & Price 2012b for an exhaustive discussion). In most ofthe
situations, linear drag regimes (i.e. constant drag coefficient) are
relevant, although non linear drag regimes can be experienced by
large particles in highly energetic flows. This consideration is of
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importance for numerical simulations since efficient implicit time
stepping is easier to implement in the linear case (Laibe & Price
2012b, 2014b). From a numerical point of view, it is also important
to handle drag coefficients that are not related to any physical quan-
tities to benchmark the algorithms efficiently. Thus, we retain quite
general drag coefficients in the following, except when a particular
expression is specified.

Importantly, the drag coefficientsKk involved in Eqs. 4 – 5
correspond to drag forces expressed per unit volume.Kk is therefore
related to the drag coefficient of a single grainK1k by the relation

Kk = ρdkK1k/mk, (62)

wheremk denotes the mass of a single grain (Laibe & Price 2012a).
Denoting tk = K1k/mk the typical drag time exerted on a single
grain, Eq. 62 can be rewritten

tbk = ǫ
−1
k tk. (63)

It should be noted that, as a thought experiment, a dust phase
i can be artificially split into several dust phases (e.g.ǫi =

∑

j ǫi, j ).
This implies also that the drag coefficients of the sub-phases should
be weighted accordingly, i.e.Ki, j = ǫi, j Ki. Performing this transfor-
mation onto the drag coefficients ensures that the two descriptions
of the mixture are identical. This provides a particularly efficient
way of benchmarking numerical codes against analytic solutions
obtained for the casen = 1. We have used this approach in Sec. 3.

2.4.2 Drag matrix

Eq. 28 describes the exchange of momentum between then dust
phases and the gas. If we restrict the evolution of the differential
velocities to the contributions of the drag terms (i.e. excluding in-
trinsic and external forces, as well as convective terms), we obtain
the following equation
(

∂∆V
∂t

)

drag

= −Ωn∆V, (64)

where∆V denotes the vector whose components are∆Vi = ∆vi ,
andΩn is the drag matrix defined by

Ωn,i j =























1
(1− ǫ) tb j

, i , j;

1
tbi

(

1
ǫi
+

1
(1− ǫ)

)

, i = j.
(65)

In the case where the mixture is composed by a single dust species
only, Eq 64 reduces to a simple scalar differential equation (e.g.
Laibe & Price 2014a).

We now examine the properties of the matrixΩn to interpret
the physics contained in Eq. 64. We first note thatΩn is a diagonal
plus rank-one matrix, i.e.Ωn = D + U, where

Di j = δi j [ǫi tbi ]
−1 , (66)

Ui j = uiv
T
j , (67)

with

ui = 1, (68)

vi =

(

(1− ǫ) tb j

)−1
. (69)

Using the formula det
(

D + uvT
)

= det
(

D−1
)

det
(

I + vTD−1u
)

, the
determinant ofΩn is:

det(Ωn) =















∏

k

1
ǫktbk















×














1+
∑

k

ǫk

(1− ǫ)















> 0. (70)

Thus, the matrixΩn is invertible. The analytic expression ofΩ−1
n

can be obtained from the Sherman-Morrison formula for diagonal
plus rank-one invertible square matrices:

(

D + uvT
)−1
= D−1 − D−1uvTD−1

1+ vTD−1u
, (71)

which gives after simplifications

Ω
−1
n,i j =

1
det(Ωn)

×















































































































−

∑

k, j

1
tbk

(1− ǫ)
∏

k,(i, j)

ǫk
, i > j;

−

∑

k,i

1
tbk

(1− ǫ)
∏

k,(i, j)

ǫk
, i < j;















∏

k,i

1
tbk















× 1− ǫi
(1− ǫ)

∏

k,i

ǫk
, i = j,

(72)

wheretbk is related to drag timescale on a single grain by Eq. 63.
Physically, the differential energies between the dust phases and the
gas are dissipated by the drag. In particular, the followinginequality
(

d∆V
dt

)

drag

= −2∆V · Ωn∆V < 0, (73)

has to be satisfied, implying thatΩn has to be positive definite. To
prove this property, we introduce the diagonal matrixΨ defined by

Ψi j =















K−1/2
i , i = j;

0, i , j
(74)

which satisfies the similarity relation

Wn = Ψ
−1
ΩnΨ, (75)

where Wn is the real symmetric matrix (therefore positive definite)
defined by

Wn,i j =
1

(1− ǫ) ρ























Ki

(

1+
(1− ǫ)
ǫi

)

, i = j.
√

KiK j , i , j.
(76)

In Appendix A, we demonstrate that the spectrum formed by the
positive eigenvaluesλk of Ωn (or equivalently Wn) satisfies















∑

k

(1− ǫk) tk















−1

< λmin ≤ λk ≤ λmax ≤ max
k

(

1
tk

)

+
1

(1− ǫ)
∑

k

ǫkt
−1
k ,

(77)

Physically, the quantitiestdk = λ
−1
k are the inverses of then physical

drag timescales encountered in the problem.A priori, those values
depart from then individual stopping times obtained when the gas
and a dust phase are treated independently to the other dust phases.
Those drag timescalestdk depend both on the drag coefficients, but
also on the relative densities of each phase. This generalises the
casen = 1, for which the physical processes induced by the drag
are determined by the values of the drag coefficient and the dust
fraction. In a multiple dust species mixture, dense grains phases
provide an efficient backreaction onto the gas. On the other hand,
grains behave as individual particles in dilute dust phases. They are
dragged by the gas which is itself affected by the backreaction of
the dense dust phases. The dynamics of the mixture induced bythe
drag is therefore related to the efficiency of the coupling between
the gas and the different grains species, as well as to the relative
densities of the different phases.
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2.4.3 Explicit timestepping criterion

The drag terms in Eqs. 28 – 29 are usually integrated numerically
by an operator splitting method, meaning that the drag contribution
is treated independently from the conservative part of the evolu-
tion equations. In a single-fluid formalism, integration schemes for
drag terms are much easier to derive than in a multiple fluid for-
malism (e.g. Laibe & Price 2014b), since all the physical quantities
required are carried by the same fluid element and no interpolation
over the different phases is required.

The simplest explicit solver for Eq. 64 is the forward Euler
scheme

∆Vn+1 − ∆Vn

∆t
= −Ωn

n∆Vn. (78)

To determine the stability constraint in Eq. 78, we will assume that
the drag coefficients are constant. In this case, the inequality in the
right hand-side of Eq. 77 provides a lower bound for the small-
est drag timescale which is larger than the smallest stopping time.
Therefore, it provides a Courant-Friedrichs-Levy (CFL) condition
for the drag time step∆td,one that is less stringent than∆td,multi, the
one which would be used with a multiple fluids treatment, namely

∆t > ∆td,one=















max
k

(

1
ǫktbk

)

+
1

(1− ǫ)
∑

k

t−1
bk















−1

, (79)

since

∆td,one> ∆td,multi = max
k

[

1
tbk

(

1
ǫk
+

1
(1− ǫ)

)]

. (80)

As an example, if a single dust speciesi is submitted to a very
strong drag such thattbi ≪ tbk,i, Eq. 79 can be approximated by

∆td,one≃
(

1
mink (tsk)

+
1

(1− ǫ) tbi

)−1

. (81)

Eq. 81 shows that∆td,one results from a balance between density
weighted contributions of then stopping times and the intrinsic
drag timetbi that depends only on the drag coefficientKi .

2.4.4 Implicit timestepping

In numerical simulations, drag stopping times that are much
smaller than all the other typical times involved in the prob-
lem induce prohibitive computational costs with explicit numerical
schemes. To get rid of this issue, this conditionally stableexplicit
scheme has to be replaced by an unconditionally stable implicit
scheme. The simplest for integrating Eq. 64 is the backward Euler
scheme

∆Vn+1 − ∆Vn

∆t
= −Ωn+1

n ∆Vn+1, (82)

which is equivalent to

∆Vn+1
=

(

I + Ωn+1
n ∆t

)−1
∆Vn, (83)

showing that the scheme’s efficiency is obtained at the price of a
fast and robust matrix inversion. Using Eq. 75 to transform Eq. 64,
the problem can be reduced to

∆V̂n+1
=

(

I +Wn+1
n ∆t

)−1
∆V̂n, (84)

where∆V̂ = Ψ−1
∆V. The vector∆V̂ is straightforward to com-

pute from∆V (and vice-versa) sinceΨ is an analytic diagonal ma-
trix. The general inverse problem (Eq. 83) has thus been reduced
to the inversion of a real symmetric matrix, for which robustand

fast algorithms are known to converge (e.g. Cholesky decomposi-
tion, Gauss-Seidel iterations). Alternatively, the Sherman-Morrison
formula (Eq. 71) can be used to invert the matrix on the right-hand
side of Eq. 84 analytically if the drag coefficient is constant. The re-
sulting expression is however useful only for situations where the
number of dust phasesn is not too large.

2.5 A two-dust population model

To understand how different phases of a mixture with multiple dust
species interact with each other, it is instructive to consider the spe-
cial casen = 2 involving two dust phases. Here the parameter space
is narrower than for an arbitrary number of dust phases, but aspects
specific to multiple dust populations remain. In this case weuse
β ≡ t1/t2 to denote the ratio of the two single-grains drag times and
φ1 to denote the relative dust fraction, i.e.

φ1 ≡ ǫ1/ǫ, (85)

which impliesǫ2 = (1− φ1) ǫ. Thus, the problem is symmetric with
respect to the transformation

[

β→ 1/β, φ1 → (1− φ1)
]

. The matrix
Ω2 becomes

Ω2 =
ǫφ1

t1 (1− ǫ)





























1+
(1− ǫ)
ǫφ1

β (1− φ1)
φ1

1
β (1− φ1)
φ1

(

1+
(1− ǫ)
ǫ (1− φ1)

)





























. (86)

The two physical drag time scalestd± are related to the eigenvalues
λ± of the matrixΩ2 by the relation

t−1
d± = λ± =

1
2

(

t−1
s1 + t−1

s2

) {

1±
√

1− Q
}

, (87)

where

Q =
4β (1− ǫ)

[

(1− φ1) (1− ǫ (1− φ1)) + βφ1 (1− ǫφ1)
]2
, (88)

andtsi are the usual stopping timest−1
si = Ki

(

ρ−1
g + ρ

−1
di

)

defined for
a single dust phase mixture (Q < 1 sinceλ± > 0). Thus, ifQ→ 1,
we have

t−1
d± = λ± ≃

1
2

(

t−1
s1 + t−1

s2

)

, (89)

and the expression is dominated by the smallest stopping time. If
Q≪ 1,

t−1
d+ = λ+ ≃

(

t−1
s1 + t−1

s2

)

, (90)

t−1
d− = λ− ≃ Q

(

t−1
s1 + t−1

s2

)

. (91)

In this limit, td− is larger than the two stopping times characterising
the damping processes involved when the gas interact with the dust
phase separately.

2.6 First order approximation

In the limit where all then drag timescalestdk are much smaller
than any other typical time scaleτ involved in the problem, Eq. 28
can be approximated by the so-called terminal velocity approxima-
tion (see e.g. Youdin & Goodman 2005; Chiang 2008; Barranco
2009; Lee et al. 2010; Jacquet et al. 2011; Laibe & Price 2014afor
applications in the casen = 1), i.e.

∆V = −Ω−1
n ∆F, (92)

where∆F is the vector whose coordinates are the differential forces
between a dust phase and the gas, i.e.∆Fi =

(

fdi − fg

)

. From Eq. 72,
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we derived the values of each differential velocity∆vk in this strong
drag limit. After simplifications we find

∆vk =















(

fdk − fg

)

−
∑

l

(

fdl − fg

)

ǫl















tk. (93)

If fd = 0, Eq. 93 reduces to

∆vk = fg (1− ǫ) tk. (94)

Moreover, ifn = 1, andfg = − ∇P
ρg

, Eq. 93 reduces to

∆v =
∇P
ρg

ts, (95)

where the stopping timets for a single dust phase is defined by

ts =
ρgρd

K
(

ρg + ρd

) =
ǫ (1− ǫ) ρ

K
. (96)

Eq. 95 is the usual expression for the terminal velocity in the case
n = 1 (we used the relationtk = ǫρ/K obtained from Eq. 63). Using
Eq. 93 to expand the evolution equations to the first order intdk/τ,
we find

dρ
dt

= −ρ(∇ · v), (97)

dǫk
dt

= −1
ρ
∇ · [ρǫk (∆vk − ǫ∆v)

]

, (98)

dv
dt

= (1− ǫ) fg +

∑

k

ǫkfd + f , (99)

du
dt

= −
Pg

(1− ǫ) ρ∇ · vg + ǫ∆v.∇u, (100)

∆vk =















(

fdk − fg

)

−
∑

l

(

fdl − fg

)

ǫl















tk, (101)

since all the terms of second order arising from quadratic expres-
sions in∆vk have being neglected.

2.7 Zeroth-order approximation

In the limit of an infinitely strong drag regime,tbk = 0 to the zeroth
order of approximation intdk/τ. In this limit, the gas and all the
dust phases are perfectly coupled, i.e.∆vk = 0. The equation of
evolutions for the mixture then reduce to

dρ
dt

= −ρ(∇ · v), (102)

dǫk
dt

= 0, (103)

dv
dt

= (1− ǫ) fg +

∑

k

ǫkfd + f , (104)

du
dt

= −
Pg

(1− ǫ) ρ∇ · v. (105)

These equations are similar to the one found in the zeroth order
approximation with a single dust species. Physically, thismeans
that all the phases evolve coherently as they are stuck together by
the drag, following the centre of mass of the system. In particular,
the dust phases move as one and the system reduces to the case
n = 1. This implies that the mixture can be treated like as a single
gas phase with a corrected sound speed ˜cs

c̃s =
cs√
1− ǫ

, (106)

wherecs is the sound speed of the gas phase (Laibe & Price 2012a).

2.8 Continuous dust distributions

2.8.1 Physical quantities

So far we have assumed a finite numbern of dust phases. This dis-
crete description is of practical interest for numerical simulations,
for which continuous dust distributions have to be sampled over a
finite number of dust phases. For analytic studies, however,it may
be practical to directly use the evolution equations for a continuous
dust distribution. Hence, we can describe a dust distribution de-
pending on a single continuous parameter, the grain sizes (i.e. all
the grains of the same size are treated as belonging to the same con-
tinuous dust phase). Heren(s), m(s) andvd(s) denote the number
density of grains per unit size, the individual mass of a grain and the
velocity of a the phase made of grains of sizes, respectively (where

m(s) =
4
3
πρs3 for compact spherical grains). The dust densities and

velocities are then defined according to

ρd ≡
∫

n(s)m(s)ds, (107)

vd ≡ 1
ρd

∫

n(s)m(s)vd(s)ds. (108)

Thus, the definition of the mixture’s density,ρ = ρg+ ρd, holds. An
important quantity is the dust fraction per unit sizes, defined as

ǫ̃(s) ≡ n(s)m(s)
ρ

, (109)

which satisfies

ǫ =

∫

ǫ̃(s)ds=
ρd

ρ
. (110)

The relation given by Eq. 110 also ensures thatρg = ρ (1− ǫ) and
v = (1− ǫ) vg + ǫvd. Using∆v(s) ≡ vd(s) − vg to denote the differ-
ential velocity between grains of sizes and the gas, one has

∫

ǫ̃(s)∆v(s)ds= ǫ∆v, (111)

where the generalised differential velocity for continuous dust dis-
tributions is still defined as

∆v ≡ vd − vg. (112)

This implies that the gas and dust velocities can be expressed in
term of the one-fluid quantities as

vg = v − ǫ∆v, (113)

vd = v + ∆v(s) − ǫ∆v. (114)

Eqs.113 and 114 are the continuous versions of Eqs. 17 – 18. Fi-
nally, the total energy of the mixture becomes:

e =
1
2
ρv2
+

1
2
ρ

[∫

ǫ̃(s)∆v(s)2ds− (ǫ∆v)2

]

+ (1− ǫ) ρu. (115)
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Figure 1. Evolution of gas and dust velocities towards the barycentric value in a gas+ two dust phase mixture moving in opposing directions, showing the
fast (thick solid lines) and the slow (thin dashed lines) eigenmodes in a linear drag regime. Black, red and blue colours represent the gas, first and second dust
phases, respectively. The parameters of the mixture areρ = 1, ǫ = 0.5 andφ1 = 0.5, t1 = 2, t2 = 0.2 (left panel),φ1 = 0.1, t1 = 0.2, t2 = 1 (right panel).
Depending on the choice of parameters, the different phases evolve simultaneously or in opposition.

2.8.2 Evolution equations

The generalisation of Eqs. 25 – 29 to continuous dust distributions
results in the following equations of evolution

dρ
dt

= −ρ(∇ · v), (116)

dǫ̃(s)
dt

= −1
ρ
∇ · [ρǫ̃(s) (∆v(s) − ǫ∆v)

]

, (117)

dv
dt

= (1− ǫ) fg +

∫

ǫ̃(s)fd(s)ds+ f

−1
ρ
∇ ·

[

ρ

∫

ǫ̃(s)∆v(s) (∆v(s) − ǫ∆v) ds

]

, (118)

d∆v(s)
dt

= −∆v(s)
ts(s)

−
∫

ǫ̃(s′)
(1− ǫ)

∆v(s′)
ts(s′)

ds′

+(fd(s) − fg) − (∆v(s) · ∇)v

+
1
2
∇ [∆v(s) · (∆v(s) − 2ǫ∆v)] , (119)

du
dt

= −
Pg

(1− ǫ) ρ∇ · vg + ǫ∆v.∇u+
∫

∆v(s)2ǫ̃(s)
ts(s) (1− ǫ) ds,(120)

wherets(s) denotes the continuous stopping time. This is defined
by

ts(s) =
dρd

ds
(s) =

m(s)
K1(s)

, (121)

whereK1(s) is the drag coefficient of asinglegrain (and therefore
has different dimensions toK, see Laibe & Price 2012a). For a dust
distribution characterised by single dust grain sizes0,

n(s) =
ρ

m(s0)
δ (s− s0) , (122)

and

K =
∫

K1 (s) sds=
ρK1 (s0)
m(s0)

. (123)

Eqs. 116 – 120 can also be written in a conservative form, general-
ising the equations derived in Sec. 2.3.

2.8.3 Strong drag regimes

In the limit where all the continuous dust distribution satisfies the
limit of a strong drag regime, Eq. 119 converges to the terminal
velocity approximation

∆vk

ts(s)
+

∫

ǫ̃(s′)
(1− ǫ)

∆v(s′)
ts(s′)

= (fd(s) − fg). (124)

We derive the analytic solution of Eq. 124 as

∆v(s) =

(

(fd(s) − fg) −
∫

(fd(s
′) − fg)ǫ̃(s

′)ds′
)

ts(s), (125)

which becomes

∆v(s) = −fg (1− ǫ) ts(s), (126)

if fd(s) = 0 (a direct substitution of Eq.125 in Eq. 124 proves the
result). Eq. 124 is the continuous version of Eq. 93. In the limit
of infinitely strong drag regimes,ts(s) → 0 and∆v(s) = 0 (zeroth
order approximation).

3 APPLICATIONS

3.1 dustybox

Thedustybox problem consists of gas and dust moving in opposite
directions in a homogeneous, isothermal mixture, considering only
the mutual drag acting between the phases. The different phases
have constant uniform densities (implyingρg = ρg0 andρdk = ρdk0,
or equivalentlyρ = ρ0 andǫk = ǫk0). The initial differential veloci-
ties of the mixture as well as the gas pressureP are uniform. Ana-
lytic solutions of thedustybox problem for different drag regimes,
either linear and non-linear, are given in Laibe & Price (2011).
Since the only forces relevant for this problem are the drag forces,
the total linear momentum of the system is only exchanged be-
tween the different phases, resulting in a constant barycentric ve-
locity (v = v0). As the dustybox problem does not involve any
velocity gradient, the only relevant evolution equation isthe one
involving differential velocities of the mixture, which reduces to

d∆V
dt
=
∂∆V
∂t
= −Ωn∆V, (127)
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Figure 2. Comparison between the velocities obtained for thedustybox
problems with the linear (thick solid lines) and the quadratic (thin dashed
lines) drag regime in a two dust phase mixture. Parameters are similar to
the ones used in Fig. 1, withvg,0 = 1, vd1,0 = 2 andvd2,0 = −0.5. Black,
red and blue colours represent the gas, the first and the second dust phases
respectively. The mixture’s evolution is essentially identical in both cases,
with the velocities converging towards the barycentric velocity v = 1.25 of
the system (black thick dashed line). The gas velocity is notmonotonic.

where ∆V is the differential velocity vector introduced in
Sect. 2.4.2. For the case of a linear drag regime,Ωn has constant
coefficients and the exact solution of Eq. 127 is

∆V = e−Ωnt
∆V0. (128)

Hence, the differential velocities∆V are progressively damped over
then successive drag timescales characterising the mixture.

3.1.1 Results with gas and two dust phases

We can use the two-dust phase model described in Sec. 2.5 to il-
lustrate the physics of thedustybox problem with multiple dust
species. We setρ = 1, ǫ = 0.5 (so that the total mass of gas and
dust are identical),φ1 = 0.5 (the dust mass is identical in both dust
phase),t1 = 2 andt2 = 0.2 (the drag is the strongest for the second
phase; in practice, this would correspond to smaller grains). The
eigenvaluesλ± of the matrixΩ2 are given by Eq. 87. Our set of
parameters givesQ ≃ 0.3.

We first check that the lower and upper bounds provided by
Eq. 77 are relevant. We find

0.606< λ− ≃ 0.659< λ+ = 7.591< 7.750, (129)

showing that Eq. 77 gives quite accurate limits for the eigenval-
ues of the drag matrix (we obtain similar accuracies with different
parameters). The two drag timescales aret1 = λ−1

2+ ≃ 0.132 and
t1 = λ−1

2+ ≃ 1.518. Those values differ by less than 10% from the
individual stopping timests1 andts2.

The left panel of Fig. 1 shows the velocities of the gas and the
dust phases as a function of time, corresponding to the two eigen-
modes of the matrixΩ2. The first,fast eigenmodeis the one for
which the differential velocities between species is more efficiently
damped. The gas velocity is in the opposite direction to boththe
first and the second dust species. The damping is optimal since the
initial kinetic energy is mostly concentrated in the secondphase,
which is the most efficiently coupled to the gas. In the second,slow
eigenmodethe gas and the dust species move in the opposite di-
rection from the first dust phase, which is also the least efficiently
coupled. The differential kinetic energy between the phases is thus

dissipated inefficiently. The right panel of Fig. 1 shows that a sim-
ilar behaviour is found fort1 = 0.2, t2 = 1 andφ1 = 0.1. However,
in that case the phases are coupled differently since the dust phase
with the highest density is now the most poorly coupled.

3.1.2 Quadratic vs. linear drag and non-monotonic behaviour

Fig. 2 compares linear and quadratic drag operators (for the
quadratic case we have integrated the evolution equations numeri-
cally). The velocities of the phases were initiallyvg,0 = 1, vd1,0 = 2
andvd2,0 = −0.5, and can be seen to relax towards the barycentric
velocity of the system,v = v0 = 1.25. As in then = 1 case, the na-
ture of the evolution is mostly independent of the drag regime. This
implies that iterative numerical procedures to solve the dissipative
part of the equations will work with both linear and non-linear drag
regimes (as discussed above, the similar symmetric form Wn of Ωn

provides the most robust structure to approximate the solution of
the problem with iterative methods).

The evolution in Fig. 2 occurs in two stages: During the first
stage the gas and the second dust phase quickly stick together and
form a sub-mixture composed of the gas and one dust phase. This
happens in a typical time of ordert1, since the second phase possess
the highest the drag coefficient and the smallest mass. In the sec-
ond stage, which develops over a typical timet2, this sub-mixture
feels the drag from the first dust phase, as it possess a smaller drag
coefficient and a larger density. The differential velocity between
the first dust phase and the sub-mixture is then damped on a longer
timescale and all the velocities of the mixture’s phases converge
to the barycentric velocity of the system. This example illustrates
a physical property specific to multiple dust phases mixtures (i.e.
n > 1): the evolution of the different velocities is not necessarily
monotonic (which was the case forn = 1). In particular the gas ve-
locity decreases and then increases under the successive actions of
the second and the first dust species, respectively (see black lines
in Fig. 2).

We have also solved thedustybox problem for then = 3 case,
finding results similar to those discussed above.

3.2 dustywave

3.2.1 General case

The dustywave problem consists of the propagation of a linear
acoustic wave in a dust and gas mixture, with the different phases
interacting via linear drag terms. The analytic solution for the
dustywave problem in the special casen = 1 is provided in Laibe
& Price (2011). Here, we generalise the problem for an arbitrary
number of dust phases. Linearising the evolution equationsfor the
mixture around the equilibrium solutionρ = ρ0, ǫ = ǫ0, v = ∆v = 0
gives

∂δρ

∂t
= −ρ0

∂δv
∂x
, (130)

ρ0
∂δv
∂t

= −c2
s

[

(1− ǫ0)
∂δρ

∂x
− ρ0
∂δǫ

∂x

]

, (131)

ρ
∂δǫk

∂t
= − ∂

∂x















ρ0ǫk0















−δ∆vk −
∑

l

ǫl0δ∆vl





























, (132)

∂δ∆vk

∂t
= − δ∆vk

tk0
−

∑

l

ǫl0

(1− ǫ0) tl0
δ∆vl

+
c2

s

(1− ǫ0) ρ0

[

(1− ǫ0)
∂δρ

∂x
− ρ0
∂δǫ

∂x

]

. (133)
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Figure 3. Comparison of the evolution of the amplitude of the perturbations in thedustywave problem with one (black) and two (red) dust phases. For theδǫ

and theδ∆v panels, dashed and dotted lines represent perturbations related to the first and the second dust phases, respectively. The parameters used for the
background equilibrium arecs = 1, ρ0 = 2, ǫ0 = 0.5, t1 = 2, k = 2π andφ1 = 0.8, t2 = 0.2. No major differences are found between the two cases — with the
evolution of each perturbation being similar. The amplitudes of the perturbations have been renormalised to the initial velocities of the phases.

where an isothermal equation of stateδP = cs2 [

(1− ǫ0) δρ − ρ0δǫ
]

and the relationδǫ =
∑

k δǫk have been used. To first order, the in-
dividual fluctuations of the dust fractionsδǫk are not involved in
Eqs. 130 – 133 and only the terms inδǫ coming from the gas pres-
sure are relevant. The dispersion relation related to those2n + 2
equations is a polynomial of order 2n + 1 in ω and cannot be fac-
tored easily.

We illustrate the physics of thedustywave problem with mul-
tiple dust species with the two dust phase mixture model described
in Sect. 2.5. We assumed perturbations of the formδA = δÃ(t) eikx

in Eqs. 130 –133, and solved the resulting system of ordinarydiffer-
ential equations numerically. Absolute values of the resulting com-
plex amplitudes may then be plotted and compared to those in a
mixture with a single dust phase. Fig. 3 shows the evolution of the
real amplitudes of the perturbations in the casen = 1 (cs = 1,
ρ0 = 2, ǫ0 = 0.5, t1 = 2, k = 2π in code units) andn = 2 (φ1 = 0.8,
t2 = 0.2). These parameters are identical to the those used in the
dustybox problem in Sect. 3.1. Initially,δvg = δvd1 = δvd1 and
δρg = δρd1 = δρd1 = 0.

We find that the evolution of the perturbations in then = 2 case
is similar to then = 1 case. After a transient regime during which
the drag terms damp the differential velocities between the dust and
the gas phases, the mixture stays at rest. The entire kineticenergy
of the mixture has been progressively damped by the drag, since

the gas pressure maintains a non-zero differential velocity between
the gas and the dust phases by propagating a perturbation at the gas
sound speedcs. After several drag times, periodic density fluctu-
ations remain in the dust phases as remnants of the sound waves
dissipated by the gas drag. The asymptotic values obtained for δρ
andδǫ balance each other to giveδρg = 0, since the energy pow-
ering the acoustic wave is entirely dissipated. We have alsostudied
then = 3 case, and found similar results.

3.2.2 Terminal velocity approximation

The limiting behaviour of thedustywave problem in a drag domi-
nated regime is given in LP12a for the casen = 1. For any number
of dust phases, an analytic solution can be derived using thegener-
alised terminal velocity approximation given in Sec. 2.6. Substitut-
ing Eq. 94 into the evolution equations gives

dρ
dt

= −ρ ∂v
∂x
, (134)

ρ
dv
dt

= −∂P
∂x
, (135)

ρ
dǫk
dt

= − ∂

∂x















ǫk
∂P
∂x















tk −
∑

l

ǫl tl





























. (136)
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A linear expansion of Eqs. 134 – 136 gives

∂δρ

∂t
= −ρ0

∂δv
∂x
, (137)

ρ0
∂δv
∂t

= −cs2 ∂

∂x
((1− ǫ0) δρ − ρ0δǫ) , (138)

ρ0
∂δǫk

∂t
= −cs2ǫk0















tk0 −
∑

l

ǫl0tl0















×

∂2

∂x2
(−ǫ0δρ + ρ0δǫ) , (139)

and after summing over the indicesk in then equations of Eq. 139,
we obtain

ρ0
∂ǫ

∂t
= −c2

sǫ0ts,eff
∂2

∂x2
(−ǫ0δρ + ρ0δǫ) , (140)

wherets,eff denotes the effective stopping time of the mixture which
is given by:

ts,eff =
(1− ǫ0)
ǫ0

∑

k

ǫk0tk0. (141)

In the case of a single dust species, Eq. 141 reduces tots,eff =
ǫ (1− ǫ) tb = ts, the usual stopping time.

Remarkably, the system formed by Eqs. 137 – 138 and 140 is
equivalent to the system found for the casen = 1, simply with ts
replaced byts,eff (Laibe & Price 2014a). We deduce from this anal-
ogy, by extrapolating the result from the analytic solutionderived
in LP12a forn = 1, that monochromatic plane waves solutions of
thedustywave problem therefore satisfy the dispersion relation

ω2
= k2c2

s

[

(1− ǫ0) − iωǫ0ts,eff
]

. (142)

3.2.3 Resolution criterion at high drag

Importantly, as shown in Laibe & Price (2012a) for the casen = 1,
Eq. 142 sets the spatial resolution criterion required whensimulat-
ing strong drag regimes in a dust and gas mixture with a multiple
fluid algorithm. For an arbitrary number of dust species, this crite-
rion can be generalised to give

∆ . csts,eff , (143)

where∆ is the resolution length of the simulation (∆ ≃ h, the
smoothing length, in SPH simulations). However, if the evolution
of the gas and the dust phases are computed with a numerical
method based on the one-fluid formalism, this spatial criterion res-
olution is irrelevant, since the mixture’s differential velocities are
intrinsic quantities that are advected with the fluid (Laibe& Price
2012a, 2014a,b) rather than representing a physical separation of
resolution elements.

3.2.4 Drag timescales with continuous dust distributions

For continuous dust distributions, the same reasoning can be per-
formed, leading to

ts,eff =
(1− ǫ0)
ǫ0

∫

ǫ̃(s)ts(s)ds. (144)

Eq. 144 shows that if the density of dust fraction ˜ǫ(s) and the drag
timescales of small grains go like ˜ǫ ∝ sa andts ∝ sb, the numerical
value ofts,eff will be dominated by the large or small grains depend-
ing on whether the quantitya+ b+ 1 takes positive or negative val-
ues, respectively. As an example, consider spherical compact grains
with a size distribution typical of the ISM,n(s) ∝ s−3.5, a = −0.5

and grains submitted to the Epstein drag regime, for whichb = 1.
In this case we havea + b + 1 = 1.5. This tends to indicate that
within the dust population which satisfies the terminal velocity ap-
proximation, the contribution from large grains dominatesover the
integral summation in Eq. 144. This implies that the spatialres-
olution criterion would be less stringent than if the integral were
dominated by the contribution of the small grains. However,the
caveat of this simple reasoning is thatn(s) is not a free parameter
of the problem, since it should evolve according to Eq. 26 (aswell
as grain growth, which is neglected here).

Replacingts by ts,eff is not a suitable recipe for every physical
problem. In thedustywave problem, this result arises because: 1)
the problem is linearised, 2) we are in the limit of strong drag, and
3) the pressure gradient at equilibrium is zero, implying that the
perturbations in the dust fractions play a role viaδǫ only, and not
via the individual values ofδǫk. This last point allows one to sum
over the indicesk in order to reduce the problem to the propagation
of an acoustic wave in a mixture with a single dust phase.

3.3 dustyshock

Thedustyshock problem consists of the propagation of a 1D shock
in a dust and gas mixture. As shown in Miura & Glass (1982) and
Laibe & Price (2012a, 2014b), the shock evolution is dividedinto
two phases. First, the differential velocities between the gas and the
dust are damped. In the case of a mixture with multiple dust phases,
this transient regime occurs during then physical drag timescales of
the problem, which are the inverses of the eigenvalues of thedrag
matrix Ωn. Then, the mixture reaches a stationary regime, where
the shock propagates as in a pure gas phase, but at the modified
sound speed ˜cs given by Eq. 106. ˜cs is the same modified sound
speed as for the casen = 1. Indeed, ˜cs is related to the behaviour of
the mixture in the limiting regime of an infinite drag, which does
not depend on the number of dust phases (see Sect. 2.7).

In the limiting case of strong drag regimes, similar resolution
issues arise for thedustyshock problem as fordustywave problem
when treating the system with a multiple fluid formalism (Laibe &
Price 2012a). This issue can be fixed by using the single-fluidfor-
malism developed in this paper, exactly as in the one dust species
case (Laibe & Price 2014a,b). In the case of a multiple dust pop-
ulation, using the one-fluid formalism is even more valuablesince
it avoids the need for high resolution everywhere merely because a
small fraction of strongly coupled dust grains are present.

3.4 Radial migration in discs

3.4.1 Analytic solution

The radial-drift of single sized dust grains in protoplanetary discs is
a well studied problem (e.g. Weidenschilling 1977; Nakagawa et al.
1986; Youdin & Shu 2002; Laibe et al. 2012, 2014; Laibe 2014).In
a two dimensional (x, y) shearing box rotating at an angular velocity
Ω (Goldreich & Lynden-Bell 1965), the analytic solution for the
problem reads:

vx = 0, (145)

vy = −3
2
Ωx+

1
2ρ0Ω

∂r P, (146)

∆vx =
∂r P

ρ0 (1− ǫ0)
ts

(

1+ Ω2t2s
) , (147)

∆vy = − ∂r P
ρ0 (1− ǫ0)

Ωt2s
2
(

1+ Ω2t2s
) , (148)
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Figure 4. The orange, purple, blue and red curves give the values of the
functiongǫ (T1,T2) for increasing values of the dust fraction, i.e.ǫ = 0.01,
0.1, 0.25 and 0.5 respectively. Below those curves, the grains of the first
dust phase migrate outwards in the individual grains limit(φ1 = 0). This
process can happen only if the grains of the other species arelarger, since
the curves are below the lineT1 = T2 (black dashed line). The maximum
possible size for outwardly migrating grains (given by the maximum of the
curvesgǫ ) is an increasing function of the dust fractionǫ.

where the large scale pressure gradient∂r P is a constant over the
size of the box. This large scale pressure gradient enforcesa differ-
ential velocity between the gas and the dust which is damped by the
drag. As a result, angular momentum is transferred from the dust
(which therefore migrates inwards) to the gas (which migrates out-
wards). Youdin & Shu (2002); Laibe et al. (2012); Pinte & Laibe
(2014) have shown that grains can pile-up as they reach the inner re-
gions of the disc provided that the drag intensity increasesenough
to balance the increased migration efficiency from the increasing
radial pressure gradient. This result has been extended to the case
of growing grains (Laibe et al. 2014; Laibe 2014; Pinte & Laibe
2014), showing that a significant fraction of the classical T-Tauri
Star discs should retain their particles during the initialstages of
planet formation.

The analytic solution for the problem of the radial evolution of
a multiple grain sizes distribution is derived in Appendix Aof Bai
& Stone (2010). We show here how to rederive it from the one-fluid
formalism. We first note that

f = 3Ω2xux, (149)

fg = − ∂r P
ρ0 (1− ǫ0)

ux − 2Ω × vg, (150)

fdk = −2Ω × vdk, (151)

so that

ρgfg +
∑

k ρdkfdk

ρ
= −∂r P

ρ0
ux − 2Ω × v, (152)

fdk − fg =
∂r P

ρ0 (1− ǫ0)
− 2Ω × ∆vk, (153)

wheref is the usual expression for the balance between the gravity
from the central star and the centrifugal force in a Keplerian po-
tential. Importantly the forces specific to each species contain the
Coriolis terms, since they depend on the intrinsic velocityof each
phase. We now look for stationary solutions consisting of a homo-
geneous perturbation superimposed on a constant shear (Eqs. 25 –
26 imply ρ = ρ0 and ǫk = ǫk0). The scalar equations invx, vy are

therefore

−2Ωvy + vx
∂vx

∂x
+ vy
∂vx

∂y
= 3Ω2x− ∂r P

ρ0
, (154)

2Ωvy + vx
∂vy

∂x
+ vy
∂vy

∂y
= 0, (155)

whose solution is identical to the single dust species case and is
given by Eqs. 145 – 146. Writing the 2n equations for the quantities
∆vkx, ∆vky in a matrix form, we have
(

Ωn −2ΩIn
1
2ΩIn Ωn

)

∆Ṽ =
∂r P

ρ0 (1− ǫ0)

(

1n,1

0n,1

)

, (156)

where∆Ṽi = ∆vix if i ≤ n, ∆Ṽi = ∆viy if i > n and 1n,1 is the column
vector of dimensionn containing only the value unity (and similarly
0n,1 contains zeros). SinceΩn is positive definite, det

(

Ω
2
n + Ω

2In

)

>

0 and the matrix is invertible. Using the identity

Ωn

(

Ω
2
n + Ω

2In

)−1
=

(

Ω
2
n + Ω

2In

)−1
Ωn, (157)

Eq. 156 can be inverted by blocks, giving the solutions for the quan-
tities∆vkx and∆vky as

(

∆vkx

∆vky

)

=
∂r P

ρ0 (1− ǫ0)

































∑

j

[

Ωn

(

Ω
2
n + Ω

2In

)−1
]

k j

−Ω
2

∑

j

(

Ω
2
n + Ω

2In

)−1

k j

































. (158)

It is straightforward to see that in the case of a single dust species,
Eq. 158 reduces to Eqs. 147 – 148. We have not, however, been able
to invert the matrixΩ2

n + Ω
2In of Eq. 158 analytically in an elegant

way.Ω2
n + Ω

2In is however similar to a positive definite matrix and
can easily be inverted numerically.

3.4.2 Migration with two dust species

Valuable physical insight into the evolution of the system can be
obtained by using the two dust phase population model described
in Sect. 2.5. When stationary equilibrium is reached, the radial ve-
locities for the gas and the two dust species are:




















vgx

vd1x

vd2x





















=
∂r P

ρ0 (1− ǫ)





















tgx

td1x

td2x





















(159)

where

tgx =

ǫ (1− ǫ)
[

φ1t1 + (1− φ1) t2 + Ω2φ1t1t22 + Ω
2 (1− φ1) t2t21

]

D (Ω, ǫ, φ1, t1, t2)
,(160)

td1x = −
(1− ǫ)

[(

1+ Ω2t22
)

t1 − ǫ
(

φ1 + Ω
2t22

)

t1 − ǫ (1− φ1) t2
]

D (Ω, ǫ, φ1, t1, t2)
,(161)

td2x = −
(1− ǫ)

[(

1+ Ω2t21
)

t2 − ǫ
(

(1− φ1) + Ω2t21
)

t2 − ǫφ1t1
]

D (Ω, ǫ, φ1, t1, t2)
.(162)

and

D (Ω, ǫ, φ1, t1, t2) = 1+ Ω2
[

(1− ǫφ1)
2 t21 + 2ǫ2φ1 (1− φ1) t1t2

+ (1− ǫ (1− φ1))
2 t22

]

+ (1− ǫ)2
Ω

4t21t22(163)

As expected, Eqs. 160–163 are symmetric with respect to the trans-
formation(t1 → t2) , (φ1 → 1− φ1). When the two dust populations
degenerate (t1 = t2, identical dust grains), Eqs. 160–163 reduce to

tgx =
ǫ (1− ǫ) t1

1+ Ω2 (1− ǫ)2 t21
, (164)

tdx = − (1− ǫ)2 t1
1+ Ω2 (1− ǫ)2 t21

, (165)
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Figure 5. Renormalised migration velocities as a function of the relative dust fractionφ1 in a two-dust-phase mixture. Positive velocities indicateoutward
migration. The left panel represents a typical initial situation for a protoplanetary disc. The parameters are set toρ0 = 1, ǫ0 = 0.01,Ω = 1 and individual drag
timescalest1 = 10−3, t2 = 10−2. The right panel mimics a situation where grains have grown and have concentrated due to settling (ǫ0 = 0.01, t1 = 0.1, t2 = 1).
The gas, the first (smaller grains) and the second (larger grains) dust phases are represented by black dashed, red dottedand red dashed lines respectively. As
an indication, thin (thick) solid lines represent the gas and the dust velocities in a mixture made of the second (first) dust species only, i.e.φ1 = 0 (φ1 = 1).
In the first configuration (left panel), grains are migratinginwards, in accordance with the single dust population case. Only a negligible dependence on the
relative dust fraction is observed. In the second configuration (right panel), the smaller grains show outward migration when the relative dust fraction is. 0.6,
with the velocity being of order the optimal migration velocity for grains in discs.

which are the expressions obtained in the original derivation of
Nakagawa et al. (1986) in the casen = 1 (usually, the factor
(1− ǫ) t1 is replaced by the stopping timets). Dust loses angu-
lar momentum to the gas, implying that dust grains migrate in-
wards and the gas migrates outwards. Enforcingǫ = 0 directly in
Eqs. 160–163 provides the usual expression of migration forindi-
vidual isolated grains.

3.4.3 Outward migration of dust particles

Behaviours specific to multiple dust distributions are observed
when the relative composition between the dust species is varied.
In particular, an interesting limit consists of a situationwhere one
of the two phases is infinitely diluted. As an example, we shall fo-
cus hereafter on the caseφ1 → 0, since the two dust populations
are symmetric. In this case, the inertia of the first dust phase is rig-
orously zero and grains behave like isolated individual particles.
Thus, Eq. 161 reduces to

vd1x = −
(1− ǫ)

[

t1 − ǫt2 + (1− ǫ)Ω2t1t22
]

(

1+ Ω2t21
) (

1+ (1− ǫ)2
Ω2t22

) . (166)

As shown by Eq. 166,vd1x depends ont1, but also ont2 since the
gas is dragged by the second dust species. The sign ofvd1x is given
by the sign of the functionfǫ defined by

fǫ (T1,T2) = T1 − ǫT2 + (1− ǫ) T1T
2
2 , (167)

whereT1 andT2 are the individual Stokes numbers of each species,
defined byt1Ω = T1 andt2Ω = T2.

Fig. 4 summarises the detailed study of the functionfǫ . The
important result is that for a range of values of(T1,T2) which de-
pends on the dust fractionǫ, fǫ < 0, implying that the grains are
migratingoutwards. Since this result is obtain at the limitφ1 → 0,
it implies that there is a continuous range for increasing values ofφ1

for which this result holds. Bai & Stone (2010) observed thisout-
wards migration for small grains as a result of their multiple grain
size simulations. From Eq. 167, outward migration occurs when

T1 < gǫ (T1,T2) =
ǫT2

1+ (1− ǫ) T2
2

. (168)

A necessary condition for this condition to be satisfied is (see
Fig. 4):

T1 < gǫ (T1,T2) < ǫT2 < T2. (169)

As a consequence, outward migration occurs only in the dust pop-
ulation with the smallest grain size, i.e. the one with the smallest
value of tk, which is the most efficiently dragged. Physically, the
gas migrates outwards as an effect of the backreaction from the in-
ward migration of the dense phase of large grains. Then, small dust
grains efficiently couple to the gas and migrate outwards, rather
than migrating inward as if it would be expected if they were the
only dust population in the mixture.

The largest possible valueT1c of outwardly migrating grains
corresponds to the maximum of the functiongǫ . This is an increas-
ing function of the dust fraction:

T1c =
ǫ

2
√

1− ǫ
, (170)

which is reached atT2c = (1− ǫ)−1/2. Thus, at small values ofǫ (i.e.
ǫ ≪ 1), only very small grains can migrate outwards. However,
when the dust-to-gas ratio becomes of order unity (ǫ ≃ 0.5), T1c

becomes of order unity. Therefore, grains of intermediate size (i.e.
having a Stokes number of order unity) can migrate outwards.In
theory, very large values ofT1c can be reached in the limitǫ → 1,
but those regimes are not relevant for planet formation.

Fig. 5 compares the renormalised gas and dust velocities ob-
tained for a single and two-dust-phase mixture as a functionof the
relative dust fractionφ1. Radial velocities are positive when the
migration is outward. The parameters of the mixture areρ0 = 1,
ǫ0 = 0.01,Ω = 1 andt1 = 10−3, t2 = 10−2 (left panel) orǫ0 = 0.5,
t1 = 0.1, t2 = 1 (right panel). Those two sets of parameters are
chosen to mimic a typical dust distribution in a protoplanetary disc
before and after the growth and settling stage. In the first case, when
the dust fraction is still small enough and the grains are small, each
grains phase behaves almost as in the single grain case: particles
migrate inwards with velocities that are almost identical to the ones
found in the casen = 1. Corrections due to the change of relative
dust composition are essentially negligible. More interesting is the
case which mimics a stage where dust grains have grown and are
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highly concentrated in the disc mid plane. The presence of grains
with Stokes number of order unity and dust-to-gas ratios of order
unity (ie.. ǫ ≃ 0.5) is expected (e.g. Barrière-Fouchet et al. 2005;
Zsom et al. 2011). In such a situation, the right panel of Fig.5
shows that outward dust migration occurs in this system. When
larger grains (t1 = 1) dominate over the dust density (φ1 . 0.6),
the smaller grains (t2 = 0.1) migrate outwards. A similar behaviour
also occurs for any smaller grains in the first dust species (t1 < 0.1).
Importantly, the renormalised velocity of the outwardly migrating
grains is≃ 0.1, which is of order of the highest velocity which can
be reached for inward migration in the casen = 1, implying that
this outwards drift can be quite efficient.

3.4.4 Consequences for planet formation

As discussed above, the maximum size of dust particles that can
migrate outwards is an increasing function of the dust fraction.
This result is of particular importance for planet formation. Ini-
tially, when dust grains are distributed over the entire disc, the dust
fraction is of orderǫ ≃ 10−3 − 10−2 and dust grains are micron-
sized (T2 ≪ 1). Thus, outward migration does not happen since it
would only concern a population of non-physical (too small)grains
(T1≪ 1), whose migration efficiency would be negligible anyway.
Then, grains grow and settle in the disc midplane where they con-
centrate. If a dust-to-gas ratio of order unity is reached, the pres-
ence of millimetre-sized grains (T2 ≃ 1, e.g. Laibe et al. 2012) can
trigger outward migration of hundredth-of-micron-sized grains (for
which T1 ≃ 0.1) in a classical T Tauri star disc at 100AU. Such a
scenario makes sense for real discs since the combination ofgrowth
and settling is known to provide particles with such sizes inthe disc
midplane (Laibe et al. 2008; Brauer et al. 2008; Laibe et al. 2014).
Moreover, the Stokes number is a decreasing function of the disc
radius since it scales like the disc surface density (e.g. Laibe 2014).
Therefore, on a global radial scale, outward migration of particles
for whichSt ≃ 1 bring grains to the outer regions of the disc, where
their new Stokes number is larger than unity. This process therefore
helps the particles to decouple from the gas and grow at this new
location.

Outward migration of dust particles may explain the presence
of large grains observed in the outer regions of protoplanetary discs
(Ricci et al. 2012). When grains are initially growing, mostof the
dust mass is concentrated in the largest particles (Blum & Wurm
2008; Windmark et al. 2012; Garaud et al. 2013). This implies
φ1 < 0.5 and would support the outward migration mechanism
detailed above. However, this scenario would depend on the grain
growth efficiency, which determines whether the density of the dust
distribution is mostly concentrated into the small or the large grains.

All of this serves to reinforce Bai & Stone (2010)’s remark
that multiple dust phases should not be studied by treating the dust
phases as if they were independently coupled to the gas. The out-
ward migration of large grains found above would not be captured
by such a procedure.

3.4.5 A comment on the expression of the drag coefficients

In a mixture with a single dust species (n = 1) it is convenient
to denote the drag coefficient by the constantK. However, gener-
alising this approach for multiple dust population using constant
coefficientsK1,K2, ...,Kn) instead of using the expression given by
Eq. 62, would lead to incorrect results in the problem of the mi-
gration of multiple dust populations. Indeed, in the limitφ1 → 0
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Figure 6. Growth rate of the unstable eigenmodes for the linear streaming
instability problem in a two dust phases mixture as a function of the relative
dust fractionφ1 (red solid lines). In this example,ρ0 = 4, ǫ0 = 0.75, t1 =
0.1, cs = 0.1, η = 0.05, x = kz = 30π/0.005 andt2 = 10. The values of
the limiting values in a single dust population limit are given by the dashed
black (φ1 = 0) and the solid black lines (φ1 = 1). A small amount of
strongly coupled dust grains can increase the efficiency of the instability by
a factor three.

in the two-dust-species migration model studied above, thedrag
timescaleK1/ (ǫφ1) of the first dust species would tend to infin-
ity instead of taking the finite valuet1, making the dust velocity
incorrectly converge to the gas velocity. Hence, despite our earlier
practice, we recommend use of the quantitiestk rather than the drag
coefficients.

3.5 Linear growth of the streaming instability

The streaming instability in dusty protoplanetary discs was discov-
ered by Youdin & Goodman (2005). It has since been studied in a
number of papers (e.g. Youdin & Johansen 2007; Johansen et al.
2007; Jacquet et al. 2011) since it provides a mechanism to con-
centrate dust particles during the early stages of planet formation.
Youdin & Goodman (2005) showed that the stationary solutionde-
rived in Sect. 3.4 is unstable with respect to a linear perturbation
that develops in the radial and the vertical direction simultaneously.
The energy required for the amplification of the perturbation is pro-
vided by the background differential rotation between the phases.

To perform a similar linear stability analysis in a multipledust
phase system, perturbations of the formδA = δA0ei(kxx+kzz−ωt) may
be superimposed on the stationary solutions of the evolution equa-
tions for the mixture derived in Sect. 3.4. The resulting linear sys-
tem obtained is tediously long and of limited interest, and will
not be reproduced here for clarity. However, two features ofthis
system of equations are worth highlighting. Firstly, in a multiple
fluid treatment of the gas and dust phases, perturbations of the con-
vective derivatives of physical quantities give rise to terms of the
form

[

−iω + ikxvgx0

]

δA0 (and similar expressions withvdkx0). In a
one-fluid formalism, those are replaced by the simpler expression
−iωδA0, since the stationary solution for the radial barycentric ve-
locity of the mixture is identically zero. Secondly, in the one-fluid
formalism,∆vg0 and∆vdk0 are first-order non-zero corrections to
the background shear. This generates a large number of first or-
der terms originating from the∆v contributions on the right-hand
side of the evolution equations. Importantly, perturbations to the
anisotropic pressure terms result in terms of order∆v2

0 × δv0 which



15

are of third order with respect to the background shear. This ex-
plains why the streaming instability is difficult to capture accurately
in a global simulation of a protoplanetary disc, for which the back-
ground shear cannot be subtracted.

We have again employed the two phase dust mixture model of
Sect. 2.5 to gain a physical insight into the linear behaviour of the
system, comparing its evolution to the limiting cases whereeither
only the first or the second dust species are present in the mixture.
Fig. 6 shows the imaginary part ofω for the unstable modes of
the linear system as a function of the relative dust fractionφ1. The
following parameters are adopted:ρ0 = 4, ǫ0 = 0.75, t1 = 0.1,
cs = 0.1, η = 0.05 (η being the dimensionless background radial
pressure gradient),kx = kz = 30π/0.005,t2 = 10. If the dust phases
degenerate into the single first dust phase (φ1 = 1), the mixture
reduces to the configuration of the linA mode described in Youdin
& Johansen (2007). Sincet2 > t1, the second dust phase adds grains
that are individually less strongly coupled to the gas than those of
the first phase.

As expected, the limitφ1 = 0 andφ1 = 1 generates the unsta-
ble mode obtained when only the second and the first dust species
are present in the mixture, respectively. Moreover, ift1 = t2, the
only unstable modes obtained are the ones of the corresponding
single dust phase. In the general case, three unstable modesare
found for the two-dust-species mixture, regardless of the value of
φ1. The values of Im(w) of the unstable modes are monotonic func-
tions of φ1. In this specific example, havingφ1 . 0.75 generates
an unstable mode in the mixture which grows faster (i.e. up toa
factor three in the limitφ1 → 0) than the modes generated by each
dust species individually. Therefore, having a local dust distribu-
tion with multiple grain sizes can enhance the efficiency of planet
formation in protoplanetary discs. Exploring the parameter space,
we have not found a set of parameters that suppresses the stream-
ing instability in a two dust phase mixture. Finally, in contrast to
the dustywave problem, an analytic solution for the streaming in-
stability can be found in the terminal velocity regime only for the
casen = 1 (Youdin & Goodman 2005) since perturbations inδǫk
do not add up to form a perturbation inδǫ in the general case.

4 CONCLUSION

We have derived a generalised formalism describing systemsmade
of gas and any number of dust species as a single-fluid mixture, ex-
tending the approach developed in Laibe & Price (2014a) towards
realistic simulations of dusty astrophysical systems. This formal-
ism brings three key advantages compared to a multiple-fluidap-
proach:

(i) It avoids the need for prohibitive spatial and temporal reso-
lutions in order to correctly treat strongly coupled grains

(ii) It prevents the formation of artificial clumps which arise
when dust particles concentrate below the gas resolution

(iii) It removes the need to interpolate between different phases
in the numerical solution

We have derived the equations for the mixture in both La-
grangian and conservative Eulerian forms, for an arbitrarynumber
of dust species as well as for continuous dust distributions, and in
the zeroth and first-order approximations where the dust fractions
are either constant or evolve according to diffusion equations, re-
spectively. The main difference with multiple dust phases compared
to the single dust phase mixture studied in Laibe & Price (2014a)
is that the differential velocities are related via a drag matrix. We

have outlined in Sec. 2.4.4 how these drag terms can be handled
numerically using an implicit integration.

This single fluid formalism was then applied to both sim-
ple problems (thedustybox, the dustyshock and thedustywave
problems) and more complex problems related to planet forma-
tion (grains radial-drift and streaming instability in protoplanetary
discs). Where possible, analytic solutions for an arbitrary number
of dust species have been derived. Where not, a two dust phase
model was used to highlight the important physical mechanisms
involved.

As expected, the physics with multiple dust species is richer
than with a single dust phase only. Several drag timescales are
involved and the evolutions of physical quantities are not always
monotonic. The global evolution of the mixture results froma bal-
ance between the relative strength of the drag terms and the relative
mass in each dust phase.

The most interesting result concerns dust grains in protoplan-
etary discs. We find that after the growth and settling stage which
concentrate the dust particles, large grains that are located in the
outer disc regions can migrate outward. This would provide asim-
ple explanation for the observed presence of (sub)millimetre-in-
size grains at several tens if not hundreds of AU from their central
star.

We also found that the presence of multiple grain sizes can
increase the efficiency of the linear growth of the streaming insta-
bility. This would enhance planet formation in protoplanetary discs.

An obvious extension to the present work will be to trans-
late this theoretical formalism into its SPH equivalent in order to
solve the full non-linear system in three dimensions, generalising
the study recently performed in Laibe & Price (2014b). Sincethe
structure of the equations are similar to the single dust phase case,
we expect this to be straightforward.

Finally, the main limitation of the single fluid formalism at
present is that is does not handle grain-grain interactions(in partic-
ular, grain growth and fragmentation). Addressing this issue is of
tremendous importance but beyond the scope of the present paper.
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APPENDIX A: PROPERTIES OF THE SPECTRUM OF Ωn

To obtain a lower bound for the spectrum ofΩn (or equivalently
Wn), we first note that W−1

n is real and symmetric since Wn is real
and symmetric. W−1

n thus has positive real eigenvalues which are
the inverse of Wn’s eigenvalues. Thus,

λ−1
min < Tr

(

W−1
n

)

, (A1)

providing our lower bound forΩn’s spectrum

λmin >















∑

k

ǫk (1− ǫk) tbk















−1

. (A2)
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A similar reasoning for the upper bound ofΩn’s spectrum would
provide the following inequality:

λmax < Tr (Ωn) =
∑

k

1
tbk

(

1
ǫk
+

1
(1− ǫ)

)

. (A3)

However, a better upper bound can be found by splitting the matrix
Wn according to

Wn = D + U′, (A4)

whereD is the diagonal matrix defined in Eq. 66 and U′ is the rank
one matrix

U′ i j =

√

KiK j

ρ (1− ǫ) = u′i u
′T
i , (A5)

whereu′ is the vector defined by

u′i =
√

Ki . (A6)

U is a symmetric matrix whose unique eigenvalueλU′ is given by
its trace, i.e.

λU =

∑

k t−1
bk

(1− ǫ) . (A7)

Taking now advantage from the fact that the application which as-
sociates a symmetric matrix to its maximum eigenvalue is a norm,
we apply the triangular inequality in Eq. A4 and obtain

λmax ≤ max
k

1
ǫktbk

+

∑

k t−1
bk

(1− ǫ) . (A8)

Eq. A8 improves the upper bound given in Eq. A3 by a factor
O(1/n) when theǫk are small, which is likely to be the case in prac-
tice. Therefore:
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ǫk (1− ǫk) tbk















−1

< λmin ≤ λk ≤ λmax ≤ max
k

(

1
ǫktbk

)

+
1

(1− ǫ)
∑

k

t−1
bk ,

(A9)

and using Eq. 63,















∑

k

(1− ǫk) tk















−1

< λmin ≤ λk ≤ λmax ≤ max
k

(

1
tk
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+
1

(1− ǫ)
∑

k

ǫkt
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k ,

(A10)
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