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Abstract: A k-tree is a chordal graph with no (k + 2)-clique. An �-tree-
partition of a graph G is a vertex partition of G into ‘bags,’ such that con-
tracting each bag to a single vertex gives an �-tree (after deleting loops and
replacing parallel edges by a single edge). We prove that for all k ≥ � ≥ 0,
every k-tree has an �-tree-partition in which each bag induces a connected
�k/(� + 1)�-tree. An analogous result is proved for oriented k-trees. © 2006

Wiley Periodicals, Inc. J Graph Theory 53: 167–172, 2006
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1. INTRODUCTION

Let G be an (undirected, simple, finite) graph with vertex set V (G) and edge set
E(G). Let �(G) be the maximum degree of G. The neighborhood of a vertex v of
G is denoted by N(v) = {w ∈ V (G) : vw ∈ E(G)}. A chord of a cycle C is an edge
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not in C whose endpoints are both in C. G is chordal if every cycle on at least four
vertices has a chord. A k-clique (k ≥ 0) is a set of k pairwise adjacent vertices. A
k-tree is a chordal graph with no (k + 2)-clique. The tree-width of G, denoted by
tw(G), is the minimum k such that G is a subgraph of a k-tree. It is well known
that this definition agrees with the standard definition of tree-width in terms of tree
decompositions. It is also well known that G is a k-tree1 if and only if V (G) = ∅, or
G has a vertex v such that G \ v is a k-tree, and N(v) is a k′-clique for some k′ ≤ k.

Let G and H be graphs. The elements of V (H) are called nodes. Let {Hx ⊆
V (G) : x ∈ V (H)} be a set of subsets of V (G) indexed by the nodes of H . Each set
Hx is called a bag. The pair (H, {Hx ⊆ V (G) : x ∈ V (H)}) is an H-partition of G if:

� for every vertex v of G, there is a node x of H with v ∈ Hx, and
� for all distinct nodes x and y of H , Hx ∩ Hy = ∅, and
� for every edge vw of G, either

— there is a node x of H with v ∈ Hx and w ∈ Hx, or
— there is an edge xy of H with v ∈ Hx and w ∈ Hy.

For brevity we say H is a partition of G. A k-tree-partition is an H-partition for
some k-tree H . A tree-partition is a 1-tree-partition. Tree-partitions were indepen-
dently introduced by Seese [16] and Halin [12], and have since been investigated
by a number of authors [2,3,6,7,11,12,16]. The main property of tree-partitions
that has been studied is the maximum cardinality of a bag, called the width of
the tree-partition. The minimum width over all tree-partitions of a graph G is the
tree-partition-width2 of G, denoted by tpw(G).

A graph with bounded degree has bounded tree-partition-width if and only if it
has bounded tree-width [7]. In particular, Seese [16] proved the lower bound,

2 · tpw(G) ≥ tw(G) + 1,

which is tight for even complete graphs. The best known upper bound is

tpw(G) ≤ 2
(
tw(G) + 1

)(
9 �(G) − 1

)
,

which was obtained by the author [18] using a minor improvement to a similar result
by an anonymous referee of the paper by Ding and Oporowski [6]. See [1,5,8,9,14]
for other results related to tree-width and vertex partitions3.

1 In the most common definition of k-tree, N(v) is required to be a k-clique. Working in the slightly larger class
of graphs enables cleaner results.
2 Tree-partition-width has also been called strong tree-width [3,16].
3 Vertex partitions also provide an approach for attacking Hadwiger’s conjecture, which states that every graph
G with no Kt+1 minor has chromatic number χ(G) ≤ t. No χ(G) ≤ O(t) bound is currently known. Reed and
Seymour [15] observed that “perhaps it is true” that G has an H-partition, such that H is chordal and each bag
induces a connected bipartite subgraph of G. This would imply that χ(H) = ω(H) ≤ t, and thus χ(G) ≤ 2t. Note
that we only need H to be perfect for this conclusion to be reached.
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Tree-partition-width is not bounded above by any function solely of tree-width.
For example, wheel graphs have bounded tree-width and unbounded tree-partition-
width, as observed by Bodlaender and Engelfriet [3]. Thus, it seems unavoidable
that the maximum degree appears in an upper bound on the tree-partition-width.
This fact, along with other applications, motivated Dujmović et al. [10] to study the
structure of the bags in a tree-partition. In this article we continue this approach,
and prove the following result (in Section 2).

Theorem 1. Let k and � be integers with k ≥ � ≥ 0. Let t = �k/(� + 1)�. Every
k-tree G has an �-tree-partition in which each bag induces a connected t-tree.

It is easily seen that Theorem 1 is tight for G = Kk+1 and for all �. Note that
Theorem 1 can be interpreted as a statement about chromomorphisms [13].

Dujmović et al. [10] proved that every k-tree has a tree-partition in which each
bag induces a (k − 1)-tree. Thus Theorem 1 with � = 1 improves this result. That
said, the tree-partition of Dujmović et al. [10] has a number of additional properties
that were important for the intended application. We generalize these additional
properties in Section 3. The price paid is that each bag may now induce a (k − �)-
tree, thus matching the result of Dujmović et al. [10] for � = 1. Note that the proof
of Dujmović et al. [10] uses a different construction to the one given here.

2. PROOF OF THEOREM 1

We proceed by induction on |V (G)|. If V (G) = ∅, then the result holds with V (H) =
∅ regardless of k and �. Now suppose that |V (G)| ≥ 1. Thus G has a vertex v

such that G \ v is a k-tree, and N(v) is a k′-clique for some k′ ≤ k. By induction,
G \ v has an �-tree-partition H in which each bag induces a connected t-tree. Let
C = {x ∈ V (H) : N(v) ∩ Hx 
= ∅}. Since N(v) is a clique, C is a clique of H (by
the definition of H-partition). Since H is an �-tree, |C| ≤ � + 1.

Case 1. |C| ≤ �: Add one new node y to H adjacent to each node x ∈ C. Since
C is a clique of H and |C| ≤ �, H remains an �-tree. Let Hy = {v}. The other bags
remain unchanged. Since t ≥ 0, Hy induces a connected t-tree (= K1) in G. Thus
H is now a partition of G in which each bag induces a connected t-tree in G.

Case 2. |C| = � + 1: There is a node y ∈ C such that |N(v) ∩ Hy| ≤ t, as
otherwise |N(v)| ≥ (t + 1)|C| = (�k/(� + 1)� + 1)(� + 1) ≥ k + 1. Add v to the
bag Hy. Let u ∈ N(v) ∩ Hy. Every neighbor of v not in Hy is adjacent to u (in
G \ v). Thus H is a partition of G. Hy induces a connected t-tree in G, since
Hy \ {v} induces a connected t-tree in G \ v, and the neighborhood of v in Hy is a
clique of at least one and at most t vertices. The other bags do not change. Thus
each bag of H induces a connected t-tree in G. �
Journal of Graph Theory DOI 10.1002/jgt
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3. ORIENTED PARTITIONS

Let G be an oriented graph with arc set A(G). Let Ĝ be the underlying undi-
rected graph of G. The in- and out-neighborhoods of a vertex v of G are respec-
tively denoted by N−(v) = {u ∈ V (G) : uv ∈ A(G)} and N+(v) = {w ∈ V (G) :
vw ∈ A(G)}. It is easily seen that an (undirected) graph G is a k-tree if and only
if there is an acyclic orientation of G such that for every vertex v of G, N−(v)
is a k′-clique for some k′ ≤ k. An oriented graph with this property is called an
oriented k-tree. Let G and H be oriented graphs. An oriented H-partition of G is
an Ĥ-partition of Ĝ such that for every arc xy of H , and for every edge vw of Ĝ

with v ∈ Hx and w ∈ Hy, vw is oriented from v to w. This concept is similar to an
oriented homomorphism; see [4,17] for example.

Theorem 2. Let k and � be integers with k ≥ � ≥ 0. Let t = k − �. Every oriented
k-tree G has an oriented �-tree partition H in which each bag induces a weakly
connected oriented t-tree in G. Moreover, for each node x of H , the set of vertices
Q(x) = ⋃{N−(v) \ Hx : v ∈ Hx} is a k′-clique of G for some k′ ≤ k.

The construction in the proof of Theorem 2 differs from that of Theorem 1 in
only the choice of the node y in Case 2.

Proof. We proceed by induction on |V (G)|. If V (G) = ∅, then the result holds
with V (H) = ∅ regardless of k and �. Now suppose that |V (G)| ≥ 1. Since G is
acyclic, there is a vertex v of G such that N+(v) = ∅, N−(v) is a k′-clique for some
k′ ≤ k, and G \ v is an oriented k-tree. By induction, there is an oriented �-tree-
partition H of G \ v in which each bag induces a weakly connected oriented t-tree
in G \ v. Moreover, for every node x of H , Q(x) is a k′-clique for some k′ ≤ k. Let
C = {x ∈ V (H) : N−(v) ∩ Hx 
= ∅}. Since N−(v) is a clique, C is a clique of H .
Since H is an oriented �-tree, |C| ≤ � + 1.

Case 1. |C| ≤ �: Add one new node y to H adjacent to each node x ∈ C. Orient
each new edge from x to y. Obviously H remains acyclic. Since C is a clique of
H and |C| ≤ �, H remains an oriented �-tree. Let Hy = {v}. The other bags are
unchanged. Since t ≥ 0, Hy induces a weakly connected oriented t-tree (=K1) in
G. All edges of G that are incident to a vertex in Hy are oriented into the vertex in
Hy. Thus H is now an oriented partition of G in which each bag induces a weakly
connected oriented t-tree in G. Now Q(y) = N−(v), which is a k′-clique for some
k′ ≤ k. Q(x) is unchanged for nodes x 
= y. Hence the theorem is satisfied.

Case 2. |C| = � + 1: The clique C induces an acyclic tournament in H . Let y be
the sink of this tournament. Since |N−(v) ∩ Hx| ≥ 1 for every node x ∈ C \ {y},
|N−(v) ∩ Hy| ≤ k′ − (|C| − 1) ≤ k − � = t. Add v to the bag Hy.

Consider a neighbor u of v. Since N+(v) = ∅, uv is oriented from u to v. Say
u ∈ Hz with z 
= y. Then z is in the clique C. Thus zy is an edge of H . Since y is a
sink of C, zy is oriented from z to y. Thus H is now an oriented partition of G. Hy
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induces a weakly connected oriented t-tree in G, since Hy \ {v} induces an oriented
t-tree in G \ v, and the in-neighborhood of v in Hy is a clique of at least one and
at most t vertices. The other bags do not change. Thus each bag of H induces a
weakly connected oriented t-tree in G.

Q(y) is not changed by the addition of v to Hy, as there is at least one vertex
u ∈ N−(v) ∩ Hy, and any vertex in N−(v) \ Hy is also in N−(u) \ Hy. For nodes
x 
= y, Q(x) is unchanged by the addition of v to Hy, since v is not in the in-
neighbourhood of any vertex. Hence the theorem is satisfied. �
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