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Abstract

A book embedding of a graph consists of a linear ordering of the vertices along a line
in 3-space (thespine), and an assignment of edges to half-planes with the spine as
boundary (thepages), so that edges assigned to the same page can be drawn on that
page without crossings. Given a gragh= (V, E), let f : V — N be a function such that
1< f(v) < degv). We present a Las Vegas algorithm which produces a book embedding
of G with O(,/|E| - max, [degv)/f(v)]) pages, such that at mogtv) edges incident to
a vertexv are on a single page. This result generalises that of Mdlitxlgorithms 17 (1)
(1994) 71-84].
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1. Introduction

This paper describes a Las Vegas algorithm for producing a book embedding
of a graph, given constraints on the number of edges incident to each vertex which
can be assigned to a single page. All graphs are undirected and simple. We denote
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the number of vertices of a gragh= (V, E) by n = |V], the number of edges
of G by m = | E|, and the maximum degree 6f by A(G), or A if the graph in
guestion is clear.

Book embeddings, first introduced by Bernhart and Kainen [1], are a graph
layout style with numerous applications (see [4])bdok consists of a line in
3-space, called thepine, and a number gbages, each a half-plane with the spine
as boundary. Aook embedding (r, o) of a graph consists of a linear ordering
7 of the vertices, called thepine ordering, along the spine of a book and an
assignmenp of edges to pages so that edges assigned to the same page can be
drawn on that page without crossings. That is, for any two edgeandxy, if
vV <z X <7 w<gythenp(ww) # p(xy). Thebook thickness or page number of
a graphG is the minimum number of pages in a book embedding of

Determining the book thickness of a graphN&P-hard, even with a fixed
spine ordering [11]. A number of results establish upper bounds on the book
thickness of certain classes of graphs|[1,6,7,10,18], such as the celebrated theorem
of Yannakakis [23] that every planar graph has book thickness at most four. For
graphs with genug, Malitz [14] proved that the book thickness@s(, /v ). Since
y < m, the book thickness i® (\/m), a result proved independently by the same
author [15]. While the proofs of Malitz are probabilistic, Shahrokhi and Shi [20]
describe a deterministic algorithm, which given a vekteolouring of a graplt,
computes a book embedding@fwith O (vkm) pages.

Note that a book embedding may assign all of the edges incident to a vertex to
a single page. In this paper we study book embeddings where the number of edges
incident to a vertex on a single page is constrained. (A similar approach is taken
for the graph-theoretic thickness by Bose and Prabhu [3], and for edge colouring
by Hakimi and Kariv [12].) We define thgage degree of a vertexv in a particular
book embedding to be the maximum number of edges incidentaio a single
page. Aconstraint function of a graphG = (V, E) is a functionf : V — N such
that 1< f(v) < degu) for all verticesv € V. For some constraint functiof
of G, adegree- f book embedding of; is one in which the page degree of every
vertexv is at mostf (v). If for all verticesv € V, f(v) = ¢ for some constant, a
degreef book embedding is simply calleddegree-c book embedding.

Galil, et al. [8,9] refer to a graph which admits a degree-1 book embedding
with ¥ pages as @-pushdown graph. Motivated by problems in computational
complexity, they established lower bounds on the size of a separator in 3-
pushdown graphs. Implicit in the work of Biedl, et al. [2] is a degree-1 book
embedding of the complete grah, with n pages. In this paper we consider the
following problem: given a grap&s = (V, E) and an arbitrary constraint function
f of G, produce a degre¢-book embedding ofF with few pages. Define
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Obviously O ¢ (G) is a lower bound on the number of pages in a degfdmok
embedding of5.

Consider the following naive method to produce a degfeleeok embed-
ding of a graphG = (V, E). Take a book embedding af with pages la-
beled{1,2,..., P}, and construct an auxiliary grapH with vertex-setV x
{1,2,..., P}andanedgfv,i), (w,i)} foreach edgew € E assigned to page
Then apply Theorem 3 of Hakimi and Kariv [12] to determine a (non-proper)
edge-colouring o with at mostf (v) edges incident to each vertéx, i) of H,
and with at mostQ (G) + 1 colours. Combining this edge colouring with the
original book embedding gives a degrégebook embedding ot; with at most
P -(Qr(G)+1) pages. If for instance the original book embedding:aé deter-
mined by the above-mentioned algorithm of Malitz [15] then the number of pages
in the degreef book embedding i® (/m Q ¢ (G)). In this paper we establish the
following result.

Theorem 1. Let f bea constraint function of a connected graph G = (V, E) with
m edges. Then there exists a degree- f book embedding of G with O (/m Q r(G))

pages.

Thus our result represents an improvement over the naive method by a factor of
£2(,/Qr(G)). Theorem 1, and its proof, generalises the above-mentioned bound
of O(/m) on the book thickness due to Malitz [15], which in turn is based
on ideas of Chung, et al. [4]. In particular we describe a Las Vegas algorithm
which, with high probability, determines the desired degfeémok embedding in
O (mlog?nloglogm) time. See [17] for information about Las Vegas algorithms.
Note that Theorem 1 has recently been applied to produce multilayer VLSI
constructions with improved volume bounds [22].

2. Preliminary results

The following definitions are from [15]. A 2eloured bipartite graph is a
bipartite graphG = (V, Vg; E) whose vertices have been coloured LEFT and
RIGHT such that adjacent vertices are coloured differently. For someeeddg
L(e) refers to the end-vertex @fin V;, and R(e) refers to the end-vertex ef
in V. A canonical ordering of a 2-coloured bipartite grapti = (V, Vg; E) is a
linear ordering of the vertices @f such that all LEFT vertices precede all RIGHT
vertices.

Let s be a canonical ordering of a 2-coloured bipartite graph (V., Vg, E).

Two edgesvw andxy are said tocross if v <; x <; w <5 y. Two edges are
digoint if they have no common endpoint and they do not cross. Two edges
intersect if they have a common endpoint or they cross. For (traditional) book
embeddings the number of pairwise crossing edges provides a lower bound on the
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Fig. 1. A completely intersecting canonical ordering of a graph.

number of pages, whereas for degree-1 book embeddings the number of pairwise
intersecting edges plays the same raleis completely intersecting with respect
to if E can be labeleds, e, ..., e; such that

L(e1) <z L(e2) <z -+ <z L(ex) and
R(e1) <z R(e2) <z --- <y R(ep).

Intuitively, G is completely intersecting with respect#q if in a degree-1 book
embedding withr as the spine ordering, every edge must be placed on a unique
page, as illustrated in Fig. 1.

Lemma 1. If a 2-coloured bipartite graph G is completely intersecting with
respect to some canonical ordering then G isa forest.

Proof. Letz be a canonical ordering @f. Suppose to the contrary th@tis not a
forest ands is completely intersecting with respectto ThenG contains a cycle
(v1, w1, v2, W2, ..., Vg, Wk, Vk+1) With v1 = vg1 for somek > 2. Without loss of
generality we can assume thatis the leftmost vertex. We proceed by induction
on i with the following induction hypothesis: “for every> 1, v; <, v;+1 and

Wi <z Wit1.

To prove the basis of the induction, observe thawif <, w1 then viw1
does not interseat,wy; hencew: <, wa. By our initial assumptiony; <5 v2.
Suppose thaty <5 --- <z v; andwy <z -+ <z w;. If viy1 <z v; thenviw;
does not interseat; w;—1; thusv; <z viy1. If wiy1 <7 w; thenv;w; does not
intersectv; +1w; +1; thusw; <, w;+1. Therefore the inductive hypothesis holds,
which is a contradiction as it implies that <, vg+1 andvy = vgy1. O

Note that Lemma 1 can be strengthened to say a completely intersecting graph
is a forest of caterpillars. The next lemma for completely intersecting sets of
edges, is the analogue of Lemma 2.2 in [15] for completely crossing sets of edges.
Generalising a result of Tarjan [21], it says that book thickness can be determined
efficiently if the spine ordering is a canonical ordering of a bipartite graph.

Lemma 2. Let = be a given canonical ordering of a 2-coloured bipartite graph
G = (VL, Vg; E) with m edges and n vertices. If at most k edges are completely
intersecting with respect to , then a k-page degree-1 book embedding of G with
spine ordering = can be determined in O (m loglogn) time.
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Fig. 2. Constructingr ¢

Proof. Define a posetE, <) as follows. For alk1, es € E let

e1<e2 d:efel =ex OF (L(ez) <z L(e1) and R(e1) <x R(ez)).

It is a simple exercise to check thdtis reflexive, transitive and antisymmetric,

and thus is a partial order. Two edges are incomparable undeand only if

they intersect. Thus an antichain is a completely intersecting set of edges, and a
chain is a set of pairwise disjoint edges. By Dilworth’s Theorem [5] there is a
decomposition oF into k chains wheré is the size of the largest antichain. That

is, there is &-page degree-1 book embedding@fwith spine orderingr. The

time complexity can be achieved using a dual form of the algorithm by Heath and
Rosenberg [13, Theorem 2.3]0

Note that an equivalent result to Lemma 2 with a more lengthy proof is given
by Malucelli and Nicoloso [16]. To enable Lemma 2 to be extended to defjree-
book embeddings, consider the following construction sL&k a linear ordering
of the vertices of a grapi = (V, E), and letf be a constraint function af. We
define a grapl&, r and a linear ordering s of G r as follows (see Fig. 2). For
each vertexw € V, replacev by f(v) consecutive vertices in ¢, which we call
sub-vertices of v. Leta, andpg, be the unique integers such that

degv) deqv)
v =d .
f) —‘ﬂg { f) J °gv)

To each of thew, leftmost sub-vertices ob, connect[degv)/f(v)] edges
incident to v, and to each of thes, rightmost sub-vertices of,, connect
ldegv)/f (v)] edges incident t@, such that no two edges cross. Note that the
choice of sub-vertices which are incident fdegv)/f (v)] or [deqv)/f (v)]
edges is not important. We simply wa@t, ; to be uniquely determined by
andf.

ay+ By=f(v) and avlr

Lemma3. Let f beaconstraint function, and let = be a given canonical ordering
of a 2-coloured bipartite graph G = (V, Vg; E) with m edges and n vertices. If
at most k edges of G r are completely intersecting with respect to 7 ¢, then a
k-page degree- f book embedding of G with spine ordering = can be determined
in O(mloglog(}_, f(v))) time.
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Proof. Apply Lemma 2 toG,, ; with spine orderingr ¢, to obtain a degree-1
book embeddingr s, p) of G, s with at mostk pages. In(wy, p), the page
degree of a sub-vertex is at most one. Thus, in the book embedding
of G, the page degree af is at mostf (v); that is, (r, p) is a degreef book
embedding ofG. The time bound follows from Lemma 2 and th@t,, ; has
>, f(v) vertices. O

3. Main result
To prove Theorem 1 we will need the following lemma.

Lemma 4. Let f be a constraint function and let = be a random canonical
ordering of a 2-coloured forest T = (V, Vg; E) withn = |V U V| verticesand
m = | E| edges. The probability that 75 s is completely intersecting with respect
to; isat most

(O

m!

Proof. The probability thatl;; s is completely intersecting with respect 4o

is the number of canonical orderings of T for which T, s is completely
intersecting with respect ta ¢, divided by the number of canonical orderings
of T. If T,y is completely intersecting with respecttg then all edges incident

to a vertexv must be incident to the same sub-vertexwoin ¢, and thus,

T is completely intersecting with respect to. (Note that this implies that
A(T) < Q¢(T).) Thus, the desired probability is at most the number of canonical
orderingsrt of T in which T is completely intersecting, divided by the number of
canonical orderings df .

We first bound the number of canonical orderingsoffor which T is
completely intersecting. Initially suppogeis connected; that iss = m + 1. For
some fixed orderingv1, vo, ..., v;) of Vr, an ordering ofVx which makesT
completely intersecting must be of the form

{R(e): vlee}, {R(e): vzee}, e, {R(e): vlee}.

Similarly, if (w1, wa, ..., w,) is a fixed ordering ofVg, then an ordering of/,,
which makes" completely intersecting must be of the form

{L(e): wlee}, {L(e): wzee}, e, {L(e): wy ee}.

The vertices within each séR(e): v; € e} and{L(e): w; € e} possibly can be
permuted. Thus the number of canonical orderingd offhich are completely
intersecting is at modt[, degy (x)!.

We claim that[ [, degy (x)! < A(T)™. To prove this claim, we proceed by
induction onm. The basis of the induction witlk = 1 is trivial. Suppose for all
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Fig. 3. Completely intersecting canonical ordering of the connected componehts of

connected treeg’ = (V', E’) with |E’| < m that[], ., degq (x)! < A(T")E'.
Letv be a leaf off incident to the edgew. LetT’' = (V’, E’) =T \ {vw}. Since
deg,, (w) = deg,(w) — 1, and by the inductive hypothesis appliedto

]_[ degx)! = deqw) ]_[ degy (x) < degw) - A(T)" L <A™ (1)
xeV xeV’
Thus the claim is proved.

Now supposq is disconnected. Theh hasn —m connected components. Let
E1, Ez, ..., E,_, be the edge sets of the connected componerfts Bor T to be
completely intersecting, the LEFT vertices in each connected component must be
consecutive in the ordering, and similarly for the RIGHT vertices. Withinthe
components can be orderéd— m)! different ways. For a fixed ordering of the
connected componentsBf , for T to be completely intersecting, the components
of Vg must be ordered the same way, as illustrated in Fig. 3.

By (1), the number of canonical orderings which are completely intersecting
is at most

n—m
(n—m! [T A@E < (n = m)AT)™.
i=1
The number of canonical orderings Bfis |V |! - |Vg|!. Thus, the probability
that a random canonical ordering Bfis completely intersecting is at most
(n—m)!A(T)™ n—m)AT)™  2(m—m)!A(T)" < 2PA(THY™
ZAENZ n! = ’
where the final three inequalities follow from well-known and easily proved facts
concerning factorials. The result holds, since as noted ear{iEy < Q4 (7). O

m!

Proof of Theorem 1. Let n’ = |V|, and denoteQ s(G) by Q. Since G is
connectedm > n’ — 1. If m =n’ — 1 thenG is a tree. By considering a pre-
order traversal of7, it is easily seen that; has a book embeddingr, p) with
one page [4]. The grapfi. r is a forest with maximum degre@, and thus has
a edge-colouring with Q colours. A book embeddingr, x) of G is a degreef
book embedding of; with O < /A QO < +/m Q pages. Thus the result is proved
for trees.

Now assumen > n’. Let n = 2/°9""1 and add: — n’ isolated vertices t@.
(Unless stated otherwise all logarithms are bas&2pw has: vertices, withn
a power of 2. Clearlyy < 2n’, andn < 2m.
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Let 7 be a random linear ordering &f. For eachj, 1 < j < logn, divide the
linear orderingr into 2/ sections each with the same number of vertices, and
label the sections from left to rigtit, R, L, R, etc. The edges whose endpoints
are in adjacenL—R sections (but not adjace®-L sections) are calleg-level
edges. Note that every edge®@fappears in a unigue level, and edges in adjacent
L—R sections in somg-level are canonically ordered by.

For eachj, 1< j <logn, let A,’( be the event that there existskaedge
2-coloured subgraph of G such that:

e T consists solely ofi-level edges,
e T is canonically ordered with respect#q and
o T ris completely intersecting with respecttg.

By Lemma 1, such a subgrafihis a forest. The probability tha@,{ occurs

i =\ [ = _]_ [+r Nk
P{Al} < MY ok j-1 5\ (3 \lria =1 =) 2 ’Q,
¢ k l r n! k!

—_—— —— ——
@ @ ©)] “

where:

(1) is an upper bound on the numberietdge 2-coloured forests with no
isolated vertices (since a bipartite graph witbonnected components hés 2
vertex 2-colourings);

(2) is the number of pairs of adjacebtR sections in thg -level;

(3) is an upper bound on the probability thatanonically orderd’ in the fixed
pair of adjacenjj-level sections, wher® hasl LEFT vertices and RIGHT
vertices; and

(4) is the probability thaf" is completely intersecting, by Lemma 4 and since

0r(T)< Q.
Since(}) <a”/b!,
(2m)*k o1, <i>l+r (n—1—n! 21+’Qk'
k! 2J n! k!
The special case of =1 + r can be handled easily. We henceforth assume
[ 4+ r < n. The version of Stirling’s formula due to Robbins [19] states that for

alln>1,n'=+2rnn/e)"e", where ¥(12n + 1) <r, <1/(12n) and e is the
base of the natural logarithm. Thus,

I+r n—l—r n
i kool (1 \/ﬁ(n—l—r) (g)
P{Ak} < (2m)* - 2 <2j> . = .

21+r Qk eZkr

k2k+1 ’

P{AI{} <
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where the error term = et/12n1-1=Ng-1/ (12141 g=2/(12+1)  ¢f,
Now,n —I1 —r <n. By elementary properties of a forekt 1 <! +r < 2k.
Sincel +r < 2n/2/, we havek < n/2/~1, and hence 21 <n/k <2m/k. Thus,

. 1 k+1
P{Alj(} < (Zm)k+l . (2_]> n(l+r)+(n—l—r)—n . e—(n—l—r)+n+2k+4

22k Qk
’ k20k+1)

Se4mQ k+1
()

Definek; = 4€2/mQ/2/. Sincem >n/2 andQ > 1,

) 1 1+462/mQ/2i 1/1 2426 /n/2i
P{AJ } <[ = < — .
kij 2 2

Consider the event tha’t,’;j occurs for somg, 1< j < logn.

logn 1 logn 1 24262\ /n /2]
j=1

j=1
By induction onN, the following can be easily proved.
B . N by/2N=] b—1
Ya> 1, ‘v’b}w, Z(E) <<}) )
\/i -1 1 a a

Applying this fact withN = logn, a = 2 andb = 2,26 > 1/(v/2 — 1),

logn 2281 2./2¢é
; 1/1 1
j=1

Thus,

Iognf logn A logn A 1 2./2¢
P{ ﬂA,f(j} = P{ UA,f(j} =1-P{UA{(},} >1-— <§>
j=1 j=1

j=1

2

> 0.99999

This says that for the random linear ordering with (very high) positive
probability, A,{/ does not occur for alf, 1 < j < logn. Therefore, there exists

a linear orderingz’ of V such thatA,ij does not occur for alf. That is, in each
pair of adjacent.—R sections in thej-level, there is no completely intersecting
subgraph im} with at leastk; edges. For each pair of adjacditR sections in



D.R. Wood / Journal of Algorithms 45 (2002) 144-154 153

level j, apply Lemma 3 to the subgraph@f,. ; consisting ofj-level edges with
endpoints in that pair of sections (using the canonical orderi)gBy using the
same set of pages fgrlevel edges, we obtain a degr¢ehook embedding of;
with spine orderinger’, and with the number of pages at most

logn logn e;_
Zk _492\/—2\/; 4 “/— <72/m 0

Example 1. Let G = (V, E) be a graph with average degrée= 2m/n. By
Theorem 1,G has a book embedding witt (m/./n) pages, such that every
vertexv € V has page degree at most ¢egd.

Corollary 1. Let f bea constraint function of connected graph G = (V, E) with
n vertices and m edges. Thereis a Las Veegas algorithm which will compute, with
high probability, a degree- f book embedding of G with O (,/m Q r(G)) pagesin
O (mlog?nloglogm) time.

Proof. Consider the following Las Vegas algorithm to compute the book
embedding whose existence is proved in Theorem 1. First, de&'2! — |V
isolated vertices t6;. Then repeat the following step at most loimes. Choose
a random linear ordering of V, and embed each set gflevel edges in its
own set of pages (using Lemma 3 appliedGg, s as described in the proof of
Theorem 1). If the total number of pages is at mosl/#2Q r(G) then halt,
otherwise repeat.

The time taken for each iteration within eagtevelis O (m loglog(}, f(v)))
by Lemma 3. Sincg (v) < dedw), >, f(v) € O(m), and the time taken for each
iteration isO (m logn loglogm). At each iteration of the above algorithm, we say
the algorithmfails if the randomly chosen linear ordering does not admit a
degreef book embedding with at most Z/ZQf(G) pages. The probability of
failure is at most 22V2¢. The probability of failure every iteration is at most
2-2V2&logn _ ,-2v2¢ _, 0 asy — co. Thus, with probability tending to 1 as
n — oo, the above algorithm will determine a degrgesook embedding o5
with at most 72/m Q y(G) pages inO (m log? nloglogm) time. O

Note that Theorem 1 with the constraint functigiv) = degv) is the same
result proved by Malitz [15], and the above proof is based on Malitz's idea
of defining j-levels and applying Dilworth’s Theorem to a partial ordering of
the edges in each level. However, our proof differs in two respects. First, we
do not assume that < k, as is the case in [15, p. 76] (also see [14, p. 92]).
Furthermore, we do not use a book embedding of the complete gf%rfor

levelsj = 3logn+1, logn +2, ..., logn.
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