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Degree constrained book embeddings✩
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Abstract

A book embedding of a graph consists of a linear ordering of the vertices along a line
in 3-space (thespine), and an assignment of edges to half-planes with the spine as
boundary (thepages), so that edges assigned to the same page can be drawn on that
page without crossings. Given a graphG = (V ,E), let f :V → N be a function such that
1 � f (v) � deg(v). We present a Las Vegas algorithm which produces a book embedding
of G with O(

√|E| · maxv�deg(v)/f (v)� ) pages, such that at mostf (v) edges incident to
a vertexv are on a single page. This result generalises that of Malitz [J. Algorithms 17 (1)
(1994) 71–84].
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

This paper describes a Las Vegas algorithm for producing a book embedding
of a graph, given constraints on the number of edges incident to each vertex which
can be assigned to a single page. All graphs are undirected and simple. We denote
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the number of vertices of a graphG = (V ,E) by n = |V |, the number of edges
of G by m = |E|, and the maximum degree ofG by ∆(G), or ∆ if the graph in
question is clear.

Book embeddings, first introduced by Bernhart and Kainen [1], are a graph
layout style with numerous applications (see [4]). Abook consists of a line in
3-space, called thespine, and a number ofpages, each a half-plane with the spine
as boundary. Abook embedding (π,ρ) of a graph consists of a linear ordering
π of the vertices, called thespine ordering, along the spine of a book and an
assignmentρ of edges to pages so that edges assigned to the same page can be
drawn on that page without crossings. That is, for any two edgesvw andxy, if
v <π x <π w <π y thenρ(vw) �= ρ(xy). Thebook thickness or page number of
a graphG is the minimum number of pages in a book embedding ofG.

Determining the book thickness of a graph isNP-hard, even with a fixed
spine ordering [11]. A number of results establish upper bounds on the book
thickness of certain classes of graphs [1,6,7,10,18], such as the celebrated theorem
of Yannakakis [23] that every planar graph has book thickness at most four. For
graphs with genusγ , Malitz [14] proved that the book thickness isO(

√
γ ). Since

γ � m, the book thickness isO(
√
m), a result proved independently by the same

author [15]. While the proofs of Malitz are probabilistic, Shahrokhi and Shi [20]
describe a deterministic algorithm, which given a vertexk-colouring of a graphG,
computes a book embedding ofG with O(

√
km) pages.

Note that a book embedding may assign all of the edges incident to a vertex to
a single page. In this paper we study book embeddings where the number of edges
incident to a vertex on a single page is constrained. (A similar approach is taken
for the graph-theoretic thickness by Bose and Prabhu [3], and for edge colouring
by Hakimi and Kariv [12].) We define thepage degree of a vertexv in a particular
book embedding to be the maximum number of edges incident tov on a single
page. Aconstraint function of a graphG = (V ,E) is a functionf :V → N such
that 1� f (v) � deg(v) for all verticesv ∈ V . For some constraint functionf
of G, adegree-f book embedding ofG is one in which the page degree of every
vertexv is at mostf (v). If for all verticesv ∈ V , f (v) = c for some constantc, a
degree-f book embedding is simply called adegree-c book embedding.

Galil, et al. [8,9] refer to a graph which admits a degree-1 book embedding
with k pages as ak-pushdown graph. Motivated by problems in computational
complexity, they established lower bounds on the size of a separator in 3-
pushdown graphs. Implicit in the work of Biedl, et al. [2] is a degree-1 book
embedding of the complete graphKn with n pages. In this paper we consider the
following problem: given a graphG = (V ,E) and an arbitrary constraint function
f of G, produce a degree-f book embedding ofG with few pages. Define

Qf (G) = max
v∈V

⌈
deg(v)

f (v)

⌉
.
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ObviouslyQf (G) is a lower bound on the number of pages in a degree-f book
embedding ofG.

Consider the following naive method to produce a degree-f book embed-
ding of a graphG = (V ,E). Take a book embedding ofG with pages la-
beled {1,2, . . . ,P }, and construct an auxiliary graphH with vertex-setV ×
{1,2, . . . ,P } and an edge{(v, i), (w, i)} for each edgevw ∈ E assigned to pagei.
Then apply Theorem 3 of Hakimi and Kariv [12] to determine a (non-proper)
edge-colouring ofH with at mostf (v) edges incident to each vertex(v, i) of H ,
and with at mostQf (G) + 1 colours. Combining this edge colouring with the
original book embedding gives a degree-f book embedding ofG with at most
P · (Qf (G)+1) pages. If for instance the original book embedding ofG is deter-
mined by the above-mentioned algorithm of Malitz [15] then the number of pages
in the degree-f book embedding isO(

√
mQf (G)). In this paper we establish the

following result.

Theorem 1. Let f be a constraint function of a connected graph G = (V ,E) with
m edges. Then there exists a degree-f book embedding of G with O(

√
mQf (G))

pages.

Thus our result represents an improvement over the naive method by a factor of
Ω(

√
Qf (G)). Theorem 1, and its proof, generalises the above-mentioned bound

of O(
√
m) on the book thickness due to Malitz [15], which in turn is based

on ideas of Chung, et al. [4]. In particular we describe a Las Vegas algorithm
which, with high probability, determines the desired degree-f book embedding in
O(m log2n log logm) time. See [17] for information about Las Vegas algorithms.
Note that Theorem 1 has recently been applied to produce multilayer VLSI
constructions with improved volume bounds [22].

2. Preliminary results

The following definitions are from [15]. A 2-coloured bipartite graph is a
bipartite graphG = (VL,VR;E) whose vertices have been coloured LEFT and
RIGHT such that adjacent vertices are coloured differently. For some edgee ∈ E,
L(e) refers to the end-vertex ofe in VL, andR(e) refers to the end-vertex ofe
in VR . A canonical ordering of a 2-coloured bipartite graphG = (VL,VR;E) is a
linear ordering of the vertices ofG such that all LEFT vertices precede all RIGHT
vertices.

Letπ be a canonical ordering of a 2-coloured bipartite graphG = (VL,VR;E).
Two edgesvw andxy are said tocross if v <π x <π w <π y. Two edges are
disjoint if they have no common endpoint and they do not cross. Two edges
intersect if they have a common endpoint or they cross. For (traditional) book
embeddings the number of pairwise crossing edges provides a lower bound on the
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Fig. 1. A completely intersecting canonical ordering of a graph.

number of pages, whereas for degree-1 book embeddings the number of pairwise
intersecting edges plays the same role.G is completely intersecting with respect
to π if E can be labelede1, e2, . . . , ek such that

L(e1) �π L(e2) �π · · · �π L(ek) and

R(e1) �π R(e2) �π · · · �π R(ek).

Intuitively, G is completely intersecting with respect toπ , if in a degree-1 book
embedding withπ as the spine ordering, every edge must be placed on a unique
page, as illustrated in Fig. 1.

Lemma 1. If a 2-coloured bipartite graph G is completely intersecting with
respect to some canonical ordering then G is a forest.

Proof. Letπ be a canonical ordering ofG. Suppose to the contrary thatG is not a
forest andG is completely intersecting with respect toπ . ThenG contains a cycle
(v1,w1, v2,w2, . . . , vk,wk, vk+1) with v1 = vk+1 for somek � 2. Without loss of
generality we can assume thatv1 is the leftmost vertex. We proceed by induction
on i with the following induction hypothesis: “for everyi � 1, vi <π vi+1 and
wi <π wi+1.”

To prove the basis of the induction, observe that ifw2 <π w1 then v1w1
does not intersectv2w2; hencew1 <π w2. By our initial assumption,v1 <π v2.
Suppose thatv1 <π · · · <π vi andw1 <π · · · <π wi . If vi+1 <π vi thenvi+1wi

does not intersectviwi−1; thusvi <π vi+1. If wi+1 <π wi thenviwi does not
intersectvi+1wi+1; thuswi <π wi+1. Therefore the inductive hypothesis holds,
which is a contradiction as it implies thatv1 <π vk+1 andv1 = vk+1. ✷

Note that Lemma 1 can be strengthened to say a completely intersecting graph
is a forest of caterpillars. The next lemma for completely intersecting sets of
edges, is the analogue of Lemma 2.2 in [15] for completely crossing sets of edges.
Generalising a result of Tarjan [21], it says that book thickness can be determined
efficiently if the spine ordering is a canonical ordering of a bipartite graph.

Lemma 2. Let π be a given canonical ordering of a 2-coloured bipartite graph
G = (VL,VR;E) with m edges and n vertices. If at most k edges are completely
intersecting with respect to π , then a k-page degree-1 book embedding of G with
spine ordering π can be determined in O(m log logn) time.
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Fig. 2. Constructingπf .

Proof. Define a poset(E,�) as follows. For alle1, e2 ∈ E let

e1 � e2
def= e1 = e2 or

(
L(e2) <π L(e1) and R(e1) <π R(e2)

)
.

It is a simple exercise to check that� is reflexive, transitive and antisymmetric,
and thus is a partial order. Two edges are incomparable under� if and only if
they intersect. Thus an antichain is a completely intersecting set of edges, and a
chain is a set of pairwise disjoint edges. By Dilworth’s Theorem [5] there is a
decomposition ofE into k chains wherek is the size of the largest antichain. That
is, there is ak-page degree-1 book embedding ofG with spine orderingπ . The
time complexity can be achieved using a dual form of the algorithm by Heath and
Rosenberg [13, Theorem 2.3].✷

Note that an equivalent result to Lemma 2 with a more lengthy proof is given
by Malucelli and Nicoloso [16]. To enable Lemma 2 to be extended to degree-f

book embeddings, consider the following construction. Letπ be a linear ordering
of the vertices of a graphG = (V ,E), and letf be a constraint function ofG. We
define a graphGπ,f and a linear orderingπf of Gπ,f as follows (see Fig. 2). For
each vertexv ∈ V , replacev by f (v) consecutive vertices inπf , which we call
sub-vertices of v. Letαv andβv be the unique integers such that

αv + βv = f (v) and αv

⌈
deg(v)

f (v)

⌉
+ βv

⌊
deg(v)

f (v)

⌋
= deg(v).

To each of theαv leftmost sub-vertices ofv, connect�deg(v)/f (v)� edges
incident to v, and to each of theβv rightmost sub-vertices ofv, connect
�deg(v)/f (v)� edges incident tov, such that no two edges cross. Note that the
choice of sub-vertices which are incident to�deg(v)/f (v)� or �deg(v)/f (v)�
edges is not important. We simply wantGπ,f to be uniquely determined byπ
andf .

Lemma 3. Let f be a constraint function, and let π be a given canonical ordering
of a 2-coloured bipartite graph G = (VL,VR;E) with m edges and n vertices. If
at most k edges of Gπ,f are completely intersecting with respect to πf , then a
k-page degree-f book embedding of G with spine ordering π can be determined
in O(m log log(

∑
v f (v))) time.



D.R. Wood / Journal of Algorithms 45 (2002) 144–154 149

Proof. Apply Lemma 2 toGπ,f with spine orderingπf , to obtain a degree-1
book embedding(πf ,ρ) of Gπ,f with at mostk pages. In(πf ,ρ), the page
degree of a sub-vertex is at most one. Thus, in the book embedding(π,ρ)

of G, the page degree ofv is at mostf (v); that is, (π,ρ) is a degree-f book
embedding ofG. The time bound follows from Lemma 2 and thatGπ,f has∑

v f (v) vertices. ✷

3. Main result

To prove Theorem 1 we will need the following lemma.

Lemma 4. Let f be a constraint function and let π be a random canonical
ordering of a 2-coloured forest T = (VL,VR;E) with n = |VL ∪VR| vertices and
m = |E| edges. The probability that Tπ,f is completely intersecting with respect
to πf is at most

2n (Qf (T ))m

m! .

Proof. The probability thatTπ,f is completely intersecting with respect toπf

is the number of canonical orderingsπ of T for which Tπ,f is completely
intersecting with respect toπf , divided by the number of canonical orderings
of T . If Tπ,f is completely intersecting with respect toπf then all edges incident
to a vertexv must be incident to the same sub-vertex ofv in πf , and thus,
T is completely intersecting with respect toπ . (Note that this implies that
∆(T ) � Qf (T ).) Thus, the desired probability is at most the number of canonical
orderingsπ of T in whichT is completely intersecting, divided by the number of
canonical orderings ofT .

We first bound the number of canonical orderings ofT for which T is
completely intersecting. Initially supposeT is connected; that is,n = m + 1. For
some fixed ordering(v1, v2, . . . , vl ) of VL, an ordering ofVR which makesT
completely intersecting must be of the form{

R(e): v1 ∈ e
}
,

{
R(e): v2 ∈ e

}
, . . . ,

{
R(e): vl ∈ e

}
.

Similarly, if (w1,w2, . . . ,wr) is a fixed ordering ofVR , then an ordering ofVL

which makesT completely intersecting must be of the form{
L(e): w1 ∈ e

}
,

{
L(e): w2 ∈ e

}
, . . . ,

{
L(e): wl ∈ e

}
.

The vertices within each set{R(e): vi ∈ e} and{L(e): wi ∈ e} possibly can be
permuted. Thus the number of canonical orderings ofT which are completely
intersecting is at most

∏
x degT (x)!.

We claim that
∏

x degT (x)! � ∆(T )m. To prove this claim, we proceed by
induction onm. The basis of the induction withm = 1 is trivial. Suppose for all
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Fig. 3. Completely intersecting canonical ordering of the connected components ofT .

connected treesT ′ = (V ′,E′) with |E′| < m that
∏

x∈V ′ degT ′(x)! � ∆(T ′)|E′|.
Let v be a leaf ofT incident to the edgevw. LetT ′ = (V ′,E′) = T \ {vw}. Since
degT ′(w) = degT (w)− 1, and by the inductive hypothesis applied toT ′,∏

x∈V
deg(x)! = deg(w)

∏
x∈V ′

degT ′(x) � deg(w) ·∆(T ′)m−1 � ∆(T )m. (1)

Thus the claim is proved.
Now supposeT is disconnected. ThenT hasn−m connected components. Let

E1,E2, . . . ,En−m be the edge sets of the connected components ofT . ForT to be
completely intersecting, the LEFT vertices in each connected component must be
consecutive in the ordering, and similarly for the RIGHT vertices. WithinVL, the
components can be ordered(n − m)! different ways. For a fixed ordering of the
connected components ofVL, for T to be completely intersecting, the components
of VR must be ordered the same way, as illustrated in Fig. 3.

By (1), the number of canonical orderings which are completely intersecting
is at most

(n− m)!
n−m∏
i=1

∆(T )|Ei | � (n− m)!∆(T )m.

The number of canonical orderings ofT is |VL|! · |VR|!. Thus, the probability
that a random canonical ordering ofT is completely intersecting is at most

(n− m)!∆(T )m

|VL|! · |VR|! � (n− m)!∆(T )m⌈
n
2

⌉!⌊n
2

⌋! � 2n(n− m)!∆(T )m

n! � 2n∆(T )m

m! ,

where the final three inequalities follow from well-known and easily proved facts
concerning factorials. The result holds, since as noted earlier∆(T ) � Qf (T ). ✷
Proof of Theorem 1. Let n′ = |V |, and denoteQf (G) by Q. Since G is
connected,m � n′ − 1. If m = n′ − 1 thenG is a tree. By considering a pre-
order traversal ofG, it is easily seen thatG has a book embedding(π,ρ) with
one page [4]. The graphGπ,f is a forest with maximum degreeQ, and thus has
a edge-colouringχ with Q colours. A book embedding(π,χ) of G is a degree-f
book embedding ofG with Q �

√
∆Q �

√
mQ pages. Thus the result is proved

for trees.
Now assumem � n′. Let n = 2�logn′�, and addn − n′ isolated vertices toG.

(Unless stated otherwise all logarithms are base 2.)G now hasn vertices, withn
a power of 2. Clearly,n � 2n′, andn � 2m.
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Let π be a random linear ordering ofV . For eachj , 1� j � logn, divide the
linear orderingπ into 2j sections each with the same number of vertices, and
label the sections from left to rightL, R, L, R, etc. The edges whose endpoints
are in adjacentL–R sections (but not adjacentR–L sections) are calledj -level
edges. Note that every edge ofG appears in a unique level, and edges in adjacent
L–R sections in somej -level are canonically ordered byπ .

For eachj , 1 � j � logn, let A
j
k be the event that there exists ak-edge

2-coloured subgraphT of G such that:

• T consists solely ofj -level edges,
• T is canonically ordered with respect toπ , and
• Tπ,f is completely intersecting with respect toπf .

By Lemma 1, such a subgraphT is a forest. The probability thatAj
k occurs

P
{
A

j
k

}
<

(
m

k

)
2k

︸ ︷︷ ︸
(1)

·2j−1

︸︷︷︸
(2)

·
( n

2j

l

)( n

2j

r

)
l!r!(n− l − r)!

n!︸ ︷︷ ︸
(3)

· 2l+rQk

k!︸ ︷︷ ︸
(4)

,

where:

(1) is an upper bound on the number ofk-edge 2-coloured forestsT with no
isolated vertices (since a bipartite graph withk connected components has 2k

vertex 2-colourings);
(2) is the number of pairs of adjacentL–R sections in thej -level;
(3) is an upper bound on the probability thatπ canonically ordersT in the fixed

pair of adjacentj -level sections, whereT hasl LEFT vertices andr RIGHT
vertices; and

(4) is the probability thatT is completely intersecting, by Lemma 4 and since
Qf (T ) � Q.

Since
(
a
b

)
� ab/b!,

P
{
A

j

k

}
<

(2m)k

k! · 2j−1 ·
(

n

2j

)l+r
(n− l − r)!

n! · 2l+rQk

k! .

The special case ofn = l + r can be handled easily. We henceforth assume
l + r < n. The version of Stirling’s formula due to Robbins [19] states that for
all n � 1, n! = √

2πn(n/e)nern , where 1/(12n + 1) < rn < 1/(12n) and e is the
base of the natural logarithm. Thus,

P
{
A

j

k

}
< (2m)k · 2j−1 ·

(
n

2j

)l+r
√

n− l − r

n

(
n − l − r

e

)n−l−r( e

n

)n

· 2l+rQke2kr

k2k+1 ,
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where the error termr = e1/12(n−l−r)e−1/(12n+1)e−2/(12k+1) < e4.
Now, n − l − r < n. By elementary properties of a forest,k + 1 � l + r � 2k.

Sincel + r � 2n/2j , we havek � n/2j−1, and hence 2j−1 � n/k � 2m/k. Thus,

P
{
A

j
k

}
< (2m)k+1 ·

(
1

2j

)k+1

n(l+r)+(n−l−r)−n · e−(n−l−r)+n+2k+4

· 22kQk

k2(k+1)

<

(
8e4mQ

2j k2

)k+1

.

Definekj = 4e2
√
mQ/2j . Sincem � n/2 andQ � 1,

P
{
A

j
kj

}
<

(
1

2

)1+4e2
√

mQ/2j

<
1

2

(
1

2

)2
√

2e2
√

n/2j

.

Consider the event thatAj

kj
occurs for somej , 1� j � logn.

P

{ logn⋃
j=1

A
j
kj

}
<

1

2

logn∑
j=1

(
1

2

)2
√

2e2
√

n/2j

.

By induction onN , the following can be easily proved.

∀a > 1, ∀b � 1− loga(a − 1)√
2− 1

,

N∑
j=1

(
1

a

)b
√

2N−j

<

(
1

a

)b−1

.

Applying this fact withN = logn, a = 2 andb = 2
√

2e2 > 1/(
√

2− 1),

P

{ logn⋃
j=1

A
j
kj

}
<

1

2

(
1

2

)2
√

2e2−1

=
(

1

2

)2
√

2e2

.

Thus,

P

{ logn⋂
j=1

A
j
kj

}
= P

{ logn⋃
j=1

A
j
kj

}
= 1− P

{logn⋃
j=1

A
j
kj

}
> 1−

(
1

2

)2
√

2e2

> 0.99999.

This says that for the random linear orderingπ , with (very high) positive
probability,Aj

kj
does not occur for allj , 1 � j � logn. Therefore, there exists

a linear orderingπ ′ of V such thatAj
kj

does not occur for allj . That is, in each
pair of adjacentL–R sections in thej -level, there is no completely intersecting
subgraph inπ ′

f with at leastkj edges. For each pair of adjacentL–R sections in
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levelj , apply Lemma 3 to the subgraph ofGπ ′,f consisting ofj -level edges with
endpoints in that pair of sections (using the canonical orderingπ ′

f ). By using the
same set of pages forj -level edges, we obtain a degree-f book embedding ofG
with spine orderingπ ′, and with the number of pages at most

logn∑
j=1

kj = 4e2
√
mQ

logn∑
j=1

√
1

2j
<

4e2√mQ√
2− 1

< 72
√
mQ. ✷

Example 1. Let G = (V ,E) be a graph with average degreed = 2m/n. By
Theorem 1,G has a book embedding withO(m/

√
n) pages, such that every

vertexv ∈ V has page degree at most deg(v)/d .

Corollary 1. Let f be a constraint function of connected graph G = (V ,E) with
n vertices and m edges. There is a Las Vegas algorithm which will compute, with
high probability, a degree-f book embedding of G with O(

√
mQf (G)) pages in

O(m log2n log logm) time.

Proof. Consider the following Las Vegas algorithm to compute the book
embedding whose existence is proved in Theorem 1. First, add 2�log|V |� − |V |
isolated vertices toG. Then repeat the following step at most logn times. Choose
a random linear orderingπ of V , and embed each set ofj -level edges in its
own set of pages (using Lemma 3 applied toGπ,f as described in the proof of
Theorem 1). If the total number of pages is at most 72

√
mQf (G) then halt,

otherwise repeat.
The time taken for each iteration within eachj -level isO(m log log(

∑
v f (v)))

by Lemma 3. Sincef (v) � deg(v),
∑

v f (v) ∈ O(m), and the time taken for each
iteration isO(m logn log logm). At each iteration of the above algorithm, we say
the algorithmfails if the randomly chosen linear orderingπ does not admit a
degree-f book embedding with at most 72

√
mQf (G) pages. The probability of

failure is at most 2−2
√

2e2
. The probability of failure every iteration is at most

2−2
√

2e2 logn = n−2
√

2e2 → 0 asn → ∞. Thus, with probability tending to 1 as
n → ∞, the above algorithm will determine a degree-f book embedding ofG
with at most 72

√
mQf (G) pages inO(m log2n log logm) time. ✷

Note that Theorem 1 with the constraint functionf (v) = deg(v) is the same
result proved by Malitz [15], and the above proof is based on Malitz’s idea
of defining j -levels and applying Dilworth’s Theorem to a partial ordering of
the edges in each level. However, our proof differs in two respects. First, we
do not assume thatj � k, as is the case in [15, p. 76] (also see [14, p. 92]).
Furthermore, we do not use a book embedding of the complete graphK√

n for

levelsj = 1
2 logn+ 1, 1

2 logn+ 2, . . . , logn.
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