
JID:YJCTB AID:3129 /FLA [m1L; v1.232; Prn:27/02/2018; 14:01] P.1 (1-34)
Journal of Combinatorial Theory, Series B ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Combinatorial Theory, 
Series B

www.elsevier.com/locate/jctb

The extremal function for Petersen minors

Kevin Hendrey 1, David R. Wood 2

School of Mathematical Sciences, Monash University, Melbourne, Australia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 September 2016
Available online xxxx

Keywords:
Graph minor
Extremal function
Petersen graph
Chromatic number
Vertex arboricity

We prove that every graph with n vertices and at least 5n −8
edges contains the Petersen graph as a minor, and this bound 
is best possible. Moreover we characterise all Petersen-minor-
free graphs with at least 5n − 11 edges. It follows that every 
graph containing no Petersen minor is 9-colourable and has 
vertex arboricity at most 5. These results are also best possi-
ble.
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1. Introduction

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from 
G by the following operations: vertex deletion, edge deletion and edge contraction. The 
theory of graph minors, initiated in the seminal work of Robertson and Seymour, is at 
the forefront of research in graph theory. A fundamental question at the intersection of 
graph minor theory and extremal graph theory asks, for a given graph H, what is the 
maximum number exm(n, H) of edges in an n-vertex graph containing no H-minor? The 
function exm(n, H) is called the extremal function for H-minors.
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Fig. 1. The Petersen graph.

The extremal function is known for several graphs, including the complete graphs K4
and K5 [49,10], K6 and K7 [30], K8 [19] and K9 [44], the bipartite graphs K3,3 [14] and 
K2,t [6], and the octahedron K2,2,2 [8], and the complete graph on eight vertices minus 
an edge K−

8 [43]. Tight bounds on the extremal function are known for general complete 
graphs Kt [12,23,24,45,46], unbalanced complete bipartite graphs Ks,t [25–28], disjoint 
unions of complete graphs [47], disjoint unions of cycles [15,7], general dense graphs [32]
and general sparse graphs [4,16].

1.1. Petersen minors

We study the extremal function when the excluded minor is the Petersen graph (see 
Fig. 1), denoted by P. Our primary result is the following:

Theorem 1. exm(n, P) � 5n − 9, with equality if and only if n ≡ 2 (mod 7).

For n ≡ 2 (mod 7), we in fact completely characterise the extremal graphs (see 
Theorem 2 below).

The class of P-minor-free graphs is interesting for several reasons. As an extension of 
the 4-colour theorem, Tutte [48] conjectured that every bridgeless graph with no P-minor 
has a nowhere zero 4-flow. Edwards, Robertson, Sanders, Seymour and Thomas [35,37,
36,40,11] have announced a proof that every bridgeless cubic P-minor-free graph is edge 
3-colourable, which is equivalent to Tutte’s conjecture in the cubic case. Alspach, Goddyn 
and Zhang [3] showed that a graph has the circuit cover property if and only if it has 
no P-minor. It is recognised that determining the structure of P-minor-free graphs is a 
key open problem in graph minor theory (see [9,31] for example). Theorem 1 is a step 
in this direction.

1.2. Extremal graphs

We now present the lower bound in Theorem 1, and describe the class of extremal 
graphs. For a graph H and non-negative integer t, an (H, t)-cockade is defined as follows: 
H itself is an (H, t)-cockade, and any other graph G is an (H, t)-cockade if there are 
(H, t)-cockades G1 and G2 distinct from G such that G1 ∪G2 = G and G1 ∩G2 ∼= Kt. It 
is well known that for every (t + 1)-connected graph H and every non-negative integer 
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s < |V (H)|, every (Ks, t)-cockade is H-minor-free (see Appendix A for a proof). Since P
is 3-connected and |V (P)| = 10, every (K9, 2)-cockade is P-minor-free. Every n-vertex 
(K9, 2)-cockade has 5n − 9 edges. For n ≡ 2 (mod 7) there is at least one n-vertex 
(K9, 2)-cockade, hence exm(n, P) � 5n − 9 for n ≡ 2 (mod 7).

Theorem 1 is implied by the following stronger result, which also shows that 
(K9, 2)-cockades are the unique extremal examples of P-minor-free graphs. Indeed, this 
theorem characterises P-minor-free graphs that are within two edges of extremal.

Theorem 2. Every graph with n � 10 vertices and m � 5n −11 edges contains a Petersen 
minor or is a (K9, 2)-cockade minus at most two edges.

Since (K9, 2)-cockades have connectivity 2, it is interesting to ask for the maximum 
number of edges in more highly connected P-minor-free graphs. First note that Theo-
rem 2 implies that 3-connected P-minor-free graphs, with the exception of K9, have at 
most 5n − 12 edges. To see that this is tight, consider the class C of all graphs G such 
that there is some subset S of the vertices of G such that |S| � 3 and each component 
of G − S contains at most five vertices. Then C is minor-closed, and it is quick to check 
that P is not in C. If G ∈ C is such that |S| = 3, every vertex in S is dominant, and 
every component of G −S is a copy of K5, then G has 5n − 12 edges and is 3-connected, 
and is P-minor-free.

We now show that there are 5-connected P-minor-free graphs with almost as many 
edges as (K9, 2)-cockades. Consider the class C′ of all graphs G with a vertex cover 
of size at most 5. C ′ is minor-closed, and P is not in C′. Let G := K5 + Kn−5 for 
n � 6. Then G is 5-connected with |E(G)| = 5n − 15, and G is in C′ and thus is 
P-minor-free.

Now consider 6-connected P-minor-free graphs. A graph G is apex if G − v is planar
for some vertex v. Since K3,3 is a minor of P − v for each vertex v, the Petersen graph is 
not apex and every apex graph is P-minor-free. A graph G obtained from a 5-connected 
planar triangulation by adding one dominant vertex is 6-connected, P-minor-free, and 
has 4n − 10 edges. We know of no infinite families of 6-connected P-minor-free graphs 
with more edges. We also know of no infinite families of 7-connected P-minor-free graphs. 
Indeed, it is possible that every sufficiently large 7-connected graph contains a P-minor. 
The following conjecture is even possible.

Conjecture 3. Every sufficiently large 6-connected P-minor-free graph is apex.

This is reminiscent of Jørgensen’s conjecture [19], which asserts that every 6-connected 
K6-minor-free graph is apex. Jørgensen’s conjecture has recently been proved for suffi-
ciently large graphs [21,22]. In this respect, K6 and P possibly behave similarly. Indeed, 
they are both members of the so-called Petersen family [39,34,29]. Note however, that 
the extremal functions of K6 and P are different, since exm(n, K6) = 4n − 10 [30].
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1.3. Graph colouring

Graph colouring provides further motivation for studying extremal functions for graph 
minors. A graph is k-colourable if each vertex can be assigned one of k colours such 
that adjacent vertices get distinct colours. The chromatic number of a graph G is the 
minimum integer k such that G is k-colourable. In 1943, Hadwiger [13] conjectured that 
every Kt-minor-free graph is (t − 1)-colourable. This is widely regarded as one of the 
most significant open problems in graph theory; see [41] for a recent survey, and see [38,2]
for recent results. Extremal functions provide a natural approach for colouring graphs 
excluding a given minor, as summarised in the following folklore result (see Appendix A
for a proof).

Lemma 4. Let H be a graph such that exm(n, H) < cn for some positive integer c. Then 
every H-minor-free graph is 2c-colourable, and if |V (H)| � 2c then every H-minor-free 
graph is (2c − 1)-colourable.

Theorem 1 and Lemma 4 with c = 5 imply the following Hadwiger-type theorem for 
P-minors, which is best possible for P-minor-free graphs with K9 subgraphs, for example 
(K9, 2)-cockades.

Theorem 5. Every P-minor-free graph is 9-colourable.

For a given graph G, a graph colouring can be thought of as a partition of V (G)
such that each part induces an edgeless subgraph, equivalently a subgraph with no 
K2-minor. One way of generalising this is to instead ask for a partition of V (G) such 
that each part induces a Kt-minor-free subgraph for some larger value of t. The mini-
mum integer k such that there exists a partition of V (G) into k sets such that each set 
induces a K3-minor-free subgraph (equivalently a forest), is called the vertex arboric-
ity of G. A graph is d-degenerate if every subgraph has minimum degree at most d. 
Chartrand and Kronk [5] proved that every d-degenerate graph has vertex arboricity at 
most �d+1

2 �. By Theorem 1 every P-minor-free graph is 9-degenerate. Hence, we have 
the following result, which again is best possible for P-minor-free graphs with K9 sub-
graphs.

Theorem 6. Every P-minor-free graph has vertex arboricity at most 5.

Other classes of graphs for which the maximum vertex arboricity is known include 
planar graphs [5], locally planar graphs [42], triangle-free locally planar graphs [42], for 
each k ∈ {3, 4, 5, 6, 7} the class of planar graphs with no k-cycles [33,17], planar graphs 
of diameter 2 [1], K5-minor-free graphs of diameter 2 [18], and K4,4-minor-free graphs 
[20].
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1.4. Notation

The following notation will be used throughout the paper. Let G be a graph, and let 
vw be an edge of G. The graph G/vw is the graph obtained from G − {v, w} by adding 
a new vertex adjacent to all the neighbours of v except w and all the neighbours of w
except v. The operation which takes G to G/e is a contraction. If a graph isomorphic to H
can be obtained from G by performing edge deletions, vertex deletions and contractions, 
then H is a minor of G. A graph G is H-minor-free if H is not a minor of G.

The components of G are the maximal connected subgraphs of G. For S ⊆ V (G), let 
G[S] be the subgraph of G induced by S. If G[S] is a complete graph, S is a clique. We 
denote by G − S the graph G[V (G) \ S]. Similarly, if S ⊆ E(G), let G − S be the graph 
with vertex set V (G) and edge set E(G) \S. For simplicity, we write G − x for G −{x}. 
For any subgraph H of G, we write G −H for G − V (H).

For each vertex v in G, let NG(v) := {w ∈ V (G) : vw ∈ E(G)} and NG[v] :=
{v} ∪ NG(v). Similarly, for each subgraph C of G, let NG(C) be the set of vertices in 
G − C that are adjacent in G to some vertex of C, and let NG[C] := V (C) ∪ NG(C). 
When there is no ambiguity, we write N(v), N [v], N(C) and N [C] respectively for NG(v), 
NG[v], NG(C) and NG[C]. A vertex v is dominant in G if NG[v] = V (G), and isolated if 
NG(v) = ∅.

We denote by δ(G) the minimum degree of G and by Δ(G) the maximum degree of G. 
For i ∈ N, we denote by Vi(G) the set of vertices in G with degree i, and by V�i(G) the 
set of vertices of G of degree at least i.

For a tree T and v, w ∈ V (T ), let vTw be the path in T from v to w. A vertex of T
is high degree if it is in V�3(T ). For a path P with endpoints x and y, int(P ) := xy if 
E(P ) = {xy} and int(P ) := V (P ) \ {x, y} otherwise.

We denote by G∪̇H the disjoint union of two graphs G and H. A subset S of V (G) is 
a fragment if G[S] is connected. Distinct fragments X and Y are adjacent if some vertex 
in X is adjacent to some vertex in Y .

2. Outline of proof

We now sketch the proof of Theorem 2. Assume to the contrary that there is some 
counterexample to Theorem 2, and select a minor-minimal counterexample G. Define 
L to be the set of vertices v of G such that deg(v) � 9 and there is no vertex u with 
N [u] � N [v]. For a vertex v ∈ V (G), a subgraph H ⊆ G is v-suitable if it is a component 
of G −N [v] that contains some vertex of L.

Section 3 shows some elementary results that are used throughout the other sections. 
In particular, it shows that δ(G) ∈ {6, 7, 8, 9}, and hence that L �= ∅. Sections 4 and 5
respectively show that no vertex of G has degree 7 and that no vertex of G has degree 8. 
Sections 6 and 7 show that for every v ∈ L with degree 6 or 9 respectively there is some 
v-suitable subgraph, and that for each v ∈ L with degree 6 or 9 and every v-suitable 
subgraph C of G there is some v-suitable subgraph C ′ of G such that N(C ′) \N(C) �= ∅.
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Pick u ∈ L and a u-suitable subgraph H of G such that |V (H)| is minimised. By the 
definition of u-suitable, there is some v ∈ L ∩ V (H). Let C be a v-suitable subgraph of 
G containing u, and let C ′ be a v-suitable subgraph of G such that N(C ′) \N(C) �= ∅. 
Section 8 shows that C ′ selected in this way is a proper subgraph of H, contradicting 
our choice of H.

The basic idea of our proof is similar to proofs used for example in [44] and [2], 
with the major points of difference conceptually being the use of skeletons, defined in 
Section 3, to rule out certain configurations, and the proof in Section 3 that the minimal 
counterexample is 4-connected.

3. Basic results

To prove Theorem 2, suppose for contradiction that G is a minor-minimal counterex-
ample to Theorem 2. That is, G is a graph with the following properties:

(i) |V (G)| � 3,
(ii) |E(G)| � 5|V (G)| − 11,
(iii) G is not a spanning subgraph of a (K9, 2)-cockade,
(iv) P is not a minor of G,
(v) Every proper minor H of G with at least three vertices satisfies |E(H)| �

5|V (H)| − 12 or is a spanning subgraph of a (K9, 2)-cockade.

If H is a (K9, 2)-cockade or K2, then |E(H)| = 5|V (H)| − 9. Hence, (v) immediately 
implies:

(vi) Every proper minor H of G with at least two vertices satisfies |E(H)| � 5|V (H)| −9.

Lemma 7. G has at least 10 vertices.

Proof. Since 5n −11 >
(
n
2
)

for n ∈ {2, 3, . . . , 8}, every graph satisfying (i) and (ii) has at 
least 9 vertices. Every 9-vertex graph is a spanning subgraph of a (K9, 2)-cockade. �

A separation of a graph H is a pair (A, B) of subsets of V (H) such that both A \B
and B \ A are non-empty and H = H[A] ∪ H[B]. The order of a separation (A, B) is 
|A ∩B|. A k-separation is a separation of order k. A (� k)-separation is a separation of 
order at most k. A graph is k-connected if it has at least k+1 vertices and no separation 
of order less than k.

Let x, y and z be distinct vertices of a graph H. A K3-minor rooted at {x, y, z} is a set 
of three pairwise-disjoint, pairwise-adjacent fragments {X, Y, Z} of H such that x ∈ X, 
y ∈ Y , z ∈ Z. The following lemma is well known and has been proved, for example, by 
Wood and Linusson [50].



JID:YJCTB AID:3129 /FLA [m1L; v1.232; Prn:27/02/2018; 14:01] P.7 (1-34)
K. Hendrey, D.R. Wood / Journal of Combinatorial Theory, Series B ••• (••••) •••–••• 7
Lemma 8. Let x, y and z be distinct vertices of a graph H. There is a K3-minor of H
rooted at {x, y, z} if and only if there is no vertex v ∈ V (H) for which the vertices in 
{x, y, z} \ {v} are in distinct components of H − v.

Lemma 9. G is 4-connected.

Proof. By Lemma 7, |V (G)| � 10. Suppose for contradiction that there is a (� 3)-sep-
aration (A, B) of G. Note that A \ B and B \ A are both non-empty by definition. We 
separate into cases based on |A ∩ B| and on whether |A \ B| is a singleton. Note that 
while Case 1 is redundant, it is useful to know that Case 1 does not hold when proving 
that Cases 2 and 4 do not hold.

Case 1. There is a (� 3)-separation (A, B) of G such that |A \B| = {v}:

By Lemma 7, |B| � 9. Now by (vi) we have

|E(G)| � |E(G[B])| + deg(v) � 5(|V (G)| − 1) − 9 + 3 = 5|V (G)| − 11.

By (ii), equality holds throughout. In particular deg(v) = 3 and |E(G[B])| = 5|B| − 9
so G[B] is a (K9, 2)-cockade by (v). For every edge e incident to v, we have E(G/e) =
E(G[B]) by (vi). Hence, |A ∩ B| is a clique, and is therefore contained in a subgraph 
H ∼= K9 of G[B]. Then P ⊆ H ∪G[A] ⊆ G contradicting (iv).

Case 2. There is a (� 1)-separation (A, B) of G:

If either |A \ B| = 1 or |B \ A| = 1 then we are in Case 1. Otherwise, |A| � 2 and 
|B| � 2, so by (v) we have |E(G[A])| � 5|A| − 9, with equality if and only if G[A] ∼= K2

or G[A] is a (K9, 2)-cockade, and the same for B. Now

|E(G)| = |E(G[A])| + |E(G[B])| � 5(|V (G)| + 1) − 9 − 9 = 5|V (G)| − 13,

contradicting (ii).

Case 3. There is a 2-separation (A, B) of G:

If there is a component C of G − (A ∩ B) such that N(C) �= A ∩ B, then G has a 
(� 1)-separation, and we are in Case 2. Otherwise, let CB be a component of G −A and 
let GA be the graph obtained from G by contracting G[N [CB]] down to a copy of K2
rooted at A ∩ B and deleting all other vertices of B. Let GB be defined analogously. If 
|E(GA)| � 5|A| − 12, then

|E(G)| � |E(GA)| + |E(GB)| − 1 � 5(|V (G)| + 2) − 12 − 9 − 1 = 5|V (G)| − 12,
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contradicting (ii). Hence, |E(GA)| � 5|A| − 11, and by (v), GA is a spanning subgraph 
of a (K9, 2)-cockade HA. By symmetry, GB is a spanning subgraph of a (K9, 2)-cockade 
HB . Then G is a spanning subgraph of the (K9, 2)-cockade formed by gluing HA and 
HB together on A ∩B, contradicting (iii).

Case 4. There is a 3-separation (A, B) of G:

First, suppose that G[A] does not contain a K3 minor rooted at A ∩ B. Then there 
exists a vertex v such that the vertices in A ∩B are in distinct components of G[A] − v

by Lemma 8. Recall that |A \ B| > 1, so there is a vertex w �= v in A \ B. Let C be 
the component of G[A] − v containing w. Then there is a (� 2)-separation (A′, B′) of G
where A′ \B′ = V (C) \(A ∩B), so we are in either Case 2 or Case 3. Hence, there is a K3
minor of G[A] rooted at A ∩B, and by the same argument a K3 minor of G[B] rooted at 
A ∩B. Let GA be obtained from G by contracting G[B] down to a triangle on A ∩B, and 
let GB be obtained from G by contracting G[A] down to a triangle on A ∩ B. Suppose 
|E(GA)| � 5|A| − 11. Since G satisfies (v), we have that GA is a spanning subgraph of a 
(K9, 2)-cockade, and so GA is a (K9, 2)-cockade minus at most two edges. Since A ∩B

is a clique of GA, there is some set S of nine vertices in A, containing A ∩B, such that 
GA[S] is K9 minus at most two edges. Let C be a component of G − A, and note that 
N(C) = A ∩B, or else we are in Case 2 or Case 3. Now it is quick to check that the graph 
obtained from G[S∪V (C)] by contracting C to a single vertex contains P as a subgraph, 
contradicting (iv). Hence, |E(GA)| � 5|A| − 12, and by symmetry |E(GB)| � 5|B| − 12. 
Now

|E(G)| � |E(GA)| + |E(GB)| − 3 � 5(|V (G)| + 3) − 12 − 12 − 3 = 5|V (G)| − 12,

contradicting (ii). �
Lemma 10. δ(G) ∈ {6, 7, 8, 9} and every edge is in at least five triangles.

Proof. Suppose for contradiction that some edge vw is in t triangles with t � 4. Now

|E(G/vw)| � |E(G)| − t− 1 � 5|V (G)| − 12 − t � 5|V (G/e)| − 11.

Since G satisfies (v), G/vw is a spanning subgraph of some (K9, 2)-cockade H. By 
Lemma 9, G is 4-connected, which implies G/vw is 3-connected, so G/vw is K9 minus 
at most two edges. It follows from (ii) that G is a 10-vertex graph with at most six 
non-edges. It is possible at this point to manually prove that P ⊆ G. Rather than 
detailing this argument, we instead report that a simple random searching algorithm 
verifies (in six minutes) that P is a subgraph of every 10-vertex graph with at most six 
non-edges. Hence, every edge of G is in at least five triangles. By Lemma 9, G has no 
isolated vertex, and δ(G) � 6.
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Let e be an edge of G. By (vi), |E(G − e)| � 5|V (G)| − 9, so |E(G)| � 5|V (G)| − 8, 
and hence δ(G) � 9. �

Recall that L is the set of vertices v of G such that deg(v) � 9 and there is no vertex 
u with N [u] � N [v]. By Lemma 10, every vertex of minimum degree is in L, and L �= ∅.

The following result is the tool we use for finding v-suitable subgraphs.

Lemma 11. If (A, B) is a separation of G of order k � 6 such that there is a vertex 
v ∈ B \A with A ∩B ⊆ N(v), then there is some vertex u ∈ (A \B) ∩ L.

Proof. We may assume that every vertex in A ∩B has a neighbour in A \B.
Let u be a vertex in A \ B with minimum degree in G. Suppose for a contradiction 

that degG(u) � 10. It follows that every vertex in A \B has degree at least 10 in G[A]. 
Hence, G[A] has at most six vertices of degree less than 10, so G[A] is not a spanning 
subgraph of a (K9, 2)-cockade. Now |A| � |N [u]| � 11, so by (v),

∑
w∈A∩B

degG[A](w) = 2|E(G[A])| −
∑

w∈A\B
degG[A](w) � 2(5|A| − 12) − 10|A \B|

= 10k − 24. (1)

Let X be the set of edges of G with one endpoint in A ∩ B and the other endpoint in 
A \ B. It follows from Lemma 9 that there are a pair of disjoint edges e1 and e2 in X, 
since deleting the endpoints of an edge e1 ∈ X from G does not leave a disconnected 
graph and |A \B| � |N [u]| − k � 5. By Lemma 10, e1 is in at least five triangles. Each 
of these triangles contains some edge in X \ {e1, e2}, so |X| � 7. By (1),

δ(G[A ∩B]) � 1
k

∑
w∈A∩B

degG[A∩B](w) = 1
k

(( ∑
w∈A∩B

degG[A](w)
)

− |X|
)

� 1
k

(10k − 31).

Since k � 6, some vertex x ∈ A ∩ B has degree at most 4 in G[A ∩ B]. Let G′ :=
G[A ∪{v}]/vx. Then |E(G′)| � |E(G[A])| +(k−5). Recall that every vertex in A \B has 
degree at least 10 in G[A]. Further, every vertex in A ∩B is incident with some edge in X, 
and hence has at least six neighbours in A by Lemma 10. Hence |E(G′)| � 1

2 (10|A \B| +
6k) + (k − 5) � 1

2 (10|A| − 4k) + k − 5 � 5|A| − 11. Then G′ is a spanning subgraph 
of a (K9, 2)-cockade by (v), and so G[A] is a spanning subgraph of a (K9, 2)-cockade, 
a contradiction.

Hence, degG(u) � 9. Suppose for contradiction that N [w] � N [u] for some vertex w. 
Then w ∈ N(u) and degG(w) < degG(u), so w ∈ A ∩B. But N [w] ⊆ N [u], so w /∈ N(v), 
which contradicts the assumption that A ∩B ⊆ N(v). Therefore u ∈ L, as required. �
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For an induced subgraph H of G, a subtree T of G[N [H]] is a skeleton of H if 
V1(T ) = N(H).

Lemma 12. Let S be a fragment of G, let T be a skeleton of G[S], and let v and w be 
distinct vertices of T . If vw /∈ E(T ) and T �= vTw, then there is a path P of G[N [S]] −
{v, w} from vTw to T − vTw with no internal vertex in T .

Proof. G − {v, w} is connected by Lemma 9, so there is a path in G − {v, w} from vTw
to T −vTw. Let P be a vertex-minimal example of such a path with endpoints x in vTw
and y in T − vTw.

Suppose to the contrary that there is some internal vertex z of P in T . Then either z
is in vTw and the subpath of P from z to y contradicts the minimality of P , or z is in 
T − vTw and the subpath of P from x to z contradicts the minimality of P .

Suppose to the contrary that there is some vertex z in P −N [S]. The subpath P ′ of P
from x to z has one end in S and one end in G −N [S], so there is some internal vertex z′ of 
P ′ in N(S). But N(S) ⊆ V (T ), so z′ is an internal vertex of P in T , a contradiction. �
Lemma 13. If (A, B) is a separation of G such that N(A \B) = A ∩B, |A \B| � 2 and 
G[A \B] is connected, then there is a skeleton of G[A \B] with at least two high degree 
vertices.

Proof. There is at least one subtree of G[A] in which every vertex of A ∩ B is a leaf, 
since we can obtain such a tree by taking a spanning subtree of G[A \B] and adding the 
vertices in A ∩B and, for each vertex in A ∩B, exactly one edge e ∈ E(G) between that 
vertex and some vertex of A \B. We can therefore select T a subtree of G[A] such that 
A ∩B ⊆ V1(T ) and such that there is no proper subtree T ′ of T such that A ∩B ⊆ V1(T ′). 
There is no vertex v in V1(T ) \B, since for any such vertex T − v is a proper subtree of 
T and A ∩B ⊆ V1(T − v), a contradiction. Hence, V1(T ) = A ∩B. If |V�3(T )| � 2 then 
we are done, so we may assume there is a unique vertex w in V�3(T ).

Suppose that for some x ∈ A ∩B there is some vertex in int(xTw). By Lemma 12, there 
is a path P of G[A] −{x, w} from xTw to T −xTw with no internal vertex in T . Let y be 
the endpoint of P in xTw and let z be the other endpoint. Then T ′ := (T ∪P ) −int(zTw)
is a skeleton of G[A \B] that has a vertex of degree exactly 3. Since |V1(T ′)| = |A ∩B| � 4
by Lemma 9, T ′ has at least two high degree vertices (namely y and w).

Suppose instead that V (T ) = {w} ∪ (A ∩ B). By Lemma 9 G is 4-connected, so 
(A \ B, B ∪ {w}) is not a separation of G, so there is some vertex y in A \ (B ∪ {w})
adjacent to some vertex x in A ∩ B. Let P1 be a minimal length path from y to A ∩ B

in G − {x, w} (and hence in G[A] − {x, w}), and let z be the endpoint of P1 in A ∩ B. 
Let P ′

1 be the path formed by adding the vertex x and the edge xy to P1. Since G[A \B]
is connected, we can select a minimal length path P2 of G[A \ B] from P1 to w. Then 
(T ∪P ′

1∪P2) −{xw, zw} is a skeleton of G[A \B] that has a degree 3 vertex, and therefore 
at least two high degree vertices (namely the endpoints of P2). �
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For any graph H a table of H is an ordered 6-tuple X := (X1, . . . , X6) of pairwise 
disjoint fragments of H such that X5 is adjacent to X1, X2 and X6, and X6 adjacent to 
X3 and X4. For any subset S of V (H), X is rooted at S if |Xi ∩S| = 1 for i ∈ {1, 2, 3, 4}
and X5 ∩ S = X6 ∩ S = ∅.

Lemma 14. If (A, B) is a separation of G such that N(A \ B) = A ∩ B, |A ∩ B| � 4, 
|A \B| � 2 and G[A \B] is connected, then there is a table of G[A] rooted at A ∩B.

Proof. By Lemma 13, there is some skeleton T of G[A \B] such that |V�3(T )| � 2. Let 
w and x be distinct vertices in V�3(T ). Let w1, w2 and w′ be three neighbours of w in T , 
and let x′, x3 and x4 be three neighbours of x in T , labelled so that w′ and x′ are both 
in V (xTw). For i ∈ {1, 2} let Xi be the vertex set of a path from wi to a leaf of T in the 
component subtree of T −w that contains wi, and for i ∈ {3, 4} let Xi be the vertex set 
of a path from xi to a leaf of T in the component subtree of T −x that contains xi. Since 
V1(T ) = A ∩B, |Xi ∩ B| = 1 for i ∈ {1, 2, 3, 4}. Let X5 := V (wTx′) and let X6 := {x}. 
Then X := (X1, . . . , X6) satisfies our claim. �
4. Degree 7 vertices

In this section we show that V7(G) = ∅.

Claim 15. If v ∈ V7(G), then there is no isolated vertex in G −N [v].

Proof. Suppose for contradiction that there is some isolated vertex u in G − N [v]. By 
Lemma 10, |N(u)| � 6. By Lemma 7, there is some component C of G − N [v] not 
containing u. Since |N(C)| � 4 by Lemma 9 and |N(u) ∪ N(C)| � |N(v)| = 7, there 
is some vertex v1 in N(u) ∩ N(C). Let v1, v2 and v3 be distinct vertices in N(C), and 
let v4 and v5 be distinct vertices in N(u) \ {v1, v2, v3}. Let v6 and v7 be the remaining 
vertices of N(v). By Lemma 10, for i ∈ {1, 2, . . . , 7}, N(vi) ∩ N(v) � 5. If some vertex 
in {v2, v3}, say v2, is not adjacent to some vertex in {v4, v5}, say v5, then v2 and v5 are 
both adjacent to every other vertex in N(v), and in particular v2v4 and v3v5 are edges 
in G. Hence, there are two disjoint edges between {v2, v3} and {v4, v5}. Without loss 
of generality, {v2v4, v3v5} ⊆ E(G). We now consider two cases depending on whether 
v6v7 ∈ E(G).

Case 1. v6v7 ∈ E(G):

Since v1 is adjacent to all but at most one of the other neighbours of v, either v1v6 ∈
E(G) or v1v7 ∈ E(G), so without loss of generality v1v6 ∈ E(G). Since v7 is adjacent to all 
but at most one of the other neighbours of v, either {v7v2, v7v5} ⊆ E(G) or {v7v3, v7v4} ⊆
E(G), so without loss of generality {v7v2, v7v5} ⊆ E(G). Let G′ be obtained from G by 
contracting C to a single vertex. Then P ⊆ G′ (see Fig. 2a), contradicting (iv).
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Fig. 2. Petersen subgraphs in Claim 15 and Lemma 16.

Case 2. v6v7 /∈ E(G):

Then v6 and v7 are both adjacent to every other neighbour of v. Let G′ be obtained 
from G by contracting C to a single vertex. Then P ⊆ G′ (see Fig. 2b), contradict-
ing (iv). �

The following is the main result of this section.

Lemma 16. V7(G) = ∅.

Proof. Suppose for contradiction that there is some vertex v ∈ V7(G). By Lemma 7, 
there is a non-empty component C of G − N [v]. By Lemma 9, |N(C)| � 4 and by 
Claim 15, |V (C)| � 2. Hence, by Lemma 14 with A := N [C] and B := V (G − C), there 
is a table X := (X1, . . . , X6) of G[N [C]] rooted at N(C).

Let {v1, . . . , v7} := N(v), with vi ∈ Xi for i ∈ {1, 2, 3, 4}. By Lemma 10, |N(vi) ∩
N(v)| � 5 for i ∈ {1, 2, . . . , 7}. We consider two cases depending on whether v5v6v7 is a 
triangle of G.

Case 1. v5v6v7 is a triangle of G:

Let Q be the bipartite graph with bipartition V := {v1, v2, v3, v4}, W := {v5, v6, v7}
and E(Q) := {xy : xy /∈ E(G), x ∈ V, y ∈ W}. Then Δ(Q) � 1, so without loss of 
generality E(Q) ⊆ {v1v5, v2v6, v3v7}. Let G′ be obtained from G by contracting G[Xi]
to a single vertex for each i ∈ {1, 2, . . . , 6}. Then P ⊆ G′ (see Fig. 2c), contradict-
ing (iv).

Case 2. v5v6v7 is not a triangle of G:

We may assume without loss of generality that v5v6 /∈ E(G). Then v5 and v6 are both 
adjacent to every other neighbour of v. At most one neighbour of v is not adjacent to v7, 
so v7 has some neighbour in {v1, v2}, say v2, and some neighbour in {v3, v4}, say v4. Let 
G′ be obtained from G by contracting G[Xi] to a single vertex for each i ∈ {1, 2, . . . , 7}. 
Then P ⊆ G′ (see Fig. 2c), contradicting (iv). �
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5. Degree 8 vertices

We now prove that V8(G) = ∅. Note that the following lemma applies to any graph, 
not just G. This means we can apply it to minors of G, which we do in Claims 26 and 28.

Claim 17. If H is a graph that contains a vertex v such that deg(v) = 8, |N(v′) ∩N(v)| � 5
for all v′ ∈ N(v), and C is a component of H \ N [v] with |NH(C)| � 3, then P is a 
minor of H unless all of the following conditions hold:

1. K3 is an induced subgraph of H[N(v) \N(C)],
2. C4 is an induced subgraph of H[N(v)],
3. H[N(C)] ∼= K3.

Proof. By assumption, δ(H[N(v)]) � 5. Let H ′ be an edge-minimal spanning subgraph 
of H[N(v)] such that δ(H ′) � 5. Every edge e in H ′ is incident to some vertex of degree 5, 
since otherwise δ(H ′ − e) � 5, contradicting the minimality of H ′. Hence, the vertices of 
degree at most 1 in H ′ form a clique in H ′. Now Δ(H) � 2, since |V (H ′)| = deg(v) = 8
and δ(H ′) � 5. It follows that H ′ is the disjoint union of some number of cycles, all on 
at least three vertices, and a complete graph on at most two vertices. Let x, y and z be 
three vertices in N(C), and let 1, 2, . . . , 5 be the remaining vertices of N(v). Colour x, y, 
and z white and colour 1, 2, . . . , 5 black. In Table 1 we examine every possible graph H ′, 
up to colour preserving isomorphism. We use cycle notation to label the graphs, with 
an ordered pair representing an edge and a singleton representing an isolated vertex. 
In each case we find P as a subgraph of the graph G′ obtained from G by contracting 
C to a single vertex, except in the unique case where K3 is an induced subgraph of 
H ′ − {x, y, z}, C4 is an induced subgraph of H ′ and {x, y, z} is an independent set of 
vertices in H ′.

It follows that if N(C) = {x, y, z}, then the claim holds. Suppose to the contrary that 
P is not a minor of H and |N(C)| � 4. As Table 1 shows, H ′ contains both K3 and 
C4 as induced subgraphs. Since Δ(H ′) � 2, no vertex of H ′ is in more than one cycle, 

Table 1
Petersen subgraphs in Claim 17.

(continued on next page)
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Table 1 (continued)

(continued on next page)
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Table 1 (continued)

(continued on next page)
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Table 1 (continued)

(continued on next page)
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Table 1 (continued)
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so there is a unique triangle in H ′. For any subset S ⊆ N(C) of size 3, S is a set of 
independent vertices in H ′, disjoint from the unique triangle of H ′ by the case analysis 
in Table 1. Hence, N(C) is an independent set of at least four vertices in H ′, disjoint 
from the unique triangle of H ′. However, given the structure of H, there is no such set, 
a contradiction. �

The following is the main result of this section.

Lemma 18. V8(G) = ∅.

Proof. Suppose to the contrary that v ∈ V (G) has degree 8. By Lemma 10, |N(v′) ∩
N(v)| � 5 for all v′ ∈ N(v). By Lemma 7, G −N [v] has some non-empty component C. 
By Lemma 9, |N(C)| � 4, so G[N(C)] �∼= K3. Hence, by Claim 17, P is a minor of G, 
contradicting (iv). �
6. Degree 6 vertices

In this section we focus on vertices of degree 6 in G. Recall that for a given vertex v
of our minimal counterexample G, a subgraph H of G is v-suitable if it is a component 
of G − N [v] that contains some vertex of L. The main result of this section is that if 
v ∈ V6(G), then for any v-suitable subgraph H there is a v-suitable subgraph H ′ such 
that N(H ′) \N(H) �= ∅ (see Lemma 23).

Claim 19. If v ∈ V6(G), then N [v] is a clique.

Proof. By definition, v is dominant in G[N [v]]. Let w be a vertex in N(v). Then w
is adjacent to each of the five other vertices in N(v), by Lemma 10 applied to the 
edge vw. �

This result is useful because it means that for an induced subgraph H of P on seven 
or fewer vertices, H ⊆ G[N [v]]. Throughout this section we show that certain state-
ments about the structure of G imply P is a minor of G, and are therefore false. When 
illustrating this, the vertices of N [v] will be coloured white, for ease of checking.

Claim 20. If v ∈ V6(G) and C is a component of G − N [v] with |N(C)| � 5, then 
|V (C)| = 1.

Proof. Suppose for contradiction that |V (C)| > 1. By Lemma 13 with A := N [C] and 
B := V (G − C), there is a skeleton T of C with at least two high degree vertices. The 
handshaking lemma implies

∞∑
i=3

(i− 2) · |Vi(T )| = |V1(T )| − 2. (2)



JID:YJCTB AID:3129 /FLA [m1L; v1.232; Prn:27/02/2018; 14:01] P.19 (1-34)
K. Hendrey, D.R. Wood / Journal of Combinatorial Theory, Series B ••• (••••) •••–••• 19
Fig. 3. Cases 1 and 2 in Claim 20.

Note that |V1(T )| = |N(C)| and |N(C)| ∈ {5, 6}, so |V1(T )| − 2 ∈ {3, 4}. Hence either 
|V�3(T )| ∈ {3, 4} (Case 2 below), V3(T ) = ∅ and |V4(T )| = 2 (Cases 3 and 4 below), or 
|V3(T )| = 1 and |V�4(T )| = 1 (Case 5).

Case 1. |V (C)| = 2:

Since C is connected, the two vertices w and x of C are adjacent. By Lemma 10
applied to wx, w and x have at least five common neighbours, v1, . . . , v5. By Lemma 7, 
|V (G −N [v] − C)| � 1, so there is some component C ′ �= C of G −N [v]. By Lemma 9, 
|N(C ′)| � 4. Both N(C ′) and {v1, . . . , v5} are subsets of N(v) and |N(v)| = 6, so 
|N(C ′) ∩ {v1, . . . , v5}| � 3. Assume without loss of generality that N(C ′) ⊇ {v1, v2, v′}, 
where v′ is neither v3 nor v4. Let v′′ be the unique vertex in N(v) \{v1, v2, v3, v4, v′}. Let 
G′ be obtained from G by contracting C ′ to a single vertex. Then P ⊆ G′ by Claim 19
(see Fig. 3a), contradicting (iv).

Case 2. C has a skeleton T with at least three high degree vertices:

By repeatedly contracting edges of T ∩C, we can obtain a minor T ′ of T such that T ′

is a tree, V1(T ′) = N(C), there are at least three vertices in V�3(T ′) and |V�3(T ′/e)| � 2
for every edge e ∈ E(T ′ − V1(T ′)). Contracting an edge of T ′ − V1(T ′) can only reduce 
|V�3(T ′)| by 1, and only if both endpoints of the edge are in |V�3(T ′)|. Hence, there 
are exactly three vertices of T ′ − V1(T ), and each has degree at least 3 in T ′. Now 
T ′ − V1(T ) is a tree on three vertices, and hence is a path wxy. Since w, x and y all 
have degree at least 3 in T ′, there are distinct vertices v1, . . . , v5 such that w is adjacent 
to v1 and v2 in T ′, y is adjacent to v4 and v5 in T ′, and x is adjacent to v3 in T ′. Let 
v6 be the remaining vertex in N(v), and recall that G[N [v]] is a complete subgraph of 
G by Claim 19. Let E be the set of edges that were contracted to obtain T ′, and let 
G′ := G/E. Then P ⊆ G′ (see Fig. 3b), contradicting (iv).

Case 3. There is a skeleton T of C with |V4(T )| = 2 and with some y ∈ V2(T ):

Let w and x be the vertices in V4(T ).
First, suppose that y is in xTw. Then by Lemma 12, there is a path P of G[N [C]]

from xTw to T − xTw with no internal vertex in T . Let a be the endpoint of P in 
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xTw and let b be the other endpoint. Without loss of generality, w /∈ V (xTb). Let 
R := (T ∪ P ) − int(xTb). Then R is a skeleton of C and V�3(R) = {x, w, a}, so we are 
in Case 2.

Suppose instead that y is not in xTw. Without loss of generality, y is in the component 
of T − int(xTw) containing x. Let z be the leaf of T such that y is in xTz. By Lemma 12, 
there is a path P of G[N(C)] − {x, z} from xTz to T − xTz with no internal vertex in 
T . Let a be the endpoint of P in xTz and let b be the other endpoint. If w /∈ V (xTb)
or w = b, then let R := (T ∪ P ) − int(xTb). Otherwise, let R := (T ∪ P ) − int(wTb). In 
either case, R is a skeleton of C and V�3(R) = {x, w, a}, so we are in Case 2.

Case 4. There is a skeleton T of C with |V4(T )| = 2 and V2(T ) = ∅:

Since T is a skeleton of C, |V1(T )| = |N(C)| � 6. It then follows from (2) that 
V (T ) \ V1(T ) = V4(T ), and |V1(T )| = 6. We may assume that we are not in Case 1, 
so there is some vertex in C − V4(T ). Since C is connected, there is some vertex y in 
C − V4(T ) adjacent to some vertex x in V4(T ). Let w be the other vertex of V4(T ). By 
Lemma 9, there is a path of G − x from y to T . Let P be a vertex-minimal example of 
such a path, and note that int(P ) is disjoint from T . Also, since N(C) ⊆ V (T ), every 
vertex of P is in N [C]. Let P ′ be the path formed from P by adding x and the edge xy, 
and let b be the other endpoint of P ′.

Suppose that either b = w or w /∈ V (bTx). Let R := (T ∪ P ′) − int(bTx). Then R is 
a skeleton of C with |V4(T )| = 2 and y ∈ V2(T ), so we are in Case 3.

Suppose instead that w ∈ int(bTx). Note that V (T ) = {x, w} ∪ V1(T ), and hence 
xTw = xw. Hence, by Lemma 10, x and w have at least five common neighbours. If 
some common neighbour z of x and w is in C, then R := (T ∪ wzx) − int(xTw) is a 
skeleton of C with |V4(R)| = 2 and z ∈ V2(R) and we are in Case 3. We may therefore 
assume that N(x) ∩N(w) ⊆ N(C). Let v1, . . . , v5 be distinct vertices in N(x) ∩N(w), and 
let v6 be the remaining vertex of N(C). Let w1, w2 and w3 be distinct neighbours of w in 
{v1, . . . , v6} \{b}, with w1 = v6 if possible. Since {v1, . . . , v5} ⊆ N(x) and at least one of w
and x is adjacent to v6, x has two neighbours x1 and x2 in {v1, . . . , v6} \ {b, w1, w2, w3}. 
Let V (R) := {x, w, v1, . . . , v6} ∪ V (P ) and E(R) := {ww1, ww2, ww3, xx1, xx2, xw} ∪
E(P ′). Then R is a skeleton of C with V4(R) = {x, w} and y ∈ V2(R), and we are in 
Case 3.

Case 5. There is a skeleton T of C with exactly one vertex x ∈ V3(T ) and exactly one 
vertex w ∈ V�4(T ):

Since degT (x) = 3 there are distinct leaves v1 and v2 such that w /∈ V (v1Tv2). Let 
v3, v4, . . . , vk be the remaining leaves of T , where k = |N(C)|. Let C ′ be the component 
of C − w containing x, and note that N(C ′) ⊆ N(C) ∪ {w}. Since G is 4-connected by 
Lemma 9, there is some vertex in N(C ′) ∩ (N(C) \ {v1, v2}), and hence some path P of 
G[N [C] \ {w, v1, v2}] from x to N(C) \ {v1, v2}. Let P ′ be a subpath of P of shortest 
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possible length while having an endpoint a in the component T − w containing x and 
an endpoint b in some other component of T −w. Note that P ′ ⊆ G[N [C] − {w, v1, v2}]
and no internal vertex of P ′ is in T . Let R := (T ∪ P ′) − int(bTw), and note that R is 
a skeleton of C. If a �= x, then V�3(R) = {a, x, w}, and we are in Case 2. If a = x and 
w ∈ V5(T ), then V4(R) = {x, w}, and we are in Case 3 or Case 4. Hence, we may assume 
x = a and w ∈ V4(T ), meaning |N(C)| = 5. We now consider two subcases, depending 
on whether xw ∈ E(T ).

Case 5a. wx /∈ E(T ):

By Lemma 12, there is a path Q of G[N [C]] − {x, w} from xTw to T − xTw with no 
internal vertex in T . Let c be the endpoint of Q in xTw, and let d be the other endpoint.

Suppose first that Q intersects P ′. Let Q′ be the subpath of Q from c to P ′ that is 
internally disjoint from P ′, and let d′ be the endpoint of Q′ in P ′. Let S := (R ∪Q′) −
int(d′Rx). Then S is a skeleton of C with V�3(S) = {x, c, w}, and we are in Case 2.

Suppose instead that Q is disjoint from P ′. If x /∈ V (dTw), then let S := (T ∪Q) −
int(dTw). Otherwise, let S := (R ∪ Q) − int(dRx). Then S is a skeleton of C with 
V�3(S) = {x, c, w}, and we are in Case 2.

Case 5b. xTw = xw:

By Lemma 10 applied to the edge xw, |N(x) ∩N(w)| � 5.
Suppose there is some vertex y ∈ (N(x) ∩N(w)) \N(C). If y ∈ (N(x) ∩N(w)) \V (T ), 

then let S := (T ∪ xyw) − xw. Then S is a skeleton of C with exactly one vertex 
x ∈ V3(S) and exactly one vertex w ∈ V�4(S) and xw /∈ E(S), so we are in Case 5a. If 
y ∈ N(x) ∩N(w) ∩V (xTvi−vi) for some i ∈ {1, 2}, then let S be the graph obtained from 
R by adding the edge wy and deleting the edge wx. If y ∈ N(x) ∩N(w) ∩ V (xTvi − vi)
for some i ∈ {3, 4, 5}, then let S be the graph obtained from T by adding the edge xy
and deleting the edge wx. Then S is a skeleton of C with V�3(S) = {x, y, w}, and we 
are in Case 2.

Suppose instead that N(x) ∩N(w) ⊆ N(C). Since |N(C)| = 5, we have N(x) ∩N(w) =
N(C). We may assume we are not in Case 1, so by Lemma 9, there is some vertex y
in C − {x, w} adjacent to some vertex in N(C). Since {x, w} is complete to N(C), 
assume without loss of generality that v5 ∈ N(y). Since C is connected, there is a path 
Q of C from y to {w, x}. Choose Q to be of shortest possible length, so that int(Q) is 
disjoint from {x, w}, and without loss of generality assume x is an endpoint of Q (since 
{x, w} is complete to N(C)). Let S be the skeleton with V (S) := {w, v1, . . . , v5} ∪V (Q)
and E(S) := {wv1, wv2, wv3, wx, xv4, yv5} ∪ E(Q). By Lemma 12, there is a path Q′

of G[N [C]] − {x, v5} from xSv5 to S − xSv5, internally disjoint from S. Let c be the 
endpoint of Q′ in xSv5 and let d be the other endpoint. If d ∈ {v1, v2, v3}, then let 
S′ := (S ∪ Q′) − dw. Then S′ is a skeleton of C with V�3(S′) = {w, x, c}, and we are 
in Case 2. If either d = w and there is some vertex in int(Q′), or d = v4, then let 
S′ := (S ∪Q′) − dx. Then S′ is a skeleton of C with exactly one vertex c ∈ V3(S′) and 
exactly one vertex w ∈ V�4(S′), and cw /∈ E(S), so we are in Case 5a. If d = w and there 
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Fig. 4. Petersen subgraphs in Claim 21.

is no vertex in int(Q′), then either c ∈ N(x) ∩N(w), contradicting the assumption that 
N(x) ∩N(w) ⊆ N(C), or |V (ySc ∪Q′)| < |V (Q)|, contradicting our choice of Q. �
Claim 21. If v ∈ V6(G) and C is a component of G − N [v], then V (C) �= ∅ and
|N(C)| = 4.

Proof. By Lemma 7, V (G) \ N [v] is non-empty, so V (C) �= ∅. Hence |N(C)| � 4 by 
Lemma 9. Suppose for contradiction that |N(C)| � 5. Then |V (C)| = 1 by Claim 20. 
Hence, by Lemma 10, |N(C)| � 6, so N(C) = N(v).

Suppose that there is some component C ′ of G −N [v] with |N(C ′)| = 4. By Lemma 10, 
|V (C ′)| � 3. Hence, by Lemma 14 with A := N [C ′] and B := V (G −C ′), there is a table 
X := (X1, . . . , X6) of G[N [C ′]] rooted at N(C ′). For i ∈ {1, 2, 3, 4}, let vi be the unique 
vertex in Xi ∩ N(C ′). Let v5 and v6 be the remaining vertices of N(v). By Claim 19, 
G[N [v]] ∼= K7. Let G′ be obtained from G by contracting G[Xi] to a single vertex for 
each i ∈ {1, 2, . . . , 6}. Then P ⊆ G′ (see Fig. 4a), contradicting (iv).

Suppose instead that every component C ′ of G − N [v] satisfies |N(C ′)| � 5. Then 
by Claim 20 every component of G −N [v] is an isolated vertex and by Lemma 10 each 
component C ′ of G −N [v] satisfies N(C ′) = N(v). Now by Lemma 7 there are at least 
three distinct components C, C ′ and C ′′ of G −N [v]. Hence, by Claim 19, P ⊆ G (see 
Fig. 4b), contradicting (iv). �

Claim 21 and Lemma 11 immediately imply the following corollary, which we use in 
the final step of the proof (in Section 8).

Corollary 22. For every vertex v ∈ V6(G), there is at least one v-suitable subgraph.

We now prove the main result of this section.

Lemma 23. If v ∈ V6(G) and H is a v-suitable subgraph of G, then there is some v-suitable 
subgraph H ′ of G such that N(H ′) \N(H) �= ∅.

Proof. By Claim 21, |N(H)| = 4. Suppose for contradiction that there exist distinct 
vertices w, x ∈ N(v) such that N [x] ⊆ N [v] and N [w] ⊆ N [v]. Let G′ := G − {v, w, x}. 
By (ii),
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|E(G′)| � |E(G)| − 3 − 3(4) � (5|V (G)| − 11) − 15 = 5|V (G′)| − 11.

By (v), G′ is a (K9, 2)-cockade minus at most two edges. Every (K9, 2)-cockade has at 
least nine vertices of degree exactly 8, so |V8(G′)| � 5. Then some vertex in V (G′) \N [v]
has degree exactly 8 in G, contradicting Lemma 18.

Hence there is at most one vertex w in N(v) such that N [w] ⊆ N [v], so there is some 
vertex x in N(v) \N(H) with some neighbour y in G −N [v]. Let H ′ be the component of 
G −N [v] that contains y. The vertex x is in N(H ′), so N(H ′) \N(H) �= ∅. By Claim 21
and Lemma 11, H ′ is v-suitable, as required. �
7. Degree 9 vertices

In this section, we focus on vertices in V9(G) ∩L. For each such vertex v, the minimum 
degree of G[N(v)] is at least 5, by Lemma 10 applied to each edge incident to v. Let Hv

be the complement of an edge-minimal spanning subgraph of G[N(v)] with minimum 
degree 5.

The main result of this section, Lemma 29, states that for each component C of 
G −N [v], there is some v-suitable subgraph C ′ with a neighbour not in the neighbour-
hood of C. We argue for this claim directly when each component C ′ of G − N [v] has 
|N(C ′)| = 4. Otherwise, we first look at the case where the maximum distance between 
two vertices of degree 3 in Hv is at most 2. Then we consider the case where there are 
two vertices of degree 3 at distance at least 3 in Hv. A useful technique is that a graph 
obtained by contracting some edge in G[N(v)] must violate some condition of Claim 17.

Claim 24. If v ∈ V9(G) ∩L, then Δ(Hv) = 3 and the vertices of Hv with degree at most 2 
form a clique.

Proof. Since |V (Hv)| = |N(v)| = 9, if a vertex u has degree greater than 3 in Hv, then 
u has degree less than 5 in Hv, a contradiction. If two non-adjacent vertices x and y in 
Hv both have degree at most 2 in Hv, then Hv − xy is a spanning subgraph of G[N(v)]
with minimum degree at least 5, contradicting the definition of Hv. Thus the vertices of 
degree at most 2 form a clique of size at most 3, so there is indeed a vertex of degree 3 
in Hv. �

The following claim guarantees that |V (G)| � 11 if we find a vertex v ∈ V9(G) ∩ L, 
and hence that the components of G −N [v] are non-empty.

Claim 25. If v ∈ V9(G) ∩ L, then V (G −N [v]) �= ∅.

Proof. By (iv), P �⊆ G[N [v]], so G[v] �∼= K10. Hence, there is some vertex w ∈ N(v) such 
that N [w] �= N [v]. By the definition of L, there is some vertex x ∈ N [w] \ N [v] and 
x ∈ V (G −N [v]). �
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Fig. 5. Illustration for the proof of Claim 26.

A graph is cubic if every vertex has degree exactly 3.

Claim 26. If v ∈ V9(G) ∩ L, then there are vertices x and y in V3(Hv) such that 
distHv

(x, y) � 3, unless either |N(C)| = 4 for every component C of G − N [v] or 
Hv

∼= K3,3∪̇K3.

Proof. Suppose for contradiction that distHv
(x, y) � 2 whenever {x, y} ⊆ V3(Hv), there 

is some component C of G −N [v] such that |N(C)| �= 4 and Hv � K3,3∪̇K3. By Claim 25, 
V (C) �= ∅, so by Lemma 9, |N(C)| � 5. Let S := V0(Hv) ∪V1(Hv) ∪V2(Hv). By Claim 24, 
S is a clique, so |S| � 3. Since |V (Hv)| = 9, the number of vertices of odd degree in Hv

is even and V (Hv) \ S = V3(Hv), we have S �= ∅. We consider five cases depending on S
and whether there is any triangle in Hv.

Case 1. |S| = 3:

In this case, S = V2(Hv) and Hv[S] ∼= K3, and there is no edge in Hv from a vertex 
in S to a vertex not in S. Hence, Hv − S is a 6-vertex cubic graph. By assumption, 
Hv � K3,3. There is only one other 6-vertex cubic graph, so Hv is the graph depicted in 
Fig. 5. Then P ⊆ G[N [v]] (see Fig. 5b), contradicting (iv).

Case 2. |S| = 2:

Since |V (Hv)| is odd, there are an odd number of vertices of even degree in Hv. Since S
is a clique, δ(Hv) � 1. Hence, by Claim 24, there is a unique vertex x ∈ V2(Hv), and since 
|S| = 2, there is some vertex v1 ∈ V3(Hv) adjacent to x in Hv. Let v2 and v3 be the other 
neighbours of v1 in Hv, and note that {v2, v3} ⊆ V3(Hv). Since distHv

(v1, y) � 2 for every 
vertex y in V3(Hv), each of the four remaining vertices of Hv −S is adjacent to {v2, v3}. 
Since v2 and v3 each have only three neighbours in Hv, v2v3 /∈ E(Hv). Let G′ be obtained 
from G by deleting every edge in G ∩ Hv and then contracting v2v3. Now v ∈ V8(G′). 
Let v′ be a vertex in NG′(v). If v′ ∈ S, then |NG′(v′) ∩NG′(v)| � 8 − degHv

(v′) − 1 � 5. 
If v′ is in Hv − (S ∪ {v2, v3}), then |NG′(v′) ∩NG′(v)| = 8 − degHv

(v′) = 5. If v′ is the 
new vertex of G′, then |NG′(v′) ∩ NG′(v)| = 8 − |NHv

(v2) ∩ NHv
(v3)| − 1 = 6. Hence, 

|NG′(v′) ∩NG′(v)| � 5 for any vertex v′ ∈ NG′(v). Finally, |NG′(C)| � |NG(C)| − 1 � 4, 
so G′[NG′(C)] � K3. Hence P is a minor of G by Claim 17, contradicting (iv).
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Fig. 6. Illustration for the proof of Claim 26.

Case 3. There is some triangle v1v2v3 of Hv and S = V0(Hv) = {x}:

Let {v4, v5, . . . , v8} be the other vertices of Hv, where v4v1 ∈ E(Hv). For every vertex 
y in Hv − S we have distHv

(v1, y) � 2 by assumption, so y is either adjacent to v1 or 
adjacent to a neighbour of v1. Since {v2, v3, v4} ⊆ V3(Hv), we may assume without loss of 
generality that {v2v5, v3v6, v4v7, v4v8} ⊆ E(Hv). Since Δ(Hv) = 3 and distHv

(vi, vj) � 2
for i ∈ {2, 3} and j ∈ {7, 8}, Hv is the graph depicted in Fig. 6a. Then P ⊆ G[NG[v]]
(see Fig. 6b), contradicting (iv).

Case 4. There is no triangle of Hv and S = V0(Hv) = {x}:

So Hv − x is a cubic, triangle-free graph, with diameter 2 and exactly eight vertices. 
We now show that there is exactly one such graph, namely the Wagner graph. Let 
v1 be a vertex of Hv − S, and let v2, v3 and v4 be its neighbours in Hv. Since Hv

contains no triangle, {v2, v3, v4} is an independent set in Hv. Let {v5, v6, v7, v8} be the 
remaining vertices of Hv −S. If v2, v3 and v4 all share some common neighbour, say v5, 
in Hv, then there are six edges in Hv[{v1, . . . , v5}], and at most three other edges in 
Hv incident to some vertex in {v1, . . . , v5}. By the handshaking lemma, E(Hv − S) =
E(Hv) = 12, since S = V0(Hv) and V (Hv − S) = V3(Hv). Hence v6v7v8 is a triangle 
of Hv, a contradiction. If for every pair i, j ∈ {2, 3, 4} vi and vj share a neighbour 
in Hv distinct from v1, then |NHv

[v2] ∪ NHv
[v3] ∪ NHv

[v4]| � 3(4) − 3(2) + 1 = 7
by inclusion-exclusion, contradicting the assumption that distHv

(v1, y) for each of the 
8 vertices y in V3(Hv). Hence, without loss of generality, v2 and v3 have no common 
neighbour in Hv, and {v2v5, v2v6, v3v7, v3v8} ⊆ E(Hv). Without loss of generality v8 ∈
NHv

(v4), since {v5, v6, v7, v8} ∩NHv
(v4) �= ∅. Since v7v3v8 is a path in Hv and Hv contains 

no triangle, the other vertex adjacent to v8 is either v5 or v6, so without loss of generality 
v8v6 ∈ E(Hv). Since v5v2v6 and v4v8v6 are paths in Hv, the remaining vertex adjacent 
to v6 is v7. Since V3(Hv) = V (Hv) \ {x} and x ∈ V0(Hv), the remaining two vertices 
adjacent to v5 are v7 and v4. Hence Hv is the Wagner Graph, plus a single isolated 
vertex, as illustrated in Fig. 7a. Then P ⊆ G[NG[v]] (see Fig. 7b), contradicting (iv).

Case 5. S = {x} and x /∈ V0(Hv):

The number of vertices of odd degree in Hv is even, so x ∈ V2(Hv). By contracting 
an edge of Hv incident to x, we obtain a cubic graph on eight vertices with diameter at 
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Fig. 7. Case 4 in Claim 26.

Fig. 8. Illustrations for Claims 26 and 27.

most 2. In Cases 3 and 4 we showed that there are only two such graphs (one with and one 
without a triangle), so Hv is a copy of one of these in which exactly one edge is subdivided 
exactly once. It is quick to check that the only such graph in which dist(x′, y′) � 2
whenever x′ and y′ both have degree 3 is the graph depicted in Fig. 8a. Then P ⊆
G[NG[v]] (see Fig. 8b), contradicting (iv). �
Claim 27. If v ∈ V9(G) ∩L and Hv

∼= K3,3∪̇K3, then for each component C of G −N [v], 
there is some v-suitable subgraph C ′ with N(C ′) \N(C) �= ∅.

Proof. Let {a1, a2, a3, b1, b2, b3, c1, c2, c3} := V (Hv), with aibj ∈ E(Hv) for i, j ∈
{1, 2, 3}, and cicj ∈ E(Hv) for distinct i, j ∈ {1, 2, 3}. Suppose for contradiction that 
there is a path P of G from ai to bj with no internal vertex in N [v] for some i, j ∈ {1, 2, 3}. 
Without loss of generality, i = j = 1. Let G′ be obtained from G by contracting all but 
one edge of P . Then P ⊆ G′ (see Fig. 8c), contradicting (iv). Hence, there is no such 
path P . In particular, no vertex v′ in {a1, a2, a3, b1, b2, b3} is adjacent to every vertex 
of N(v) \ {v′}. Hence, since v ∈ L, for each v′ ∈ {a1, a2, a3, b1, b2, b3} there is some 
component C of G − N [v] such that v′ ∈ N(C). However, there is no component C
such that N(C) contains some vertex in {a1, a2, a3} and some vertex in {b1, b2, b3}. 
Hence, for each component C of G − N [v] there is a component C ′ of G − N [v] with 
N(C ′) \ N(C) �= ∅. Suppose for contradiction that C ′ is not v-suitable. By Lemma 11
|N(C ′)| � 7. Since G[N(C ′)] ⊆ Hv, there is some vertex in {a1, a2, a3} ∩N(C ′) and some 
vertex in {b1, b2, b3} ∩N(C ′), a contradiction. Hence C ′ satisfies our claim. �
Claim 28. If v ∈ V9(G) ∩ L and there are two vertices x and y in V3(Hv) such that 
distHv

(x, y) � 3 and there is some component C of G −N [v] with |N(C)| � 5, then for 
each component C ′ of G −N [v] there is a v-suitable subgraph C ′′ with N(C ′′) \N(C ′) �= ∅.
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Proof. By Claim 25, V (C) �= ∅. Choose x and y, if possible, so that

NHv
(x) ∪NHv

(y) ⊆ V3(Hv). (3)

Let G′ := G/xy, let x′ be the new vertex of G′, and let H ′ = Hv − {x, y}. Note that 
degG′(v) = 8. Since |NG(C)| � 5, we have |NG′(C)| � 4, and hence G′[NG′(C)] � K3. 
By Claim 17 and (iv), G′ does not satisfy |NG′(v′) ∩NG′(v)| � 5 for all v′ ∈ NG′(v).

Now {x, y} ⊆ V3(Hv) and distHv
(x, y) � 3, so |NHv

(x) ∩ NHv
(y)| = 6. Also, since 

G[N(v)] ⊆ Hv, there is no common neighbour of x and y in G[N(v)], so x′ is dominant 
in G′[NG′ [v]], and |NG′(x′) ∩NG′(v)| = 7 > 5.

By Claim 24, Δ(Hv) = 3. If v′ ∈ NHv
(x) ∪ NHv

(y), then since v′ is not adjacent to 
both x and y in Hv, we have |NG′(v′) ∩NG′(v)| � |NHv

(v′)| � 8 − 3 = 5.
Hence, the unique vertex z in H ′− (NHv

(x) ∪NHv
(y)) satisfies |NG′(z) ∩NG′(v)| � 4. 

Thus z has at most three neighbours in G′[N(v) \ {x, y}] and hence |NH′(z)| � 7 − 1 −
3 = 3. Since Δ(H ′) � Δ(Hv) = 3, we have degHv

(z) = 3.
There are an even number of vertices, including z, with odd degree in H ′. We have 

degH′(v′) � Δ(Hv) − 1 = 2 for the six vertices v′ in NHv
(x) ∪ NHv

(y) = V (H ′ − z), 
so there are an odd number of vertices in V1(H ′). Each vertex in V1(H ′) has degree at 
most 2 in Hv since x and y have no common neighbour in Hv. So V1(H ′) is a clique of 
Hv by Claim 24, and hence a clique of H ′. Since |V1(H ′)| is odd, there is a unique vertex 
w in V1(H ′). By the same argument, the vertices of V0(H ′) ∪ V1(H ′) form a clique of 
H ′. No vertex in V0(H ′) is adjacent in H ′ to w, so V0(H ′) = ∅. Hence, V1(H ′) = {w}, 
V3(H ′) = {z} and V2(H ′) = V (H ′ − {w, z}).

Now w is one of the six vertices of NHv
(x) ∪NHv

(y), and degHv
(w) � degH′(w) +1 � 2. 

In particular x and y do not satisfy (3), so no such pair satisfy (3). This means, there 
are no two vertices x′ and y′ in V3(Hv) that satisfy (3) such that distHv

(x′, y′) � 3.
We consider four cases depending on whether H ′ is connected and on the components 

of G −N [v].

Case 1. H ′ is not connected:

Since each connected component of H ′ has an even number of vertices of odd degree, 
z and w are in the same component, and each other component is a cycle. Since |V (H ′) \
NH′ [z]| = 3, there is a unique component D of H ′ not containing z and D is a triangle. 
Since |V2(H ′)| = 5, there is some vertex x0 of degree 2 not in D and not adjacent to w. 
Assume without loss of generality that x0 is adjacent to x in Hv. Since x ∈ V3(Hv), 
there is some vertex y0 in D such that y0x /∈ E(Hv). Now y0 is adjacent to no neighbour 
of x0 in Hv, so distHv

(x, y) � 3. But the vertices adjacent to {x0, y0} in Hv are all in 
V3(Hv) since w is adjacent to neither x0 nor y0 in Hv. Therefore x0 and y0 satisfy (3), 
a contradiction.

For the remaining cases, H ′ is a connected graph such that |V1(H ′)| = |V3(H ′)| = 1
and every other vertex has degree 2. Hence, H ′ is composed of a path P from z to w and 
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Table 2
Petersen subgraphs in Case 2 of Claim 28.

a cycle Q of size at least 3 containing z, with V (P ∩Q) = {z}. Let z0 be the neighbour 
of z in the path from z to w, and let z1 and z2 be the other neighbours of z in H ′.

Case 2. H ′ is connected and there is some component D of G −N [v] such that z ∈ N(D)
and |N(D) ∩NH′(z)| � 2:

At least one vertex is in {z1, z2} ∩ N(D), so without loss of generality z1 ∈ N(D). 
Either z0 or z2 is also in N(D). Since V (Q) ⊆ V (H ′) \{w}, we have 3 � |V (Q)| � 6. Let 
G′′ := G′/E(D). The diagrams in Table 2 demonstrate that P ⊆ G′′, contradicting (iv).
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Table 3
Petersen subgraphs in Case 3 of Claim 28.

Case 3. H ′ is connected and there is some component D of G −N [v] such that z0 ∈ N(D), 
N(D) ∩ {z1, z2} �= ∅ and N(D) ∩ {x, y} �= ∅:

Without loss of generality, z1 ∈ N(D). Note that {z1, z0, x′} ⊆ NG′(D), and let 
G′′ := G′/E(D). The diagrams in Table 3 demonstrate that P ⊆ G′′, contradicting (iv).

Case 4. H ′ is connected and there is no component D of G − N [v] such that either 
z ∈ N(D) and |N(D) ∩ NH′(z)| � 2 or z0 ∈ N(D), N(D) ∩ {z1, z2} �= ∅ and N(D) ∩
{x, y} �= ∅:

Recall that |NG′(z) ∩ NG′(v)| � 4. Hence z has at least three non-neighbours in 
G′[N(v)]. Since G′[N(v) \ {x, y}] ⊆ H ′ and x′ is dominant in G′[NG′(v)], z is non-
adjacent in G′ to each vertex in NH′(z). Hence, for every vertex z′ ∈ NH′ [z] there is a 
component Cz′ of G −N [v] such that z′ ∈ N(Cz′), since v ∈ L.

By Lemma 11, each component Cz′ of G −N [v] satisfying |N(Cz′)| � 6 is v-suitable.
Recall that C ′ is an arbitrary component of G −N [v]. We now show that, for some 

z′ ∈ NHv
[z], Cz′ is v-suitable and N(Cz′) \N(C ′) �= ∅, as required.

Suppose first that there is no component D of G − N [v] such that z ∈ N(D) and 
|N(D) ∩NH′(z)| � 1. Then |N(Cz)| � 6. Furthermore, z /∈ N(Cz0) and either N(Cz0) ∩
{z1, z2} = ∅ or N(Cz0) ∩{x, y} = ∅ since Case 3 does not apply, so |N(Cz0)| � 6. Hence, 
Cz and Cz0 are both v-suitable. By assumption, N(C) does not contain both z and z0, 
so z′ /∈ N(C) for some vertex z′ ∈ {z, z0}. Hence, N(Cz′) \ N(C ′) �= ∅, and the claim 
holds.
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Now assume that there is some component D of G − N [v] such that z ∈ N(D) and 
|N(D) ∩NH′(z)| � 1. Since Case 2 does not apply, |N(D) ∩NH′(z)| = 1. Let {z′, z′′} :=
NH′(z) \N(D). If |N(Cz′)| � 6 and |N(Cz′′)| � 6 (in which case Cz′ and Cz′′ are both 
v-suitable), and {z′, z′′} � N(C ′), then the claim holds. So we may assume that either 
D′ := C ′ satisfies {z′, z′′} ⊆ N(D′) or some D′ ∈ {Cz′ , Cz′′} satisfies |N(D′)| � 7. Now 
D′ is distinct from D since N(D′) ∩ {z′, z′′} �= ∅, and |NG′(D′)| � 3 since |N(D′)| � 4
by Lemma 9. Let G′′ be obtained from G′ by contracting D onto z. Then v ∈ V8(G′′), 
|NG′′(v) ∩NG′′(v′)| � 5 for every vertex v′ ∈ NG′′(v), and |NG′′(D′)| = |NG′(D′)| � 3. 
Furthermore, there is at most one cycle in G′′[N(v)], namely Q, so K3 and C4 are not 
both induced subgraphs of G′′[N(v)]. Hence by Claim 17, P ⊆ G′′, contradicting (iv). �

We finally reach the main result of this section.

Lemma 29. If v ∈ V9(G) ∩ L and C is a component of G − N [v], then there is some 
v-suitable subgraph C ′ such that N(C ′) \N(C) �= ∅.

Proof. Suppose first that each component C ′ of G −N [v] has |N(C ′)| = 4. Then every 
component of G −N [v] is v-suitable by Lemma 11. Suppose for contradiction that there 
is no v-suitable subgraph C ′ such that N(C ′) \N(C) �= ∅. Then N(C ′) ⊆ N(C) for every 
component C ′ of G −N [v], so there are at least five vertices in N(v) with no neighbour 
outside of N [v]. Since v ∈ L, each of these vertices is dominant in G[N [v]]. Let G′ be 
obtained from G by contracting C onto some vertex x of N(C) and then deleting all 
other components of G −N [v]. There are at most three non-dominant vertices in G′, so 
|E(G′)| �

(10
2
)
− 3 = 42 = 5|V (G′)| − 8, contradicting (vi).

Suppose instead that there is some component C ′ of G −N [v] with |N(C ′)| � 5. By 
Claims 26 and 27, we may assume that there are two vertices x and y in V3(Hv) such 
that distHv

(x, y) � 3. The result then follows directly from Claim 28. �
Lemma 29 immediately implies the following corollary, which we use in Section 8.

Corollary 30. For every vertex v ∈ V9(G) there is at least one v-suitable subgraph.

8. Final step

We now complete the proof sketched in Section 2.

Proof of Theorem 2. Let G be the minimum counterexample defined at the start of 
Section 3. By Lemmas 10, 16 and 18, L ⊆ V6(G) ∪ V9(G), so for every vertex v ∈ L
there is some v-suitable subgraph of G by Corollaries 22 and 30. Choose v ∈ L and H
a v-suitable subgraph of G so that |V (H)| is minimised. Let u be a vertex of L in H. 
Since u ∈ V (H) and H is a component of G − N [v], u is not adjacent to v, so v is in 
some component C of G − N [u]. Since v ∈ L, C is u-suitable. By Lemmas 23 and 29, 
there is some u-suitable subgraph C ′ of G with N(C ′) \N(C) �= ∅.



JID:YJCTB AID:3129 /FLA [m1L; v1.232; Prn:27/02/2018; 14:01] P.31 (1-34)
K. Hendrey, D.R. Wood / Journal of Combinatorial Theory, Series B ••• (••••) •••–••• 31
Now N(C ′) ⊆ N(u), so v /∈ N(C ′). Since N(C ′) \ N(C) �= ∅, we have that C and 
C ′ are distinct (and thus disjoint), so v /∈ N [C ′] and C ′ is disjoint from N [v]. Hence 
G[V (C ′) ∪(N(C ′) \N(C)) ∪{u}] is a connected subgraph of G −N [v], and thus a subgraph 
of H. But u ∈ V (H) \ V (C ′), so |V (C ′)| < |V (H)|, contradicting our choice of v and H. 
This contradiction shows that in fact there are no counterexamples to Theorem 2. �
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Appendix A

We now prove the two well known lemmas used in Section 1.

Lemma 31. For every (t + 1)-connected graph H and every non-negative integer s <
|V (H)|, every (Ks, t)-cockade is H-minor-free.

Proof. Let G be a (Ks, t)-cockade. We proceed by induction on |V (G)| + |E(G)|. The 
claim is trivial if G = Ks, since s < |V (H)|. Assume that there are (Ks, t)-cockades G1
and G2 distinct from G such that G1 ∪ G2 = G and G1 ∩ G2 ∼= Kt. Note that G1 and 
G2 are proper subgraphs of G, and hence by induction are H-minor-free. Suppose for 
contradiction that G contains an H-minor. Then there is a set of pairwise disjoint con-
nected subgraphs of G such that if every edge inside one of these subgraphs is contracted 
and every vertex not in one of these subgraphs is deleted, then the graph obtained is a 
supergraph H ′ of H such that |V (H ′)| = |V (H)|. Each of these subgraphs will contract 
down to a separate vertex, so we call these subgraphs prevertices. There are exactly t
vertices in G1 ∩G2, so the set S of prevertices that intersect G1 ∩G2 has size at most t. 
Since H is (t +1)-connected, each prevertex not in S is in the same connected component 
of G − S. Without loss of generality, each prevertex not in S is a subgraph of G1. Now, 
there is no path of G between two non-adjacent vertices of G1 that is internally disjoint 
from G1. Hence, by deleting every vertex of G2 \G1 and then contracting the remaining 
edges of the prevertices and deleting the remaining vertices that are not in any prevertex, 
we obtain H ′, contradicting the assumption the G1 contains no H-minor. �
Proof of Lemma 4. Let G be an n-vertex H-minor-free graph. We proceed by induction 
on n. The base case with n � 2c − 1 is trivial. For n � 2c, |E(G)| < c|V (G)|, implying 
G has average degree less than 2c. Thus G has a vertex v of degree at most 2c − 1. 
By induction, G − v is 2c-colourable. Some colour is not used on the neighbours of v, 
which can be assigned to v. Hence G is 2c-colourable. It remains to prove that G is 
(2c − 1)-colourable under the assumption that |V (H)| � 2c. First suppose that deg(v) �
2c − 2. By induction, G − v is (2c − 1)-colourable. Some colour is not used on the 
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neighbours of v, which can be assigned to v. Hence G is (2c −1)-colourable. Now assume 
that deg(v) = 2c − 1. There is some pair of non-adjacent vertices x and y in N(v), 
as otherwise G contains K2c and hence H (since |V (H)| � 2c). Let G′ be the graph 
obtained from G by contracting the edges vx and vy into a new vertex z. By induction, 
G′ is (2c − 1)-colourable. Colour each vertex of G − {v, x, y} by the colour assigned to 
the corresponding vertex in G′. Colour x and y by the colour assigned to z. Since every 
vertex adjacent to x or y in G − v is adjacent to z in G′, this defines a (2c − 1)-colouring 
of G − v. Now v has 2c − 1 neighbours, two of which have the same colour. Thus there 
is an unused colour on the neighbours of v, which can be assigned to v. Therefore G is 
(2c − 1)-colourable. �
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