Treewidth of the Line Graph of a Complete Graph

Daniel J. Harvey¹ and David R. Wood²

¹DEPARTMENT OF MATHEMATICS AND STATISTICS THE UNIVERSITY OF MELBOURNE PARKVILLE, VICTORIA, 3010, AUSTRALIA E-mail: d.harvey@pgrad.unimelb.edu.au

> ²SCHOOL OF MATHEMATICAL SCIENCES MONASH UNIVERSITY CLAYTON, VICTORIA, 3800, AUSTRALIA E-mail: david.wood@monash.edu

Received October 28, 2012; Revised April 22, 2014

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/jgt.21813

Abstract: In recent articles by Grohe and Marx, the treewidth of the line graph of a complete graph is a critical example—in a certain sense, every graph with large treewidth "contains" $L(K_n)$. However, the treewidth of $L(K_n)$ was not determined exactly. We determine the exact treewidth of the line graph of a complete graph. © 2014 Wiley Periodicals, Inc. J. Graph Theory 00: 1–7, 2014

1. INTRODUCTION

The *treewidth* tw(G) of a graph G is a graph invariant used to measure how "tree-like" G is. It is of particular importance in structural and algorithmic graph theory; see the surveys [1,5]. The treewidth tw(G) is the minimum width of a *tree decomposition* of G, which is defined as follows:

Contract grant sponsor: Australian Postgraduate Award (to D.J.H.); Contract grant sponsor: Australian Research Council (to D.W.).

Journal of Graph Theory © 2014 Wiley Periodicals, Inc.

2 JOURNAL OF GRAPH THEORY

Definition. A *tree decomposition* of a graph *G* is a pair $(T, \{A_x \subseteq V(G) : x \in V(T)\})$ such that:

- *T* is a tree.
- { $A_x \subseteq V(G) : x \in V(T)$ } is a collection of sets of vertices of *G*, each called a *bag*, indexed by the nodes of *T*.
- For all $v \in V(G)$, the nodes of T indexing the bags containing v induce a nonempty (connected) subtree of T.
- For all $vw \in E(G)$, there exists a bag of T containing both v and w.

The *width* of a tree decomposition is the maximum size of a bag of T, minus 1. This minus 1 is added to ensure that every tree has treewidth 1. Similarly, define the pathwidth of a graph G, denoted pw(G), to be the minimum width of a tree decomposition where the underlying tree is a path. (We call such a tree decomposition a *path decomposition*.) It follows from the definition that pw(G) \ge tw(G) for all graphs G.

The line-graph L(G) of a graph G is the graph with V(L(G)) = E(G), such that two vertices of L(G) are adjacent when the corresponding edges of G are incident at a vertex.

In recent articles by Marx [4] and Grohe and Marx [3], the treewidth of the line graph of a complete graph is a critical example. For a graph *G*, let $G^{(q)}$ denote the graph created by replacing each vertex of *G* with a clique of size *q* and replacing each edge between two vertices with all of the edges between the two new cliques. Marx [4] shows that if tw(*G*) $\geq k$, then $G^{(p)}$ contains $L(K_k)^{(q)}$ as a minor (for appropriate choices of *p* and *q*, depending on *k* and |V(G)|). Then Grohe and Marx [3] show that tw($L(K_n)$) $\geq \frac{\sqrt{2}-1}{4}n^2 + O(n)$. In this article, we determine tw($L(K_n)$) exactly. As it turns out, the minimum width tree decomposition that we construct is also a path decomposition. Hence, we prove the following result.

Theorem 1.

$$\operatorname{tw}(L(K_n)) = \operatorname{pw}(L(K_n)) = \begin{cases} \left(\frac{n-1}{2}\right)\left(\frac{n-1}{2}\right) + n - 2, & \text{if } n \text{ is odd} \\ \left(\frac{n-2}{2}\right)\left(\frac{n}{2}\right) + n - 2, & \text{if } n \text{ is even} \end{cases}$$

Note the following conventions: if *S* is a subgraph of a graph *G* and $x \in V(G) - V(S)$, then let $S \cup \{x\}$ denote the subgraph of *G* with vertex set $V(S) \cup \{x\}$ and edge set $E(S) \cup \{xy : y \in V(S), xy \in E(G)\}$. Similarly, if $u \in V(S)$, let $S - \{u\}$ denote the subgraph with vertex set $V(S) - \{u\}$ and edge set $E(S) - \{uw : w \in V(S) - \{u\}\}$.

2. LINE-BRAMBLES AND THE TREEWIDTH DUALITY THEOREM

A *bramble* of a graph *G* is a collection \mathcal{B} of connected subgraphs of *G* such that each pair of subgraphs $X, Y \in \mathcal{B}$ *touch*. Subgraphs *X* and *Y touch* when they either have at least one vertex in common, or there exists an edge in *G* with one end in V(X) and the other in V(Y). The *order* of a bramble is the size of the smallest hitting set *H*, where a *hitting set* of a bramble \mathcal{B} is a set of vertices *H* such that $H \cap V(X) \neq \emptyset$ for all $X \in \mathcal{B}$. For a given graph *G*, the *bramble number* bn(*G*) is the maximum order of a bramble of *G*. Brambles are important due to the following theorem of Seymour and Thomas [6]:

Theorem 2. (*Treewidth Duality Theorem*) For every graph G, bn(G) = tw(G) + 1.

In this article we employ the following standard approach for determining the treewidth and pathwidth of a particular graph G. First construct a bramble of large order, thus proving a lower bound on tw(G). Then to prove an upper bound, construct a path decomposition of small width. Given that tw(G) $\leq pw(G)$, this is sufficient to prove Theorem 1.

In order to construct a bramble of the line graph L(G), define the following:

Definition. A *line-bramble* \mathcal{B} of *G* is a collection of connected subgraphs of *G* satisfying the following properties:

- For all $X \in \mathcal{B}$, $|V(X)| \ge 2$.
- For all $X, Y \in \mathcal{B}, V(X) \cap V(Y) \neq \emptyset$.

Define a *hitting set* for a line-bramble \mathcal{B} to be a set of edges $H \subseteq E(G)$ that intersects each $X \in \mathcal{B}$. Then define the *order* of \mathcal{B} to be the size of the minimum hitting set H of \mathcal{B} .

Lemma 3. Given a line-bramble \mathcal{B} of G, there is a bramble \mathcal{B}' of L(G) of the same order.

Proof. Given a line-bramble \mathcal{B} , define $\mathcal{B}' := \{L(G)[E(X)] : X \in \mathcal{B}\}$. Let $X \in \mathcal{B}$. Since *X* is connected and $|V(X)| \ge 2$, the subgraph *X* contains an edge. So E(X) induces a nonempty connected subgraph of L(G). Consider E(X) and E(Y) in \mathcal{B}' . Thus $V(X) \cap V(Y) \neq \emptyset$. Let *v* be a vertex in $V(X) \cap V(Y)$. Then there exists some $xv \in E(X)$ and $vy \in E(Y)$, and thus in L(G) there is an edge between the vertex xv and the vertex vy. Hence E(X) and $\mathcal{B}'(Y)$ touch, and so \mathcal{B}' is a bramble of L(G). All that remains is to ensure \mathcal{B} and \mathcal{B}' have the same order. If *H* is a minimum hitting set for \mathcal{B} , then *H* is also a set of vertices in L(G) that intersects a vertex in each $E(X) \in \mathcal{B}'$. So *H* is a hitting set for \mathcal{B}' of the same size. Conversely, if *H'* is a minimum hitting set of \mathcal{B}' , then *H'* is a set of edges in *G* that contains an edge in each $X \in \mathcal{B}$. So *H'* is a hitting set for \mathcal{B} . Thus, the orders of \mathcal{B} and \mathcal{B}' are equal.

Hence, in order to determine a lower bound on the bramble number bn(L(G)), it is sufficient to construct a line-bramble of *G* of large order. We will now define a particular line-bramble for any graph *G* with $|V(G)| \ge 3$.

Definition. Given a graph *G* and a vertex $v \in V(G)$, the *canonical line-bramble for* v of *G* is the set of connected subgraphs *X* of *G* such that either $|V(X)| > \frac{|V(G)|}{2}$, or $|V(X)| = \frac{|V(G)|}{2}$ and *X* contains v. Note that if |V(G)| is odd, then no elements of the second type occur.

Lemma 4. For every graph G with $|V(G)| \ge 3$ and for all $v \in V(G)$, the canonical line-bramble for v, denoted by \mathcal{B} , is a line-bramble of G.

Proof. By definition, each element of \mathcal{B} is a connected subgraph. Since $|V(G)| \ge 3$, each element of \mathcal{B} contains at least two vertices. All that remains to show is that each pair of subgraphs X, Y in \mathcal{B} intersect in at least one vertex. If $|V(X)| = |V(Y)| = \frac{|V(G)|}{2}$, then X and Y intersect at v. Otherwise, without loss of generality, $|V(X)| > \frac{|V(G)|}{2}$ and $|V(Y)| \ge \frac{|V(G)|}{2}$. If $V(X) \cap V(Y) = \emptyset$, then $|V(X) \cup V(Y)| = |V(X)| + |V(Y)| > |V(G)|$, which is a contradiction.

Let $v \in V(G)$ be an arbitrary vertex and let H be a minimum hitting set of \mathcal{B} , the canonical line-bramble for v. Consider the graph G - H. Since H is a set of edges,

4 JOURNAL OF GRAPH THEORY

V(G - H) = V(G). Then each component of G - H contains at most $\frac{|V(G)|}{2}$ vertices, otherwise some component of G - H contains an element of \mathcal{B} that does not contain an edge of H. Similarly, if a component contains $\frac{|V(G)|}{2}$ vertices, it cannot contain the vertex v. Thus, our hitting set H must be large enough to separate G into such components. The next lemma follows directly:

Lemma 5. Let G be a graph with $|V(G)| \ge 3$, let v be a vertex of G, and let B be the canonical line-bramble for v. Then $H \subseteq E(G)$ is a hitting set of B if and only if every component of G - H has at most $\frac{|V(G)|}{2}$ vertices, and v is not in a component of G - H that contains exactly $\frac{|V(G)|}{2}$ vertices.

Note the similarity between this characterization and the *bisection width* of a graph (see [2], for example), which is the minimum number of edges between any $A, B \subset V(G)$ where $A \cap B = \emptyset$ and $|A| = \lfloor \frac{|V(G)|}{2} \rfloor$ and $|B| = \lceil \frac{|V(G)|}{2} \rceil$. (Later we show that most of our components have maximum or almost maximum allowable order.) Given that the components of G - H are what is important, we can also prove the following lemma.

Lemma 6. Let G be a graph with $|V(G)| \ge 3$, let v be a vertex of G, and let B be the canonical line-bramble for v. If H is a minimum hitting set for B, then no edge of H has both endpoints in the same component of G - H.

Proof. For the sake of a contradiction assume that both endpoints of an edge $e \in H$ are in the same component of G - H. Then consider the set H - e. By Lemma 5, H - e is a hitting set of \mathcal{B} , since the vertex sets of the components of G - H have not changed. But H - e is smaller than the minimum hitting set H, a contradiction.

3. PROOF OF THEOREM 1

Let $G := K_n$. When $n \le 2$, Theorem 1 holds trivially, so assume $n \ge 3$. First, we determine a lower bound on the treewidth by considering a canonical line-bramble for v, denoted \mathcal{B} . Given that K_n is regular, it suffices to choose a vertex v of K_n arbitrarily.

If *H* is a minimum hitting set of a canonical line-bramble \mathcal{B} , label the components of G - H as Q_1, \ldots, Q_p such that $|V(Q_1)| \ge |V(Q_2)| \ge \ldots \ge |V(Q_p)|$. We refer to this as labeling the components *descendingly*.

Consider a pair of components (Q_i, Q_j) where i < j and the components are labeled descendingly. Call this a *good pair* if one of the following conditions hold:

- 1. $|V(Q_i)| < \frac{n}{2} 1$,
- 2. *n* is even, $|V(Q_i)| = \frac{n}{2} 1$, $V(Q_i) \neq \{v\}$, and $v \notin V(Q_i)$.

Lemma 7. Let G be a complete graph with $n \ge 3$ vertices, let v be a vertex of G, let B be the canonical line-bramble for v, and let H be a minimum hitting set of B. If Q_1, \ldots, Q_p are the components of G - H labeled descendingly, then Q_1, \ldots, Q_p does not contain a good pair.

Proof. Say (Q_i, Q_j) is a good pair. Let x be a vertex of Q_j , such that if (Q_i, Q_j) is of the second type, then $x \neq v$. Let H' be the set of edges obtained from H by removing the edges from x to Q_i and adding the edges from x to Q_j . Then the components for G - H' are $Q_1, \ldots, Q_{i-1}, Q_i \cup \{x\}, Q_{i+1}, \ldots, Q_{j-1}, Q_j - \{x\}, Q_{j+1}, \ldots, Q_p$. By Lemma 5, to ensure H' is a hitting set, it suffices to ensure that $V(Q_i) \cup \{x\}$ is sufficiently small,

since all other components are the same as in G - H, or smaller. If (Q_i, Q_j) is of the first type, then $|V(Q_i) \cup \{x\}| = |V(Q_i)| + 1 < \frac{n}{2}$. If (Q_i, Q_j) is of the second type, then $|V(Q_i) \cup \{x\}| = \frac{n}{2}$, but it does not contain v. Thus, by Lemma 5, H' is a hitting set. However, $|H'| = |H| - |V(Q_i)| + |V(Q_j)| - 1 \le |H| - 1$, which contradicts that H is a minimum hitting set.

Lemma 8. Let G, v, B and H be as in Lemma 7. Then G - H has exactly three components.

Proof. Recall by Lemma 5, there is an upper bound on the order of the components of G - H. First, show that G - H has at least three components. If G - H has only one component, clearly this component is too large. If G - H has two components and n is odd, then one of the components must have more than $\frac{n}{2}$ vertices. If G - H has two components and n is even, it is possible that both components have exactly $\frac{n}{2}$ vertices; however, one of these components must contain v. Thus G - H has at least three components. Now, assume G - H has at least four components and label the components of G - H descendingly. We show that these components contain a good pair, contradicting Lemma 7.

If *n* is odd, there is a good pair of the first type when any two components have less than $\frac{n-1}{2}$ vertices. Thus, at least three components have order at least $\frac{n-1}{2}$. Then $|V(G)| \ge 3(\frac{n-1}{2}) + 1 > n$ when $n \ge 2$, which is a contradiction.

If *n* is even, there is a good pair of the first type when any two components have less than $\frac{n}{2} - 1$ vertices. Similarly to the previous case, $|V(G)| \ge 3(\frac{n}{2} - 1) + 1 > n$, again a contradiction when n > 4. If n = 4 then each component is a single vertex. Take Q_i, Q_j to be two of these components, neither of which contain the vertex *v*. Then (Q_i, Q_j) is a good pair of the second type. Hence G - H does not have more than three components, and as such it has exactly three components.

Lemma 9. Let G, v, B and H be as in Lemma 7, and let the components of G - H be labeled descendingly. If n is odd then $|V(Q_1)| = |V(Q_2)| = \frac{n-1}{2}$ and $|V(Q_3)| = 1$. If n is even then $|V(Q_1)| = \frac{n}{2}$, $|V(Q_2)| = \frac{n}{2} - 1$ and $|V(Q_3)| = 1$.

Proof. Lemma 8 shows that G - H has exactly three components. By Lemma 7, (Q_2, Q_3) is not a good pair. Hence $|V(Q_1)| \ge |V(Q_2)| \ge \frac{n-1}{2}$ when *n* is odd, and $|V(Q_1)| \ge |V(Q_2)| \ge \frac{n}{2} - 1$ when *n* is even, or else there is a good pair of the first type. When *n* is odd, it follows from Lemma 5 that $|V(Q_1)| = |V(Q_2)| = \frac{n-1}{2}$, and so $|V(Q_3)| = 1$. When *n* is even, however, $\frac{n}{2} - 1 \le |V(Q_1)|, |V(Q_2)| \le \frac{n}{2}$. Since Q_3 is not empty, it follows that $|V(Q_3)| = 1$ or 2. If $|V(Q_3)| = 1$, then $|V(Q_1)| = \frac{n}{2} - 1$ and $|V(Q_3)| = 2$. But then at least one of Q_1, Q_2 does not contain *v*, and $V(Q_3) \ne \{v\}$. Thus either (Q_1, Q_3) or (Q_2, Q_3) is a good pair of the second type, contradicting Lemma 7.

Lemma 10. Let G, v, B and H be as in Lemma 7. Then $|H| = (\frac{n-1}{2})(\frac{n-1}{2}) + (n-1)$ when n is odd, and $|H| = (\frac{n-2}{2})(\frac{n}{2}) + (n-1)$ when n is even.

Proof. From Lemma 9 we know the order of the components of G - H. By Lemma 6, H is exactly the set of all edges between each pair of components, and since G is complete there is an edge for each pair of vertices. From this it is easy to calculate |H|.

Lemma 10 and the Treewidth Duality Theorem imply:

Corollary 11. Let G be a complete graph with $n \ge 3$ vertices. Then

$$pw(L(G)) \ge tw(L(G))$$

$$= bn(L(G)) - 1 \ge \begin{cases} \left(\frac{n-1}{2}\right) \left(\frac{n-1}{2}\right) + (n-2), & \text{if } n \text{ is odd} \\ \left(\frac{n-2}{2}\right) \left(\frac{n}{2}\right) + (n-2), & \text{if } n \text{ is even.} \end{cases}$$

Now, to obtain an upper bound on pw(L(G)), construct a path decomposition of L(G). First, label the vertices of *G* by 1, ..., *n*. Let *T* be an *n*-node path, also labeled by 1, ..., *n*. The bag A_i , for the node labeled *i*, is defined such that $A_i = \{ij \in E(G) : j \in V(G)\} \cup \{uw : u < i < w\}$. For a given A_i , call the edges of $\{ij \in E(G) : j \in V(G)\}$ *initial edges* and call the edges of $\{uw : u < i < w\}$ *crossover edges*. (Note here these edges of *G* are really acting as vertices of L(G), but refer to them as edges for simplicity.)

Lemma 12. Let G be a complete graph with $n \ge 3$ vertices. Then $(T, \{A_1, \ldots, A_n\})$ is a path decomposition for L(G) of width

$$\begin{cases} \left(\frac{n-1}{2}\right)\left(\frac{n-1}{2}\right) + (n-2), & \text{if } n \text{ is odd} \\ \left(\frac{n-2}{2}\right)\left(\frac{n}{2}\right) + (n-2), & \text{if } n \text{ is even.} \end{cases}$$

Proof. Each edge uw of G appears in A_u and A_w as an initial edge. Observe that uw is in A_i if and only if $u \le i \le w$, so the nodes indexing the bags containing uw form a connected subtree of T. Finally, all of the edges incident at the vertex u appear in A_u , and the same holds for w, so if two edges of G are adjacent in L(G), they share a bag.

Now determine the size of A_i . The bag A_i contains n - 1 initial edges and (i - 1)(n - i) crossover edges. So $|A_i| = (n - 1) + (i - 1)(n - i)$. This is maximized when $i = \frac{n+1}{2}$ if n is odd, and when $i = \frac{n}{2}$ or $\frac{n+2}{2}$ if n is even. From this it is possible to calculate the largest bag size, and hence the width of T.

Lemma 12 gives an upper bound on $pw(L(K_n))$ and also on $tw(L(K_n))$. This, combined with the lower bound in Corollary 11, completes the proof of Theorem 1.

REFERENCES

- H. Bodlaender, A partial k-arboretum of graphs with bounded treewidth, Theor Comput Sci 209(1–2) (1998), 1–45.
- [2] J. Díaz, M. Serna, and N. Wormald, Bounds on the bisection width for random d-regular graphs, Theor Comput Sci 382(2) (2007), 120–130.
- [3] M. Grohe and D. Marx, On tree width, bramble size, and expansion, J Comb Theory Ser B 99(1) (2009), 218–228.
- [4] D. Marx, Can you beat treewidth?, Theory Comput 6 (2010), 85–112.

- [5] B. Reed, Tree width and tangles: a new connectivity measure and some applications, Surveys in combinatorics, London Math. Soc. Lecture Note Ser., vol. 241, Cambridge Univ. Press, 1997, pp. 87–162.
- [6] P. Seymour and R. Thomas, Graph searching and a min-max theorem for tree-width, J Comb Theory Ser B 58(1) (1993), 22–33.