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ABSTRACT

A drawing of a given (abstract) tree that is a minimum spanning tree of the vertex

set is considered aesthetically pleasing. However, such a drawing can only exist if the

tree has maximum degree at most 6. What can be said for trees of higher degree? We
approach this question by supposing that a partition or covering of the tree by subtrees

of bounded degree is given. Then we show that if the partition or covering satisfies some

natural properties, then there is a drawing of the entire tree such that each of the given
subtrees is drawn as a minimum spanning tree of its vertex set.

Keywords: Graph drawing; tree; proximity graph; minimum spanning tree; relative neigh-

bourhood graph.
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1. Introduction

The field of graph drawing studies aesthetically pleasing drawings of graphs.a There

are a number of recognised criteria for measuring the quality of a drawing of a given

graph. These include:

• no two edges should cross in drawings of planar graphs;

• the edges should be drawn as straight line-segments; and

• the drawing should have large angular resolution (defined to be the minimum

angle determined by two consecutive edges incident to a vertex).

These three criteria are adopted in the present paper. More formally, a (straight-line

general position) drawing of graph G is an injective function φ : V (G) → R2 such

that the points φ(u), φ(v), φ(w) are not collinear for all distinct vertices u, v, w ∈
V (G). The image of an edge vw ∈ E(G) under φ is the line segment φ(v)φ(w).

Where no confusion is caused, we henceforth do not distinguish between a graph

element and its image in a drawing. Two edges cross if they intersect at a point

other than a common endpoint.

Our focus is on drawings of trees. Here a number of other criteria have been

studied that will not be considered in this paper. These include: small bounding

box area [7–9, 11, 24, 27, 33], small aspect ratio [8, 24], few bends in the edges

[28], few distinct edge-slopes [14], few distinct edge-lengths [6], layered vertices [34],

upwardness in rooted trees [7, 11, 28, 36], and maximising symmetry [25].

A minimum spanning tree of a finite set P ⊂ R2, denoted by MST(P ), is a

straight-line drawing of a tree with vertex set P and with minimum total edge

length; see Fig. 1 for an example. A drawing of a given (abstract) tree that is a

minimum spanning tree of its vertex set is considered to be particularly aestheti-

cally pleasing. In particular, every minimum spanning tree is crossing-free and has

angular resolution at least π
3 . Drawings defined in this way are called ‘proximity

drawings’; see Sec. 2 and [1, 2, 4, 12, 30–32] for more on proximity drawings.

Monma and Suri [31] proved that every degree-5 tree can be drawn as a minimum

spanning tree of its vertex set, and they provided a linear time (real RAM) algorithm

to compute the drawing. In any drawing of a vertex v with degree at least 7, some

angle at v is greater than π
3 , and the same is true for a degree-6 vertex if the points

are required to be in general position. Thus a tree that contains a vertex with degree

at least 7 cannot be drawn as a minimum spanning tree, and the same is true for a

degree-6 vertex if the points are in general position. If collinear vertices are allowed,

then Eades and Whitesides [18] showed that it is NP-hard to decide whether a given

aWe consider graphs G that are simple and finite. Let G be an (undirected) graph. The degree of
a vertex v of G, denoted by degG(v), is the number of edges of G incident with v. The maximum
degree of G is denoted by ∆(G). We say G is degree-d if ∆(G) ≤ d. Now let G be a directed graph.
Let v be a vertex of G. The indegree of v, denoted by indegG(v), is the number of incoming edges

incident to v. The outdegree of v, denoted by outdegG(v), is the number of outgoing edges incident
to v. The maximum outdegree of G is denoted by ∆+(G). We say G is outdegree-d if ∆+(G) ≤ d.
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Fig. 1. Example of a minimum spanning tree.

degree-6 tree can be drawn as a minimum spanning tree. In this sense, the problem

of testing whether a tree can be drawn as a minimum spanning tree is essentially

solved. (In related work, Liotta and Meijer [29] characterised those trees that have

drawings that are Voronoi diagrams of their vertex set.)

What can be said about drawings of a high degree tree T that ‘approximate’

the minimum spanning tree of the vertex set? We prove the following solutions to

this question based on partitions of T into subtrees of bounded degree. A partition

of a graph G is a set of subgraphs of G such that every edge of G is in exactly one

subgraph. We emphasise that ‘trees’ and ‘subtrees’ are necessarily connected.

Theorem 1. Let P be a partition of a tree T into degree-5 subtrees. Then there is

a drawing of T such that each subtree in P is drawn as the minimum spanning tree

of its vertex set.

The drawing of T produced by Theorem 1 possibly has crossings, which are

undesirable. The next result eliminates the crossings, at the expense of a slightly

stronger assumption about the partition, which is expressed in terms of rooted trees.

A rooted tree is a directed tree such that exactly one vertex, called the root, has

indegree-0. It follows that every vertex except r has indegree-1, and every edge vw

of T is oriented ‘away’ from r; that is, if v is closer to r than w, then vw is directed

from v to w. If r is a vertex of a tree T , then the pair (T, r) denotes the rooted tree

obtained by orienting every edge of T away from r.

Theorem 2. Let P be a partition of a rooted tree T into outdegree-4 subtrees. Then

there is a non-crossing drawing of T such that each subtree in P is drawn as the

minimum spanning tree of its vertex set.

By further restricting the partition we introduce large angular resolution as

an additional property of the drawing, again at the expense of a slightly stronger

assumption about the partition.
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Theorem 3. Let P be a partition of a rooted tree T into outdegree-3 subtrees. Then

there is a non-crossing drawing of T with angular resolution at least

π

max{∆+(T )− 1, 4}
such that each subtree in P is drawn as the minimum spanning tree of its

vertex set.

Since every drawing of T has angular resolution at most 2π
∆(T ) , the bound on the

angular resolution in Theorem 3 is within a constant factor of optimal.

Our final drawing theorem concerns a given covering of a tree by two bounded

degree subtrees. A covering of a graph G is a set of connected subgraphs of G such

that every edge of G is in at least one subgraph.

Theorem 4. Let {T1, T2} be a covering of a tree T by two degree-5 subtrees. Then

there is a non-crossing drawing of T such that each Ti is drawn as a minimum

spanning tree of its vertex set.

A number of notes about Theorems 1–4 are in order:

• Each of Theorems 1, 2 and 4 imply and generalise the above-mentioned result

by Monma and Suri [31] that every degree-5 tree T can be drawn as a minimum

spanning tree of its vertex set. (Take k = 1 in Theorem 1; root T at a leaf in

Theorem 2; and take T1 = T and T2 = ∅ in Theorem 4.)

• For each of Theorems 1–4, we actually prove a stronger result in terms of the rela-

tive neighbourhood graph, which is introduced in Sec. 2. The idea, first introduced

by Bose et al. [4], is to construct point sets for which the relative neighbourhood

graph is a tree, in which case it is a minimum spanning tree.

• Theorem 4 cannot be generalised for coverings by three or more subtrees, as

proved in Sec. 5.

• The above theorems are loosely related to the notion of geometric thickness. The

geometric thickness of a graph G is the minimum integer k such that there is a

straight-line drawing ofG and an edge k-colouring such that monochromatic edges

do not cross; see [3, 13, 15–17, 19, 20, 26]. Thus in the drawing of G, the subgraph

induced by each colour class is crossing-free. The above theorems also produce

drawings in which the edges are partitioned into non-crossing subgraphs, but

with additional proximity properties. Moreover, each subgraph of the partition is

connected, which is a desirable property in visualisation applications.

• All our proofs are constructive, and lead to polynomial time algorithms (in the

real RAM model). These algorithmic details are omitted.

2. Relative Neighbourhood Graphs

To aid in the proofs of Theorems 1–4, we now introduce some notation and a number

of geometric objects. Let x and y be points in the plane. Let |xy| be the Euclidean

distance between x and y. Let circle(x, δ) be the circle of radius δ centred at x. Let
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disc(x, δ) be the open disc of radius δ centred at x. Let disc(x, δ) be the closed disc

of radius δ centred at x. As illustrated in Fig. 2, for every real number δ such that

0 < δ < |xy|, let

lune(x, y, δ) := (disc(y, δ)− disc(x, |xy|)) ∪ {y} .

The relative neighbourhood lensb of x and y is

lens(x, y) := disc(x, |xy|) ∩ disc(y, |xy|) .

x

y

δ

x

y

Fig. 2. The regions lune(x, y, δ) and lens(x, y).

Let P ⊂ R2 be a finite set of points in the plane. Toussaint [35] defined the

relative neighbourhood graph of P , denoted by RNG(P ), to be the graph with vertex

set P , where two vertices v, w ∈ P are adjacent if and only if lens(x, y) ∩ P = ∅.
That is v and w are adjacent whenever no vertex is simultaneously closer to v than

w and closer to w than v. Toussaint [35] proved that MST(P ) ⊆ RNG(P ). Hence

if RNG(P ) is a tree, then RNG(P ) = MST(P ). The result of Monma and Suri [31]

mentioned in Sec. 1 was strengthened by Bose et al. [4] as follows.

Lemma 1 (Bose et al. [4]). Every degree-5 tree has a drawing that is the relative

neighbourhood graph of its vertex set.

Analogous to Lemma 1, for all of the theorems introduced in Sec. 1, we in fact

prove stronger results about relative neighbourhood graphs.

bUnfortunately the computational geometry literature, and especially the literature on relative
neighbourhood graphs, often refers incorrectly to a ‘lens’ as a ‘lune’.
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3. Drawings Based on a Partition

Theorem 1 is implied by the following result, since a relative neighbourhood graph

that is a tree is a minimum spanning tree.

Theorem 5. Let {T1, . . . , Tk} be a partition of a tree T into degree-5 subtrees. Then

there is a drawing of T in which each Ti is drawn as the relative neighbourhood graph

of its vertex set.

Proof. Let D be the maximum distance between any two vertices in T (the diam-

eter of T ). Let Q be the complete 5-ary tree of height D. That is, every non-leaf

vertex in Q has degree-5, and for some vertex r, the distance between r and every

leaf equals D.

By Lemma 1, there is a drawing of Q that is the relative neighbourhood graph

of its vertex set. Since the vertices of Q are in general position, for some ε > 0, for

all distinct vertices x, y ∈ V (Q), the discs disc(x, ε) and disc(y, ε) are disjoint, and

if P is a point set that contains exactly one point from each disc disc(x, ε) (where

x ∈ V (Q)), then Q ∼= RNG(P ). (Here disc(x, ε) means the disc centred at the point

where x is drawn.)

Define a homomorphismc f from T to Q as follows. Choose an arbitrary starting

vertex v of T , let f(v) = r, and recursively construct a function f such that f(v)f(w)

is an edge of Q for every edge vw of T , and if f(v)f(w) = f(v′)f(w′) for distinct

edges vw ∈ E(Ti) and v′w′ ∈ E(Tj), then i 6= j. That is, edges in the same subtree

are mapped to distinct edges of Q. Hence for each subtree Ti of T , no two vertices

in Ti are mapped to the same vertex in Q (otherwise the image of the path in Ti
between the two vertices would form a cycle in Q). Moreover, if Qi is the subgraph

of Q induced by {f(v) : v ∈ V (Ti)} then Qi ∼= Ti. Draw each vertex v ∈ V (T ) at a

distinct point φ(v) ∈ disc(f(v), ε) so that {φ(v) : v ∈ V (T )} is in general position.

Thus Pi := {φ(v) : v ∈ V (Ti)} contains exactly one point from each disc disc(x, ε)

where x ∈ V (Qi). Hence Ti ∼= Qi ∼= RNG(Pi) as desired.

Theorem 2 is implied by the following stronger result.

Theorem 6. Let {T1, . . . , Tk} be a partition of a rooted tree T into outdegree-4

subtrees. Then there is a non-crossing drawing of T such that each Ti is drawn as

the relative neighbourhood graph of its vertex set.

Theorem 6 is proved by induction with the following hypothesis. This proof

method generalises that of Bose et al. [4].

Lemma 2. Let {T1, . . . , Tk} be a partition of a rooted tree T into outdegree-4 sub-

trees. Let r be the root of T . Let p and q be distinct points in the plane. Let δ be a

cA homomorphism from a graph G to a graph H is a function f : V (G) → V (H) such that if
vw ∈ E(G) then f(v)f(w) ∈ E(H).
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δ
δ′

> π
3

> π
3

> π
3

s4

s3s2

s1

p

q

A

Fig. 3. The points s1, s2, s3, s4, showing that q ∈ lens(s1, s2) and lens(q, s3) ∩ {s1, s2, s3, s4} = ∅.

real number with 0 < δ < |pq|. Then there is a non-crossing drawing of T contained

in lune(p, q, δ) such that:

• r, which is drawn at q, is in lens(x, p) for every vertex x of T − r, and
• for all i ∈ {1, . . . , k}, the subtree Ti is drawn as the relative neighbourhood graph

of its vertex set.

Proof. We proceed by induction on |V (T )|. The result is trivial if |V (T )| = 1.

Now assume that |V (T )| ≥ 2. Let δ′ be a real number with 0 < δ′ < δ. The

circular arc A := circle(q, δ′)− disc(p, |pq|) has an angle (measured from q) greater

than π. Thus, as illustrated in Fig. 3, there are four points s1, s2, s3, s4 in the

interior of A, such that the angle (measured from q) between distinct points si
and sj is greater than π

3 , implying |siq| = |sjq| < |sisj | and q ∈ lens(si, sj), and

lens(q, si) ∩ {s1, s2, s3, s4} = ∅.
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For small enough discs around the si, these properties are extended to every

point in the disc. More precisely, there is a real number ε ∈ (0, δ′) such that:

(a) disc(si, ε) ⊂ lune(p, q, δ) for all i ∈ {1, 2, 3, 4};
(b) q ∈ lens(x, y) for all points x ∈ disc(si, ε) and y ∈ disc(sj , ε) for all distinct

i, j ∈ {1, 2, 3, 4};
(c) q 6∈ lens(x, y) for all points x, y ∈ disc(si, ε) for all i ∈ {1, 2, 3, 4}; and

(d) lens(x, y) ∩ disc(sj , ε) = ∅ for all points x, y ∈ disc(si, ε) and for all distinct

i, j ∈ {1, 2, 3, 4}.

For j ∈ {1, 2, 3, 4}, since disc(sj , ε) has diameter 2ε, there are points tj,1, . . . , tj,k
on the arc A ∩ disc(sj , ε) such that discs of radius ε

k centred at tj,1, . . . , tj,k are

pairwise disjoint, as illustrated in Fig. 4.

δ
δ′

> π
3

> π
3

> π
3

s4

s3s2

s1

T1,1

T1,2
. . .
T1,k

ε

εε

p

q

A

Fig. 4. Construction in the proof of Lemma 2.



January 10, 2014 9:30 WSPC/Guidelines S0218195913500088

Proximity Drawings of High-Degree Trees 221

For i ∈ {1, . . . , k}, let di be the outdegree of r in Ti. So di ∈ {0, 1, 2, 3, 4}.
Let vi,1, . . . , vi,di be the neighbours of r in Ti. For j ∈ {1, . . . , di}, let Ti,j be the

component of T−r that contains vi,j . So Ti,j is rooted at vi,j , and {T1∩Ti,j , . . . , Tk∩
Ti,j} is a partition of Ti,j into outdegree-4 subtrees. By induction, there is a non-

crossing drawing of each Ti,j contained in lune(q, tj,i,
ε
k ) such that:

(e) vi,j , which is drawn at tj,i, is in lens(x, q) for every vertex x of Ti,j − vi,j , and

(f) for all ` ∈ {1, . . . , k}, the subtree T`∩Ti,j is drawn as the relative neighbourhood

graph of its vertex set.

Draw r at q, and draw a straight-line edge from r to each neighbour vi,j of

r. Each subtree Ti,j is drawn outside of disc(q, δ′), while the edges incident to r

are contained within disc(q, δ′), and therefore do not cross any other edge. Hence

the drawing of T is non-crossing. By (a), Ti,j is drawn within lune(q, tj,i,
ε
k ) ⊂

disc(tj , ε) ⊂ lune(p, q, δ). The edges incident to r are drawn within lune(p, q, δ).

Hence all of T is drawn within lune(p, q, δ).

Now consider a vertex x of T − r. Then x is in Ti,j for some i ∈ {1, 2 . . . , k} and

j ∈ {1, . . . , di}. Thus x is drawn in disc(q, δ)− disc(p, |pq|), implying |xq| < δ < |xp|
and |pq| < |px|. Hence q ∈ lens(x, p), implying r ∈ lens(x, p). This proves the first

claim of the induction hypothesis.

It remains to prove that each subtree Ti is drawn as the relative neighbourhood

graph of its vertex set. Consider distinct vertices v and w in Ti. We must show that

lens(v, w) ∩ V (Ti) = ∅ if and only if vw ∈ E(Ti). Without loss of generality, w 6= r.

Case 1. v = r and vw ∈ E(Ti): So w = vi,j for some j ∈ {1, 2, 3, 4}. Then v is

drawn at q, and w is drawn at tj,i . Now lens(q, tj,i) ⊂ disc(q, δ′), which contains no

vertex except r (at q). Thus lens(v, w) ∩ V (T ) = ∅, as desired.

Case 2. v = r and vw 6∈ E(Ti): Then w is in Ti,j for some j ∈ {1, 2, 3, 4}.
Since v is drawn at q, by induction, the vertex tj,i, which is in Ti, is in lens(v, w),

as desired.

Now assume that v 6= r and w 6= r.

Case 3. v and w are in the same component T`,j of T − r: Then v and w are

drawn within disc(t`, ε). Each vertex in Ti is r, is in T`,j , or is in Ti,j′ for some

j′ 6= j. Since r is drawn at q, (c) implies that r 6∈ lens(v, w). Since Ti,j′ is drawn

within disc(tj′,i, ε), by (d), lens(v, w)∩ V (Ti,j′) = ∅. Hence lens(v, w)∩ V (Ti) = ∅ if

and only if lens(v, w)∩ V (T`,j)∩ Ti = ∅. By induction, lens(v, w)∩ V (Ti) = ∅ if and

only if v and w are adjacent in Ti, as desired.

Case 4. v and w are in distinct components of T − r: Thus r is in Ti, v is in

Ti,j and w ∈ Ti,j′ for some j 6= j′, and v and w are not adjacent. By construction,

v is drawn in disc(sj , ε) and w is drawn in disc(sj′ , ε). Thus (b) implies that q ∈
lens(v, w). Thus r, which is drawn at q, is in lens(v, w), as desired.

4. Drawings with Large Angular Resolution

Theorem 3 is implied by the following stronger result:
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Theorem 7. Let {T1, . . . , Tk} be a partition of a rooted tree T into outdegree-3

subtrees. Then there is a non-crossing drawing of T with angular resolution at least

π

max{∆+(T )− 1, 4}

such that each subtree Ti is drawn as the relative neighbourhood graph of its

vertex set.

Theorem 7 is proved by induction with the following hypothesis.

Lemma 3. Let {T1, . . . , Tk} be a partition of a rooted tree T into outdegree-3 sub-

trees. Let r be the root of T . Let p and q be distinct points in the plane. Let δ be a

real number with 0 < δ < |pq|. Then there is a non-crossing drawing of T contained

in lune(p, q, δ) such that:

• r, which is drawn at q, is in lens(x, p) for every vertex x of T − r, and
• for all i ∈ {1, . . . , k}, the subtree Ti is drawn as the relative neighbourhood graph

of its vertex set, and

• the drawing of T has angular resolution greater than

π

max{4,∆+(T )− 1} .

Proof. We proceed by induction on |V (T )|. The result is trivial if |V (T )| = 1. Now

assume that |V (T )| ≥ 2. Let δ′ be a real number with 0 < δ′ < δ.

Let d := outdeg(r). For i ∈ {1, . . . , k}, let di be the outdegree of r in Ti. So

di ∈ {0, 1, 2, 3} and d =
∑k
i=1 di. Let vi,1, . . . , vi,di be the neighbours of r in Ti. Let

X := {i : di = 3}, Y := {i : di = 2}, Z := {i : di = 1} .

Thus d = 3|X|+ 2|Y |+ |Z|. Partition Z = Z ′∪Z ′′ such that |Z ′′| ≤ |Z ′| ≤ |Z ′′|+ 1.

The circular arc A := circle(q, δ′)− disc(p, |pq|) has an angle (measured from q)

greater than π. Thus there are points s1, . . . , sd in this order on A such that the

angle (measured from q) between distinct points sa and sb is greater than π|b−a|
d−1 .

Let � be the total ordering of the neighbours of r such that {vi,1 : i ∈ X} �
{vi,1 : i ∈ Y } � {vi,1 : i ∈ Z ′} � {vi,2 : i ∈ X} � {vi,2 : i ∈ Y } � {vi,1 : i ∈ Z ′′} �
{vi,3 : i ∈ X}, where within each set, the vertices are ordered by their i-value. Draw

the neighbours of r in the order of � at s1, . . . , sd. That is, the first vertex in � is

drawn at s1, the second vertex in � is drawn at s2, and so on. Let ti,j be the point

where vi,j is drawn.

Consider distinct vertices vi,j and vi,` in some subtree Ti such that ` > j. Say

ti,j = sa and ti,` = sb. Observe that b−a ≥ |X|+|Y |+|Z ′′| ≥ |X|+|Y |+ 1
2 (|Z|−1) ≥

1
3 (3|X| + 2|Y | + |Z| − 1) = d−1

3 . Hence the angle (measured from q) between vi,j

and vi,` is greater than π(d−1)/3
d−1 = π

3 . This implies that |ti,jq| = |ti,`q| < |ti,jti,`|.
Thus q ∈ lens(ti,j , ti,`) and ti,` 6∈ lens(q, ti,j) and ti,j 6∈ lens(q, ti,`).
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> π
3

> π
3

δ
δ′

p

q

T1,1

T2,1

T3,1

T4,1

T5,1

T6,1

T1,2 T2,2
T3,2

T4,2

T7,1

T8,1

T1,3

T2,3

Fig. 5. Construction in the proof of Lemma 3. Here X = {1, 2}, Y = {3, 4}, Z′ = {5, 6} and
Z′′ = {7, 8}. The tree T1 is highlighted.

For small enough discs around s1, . . . , sd, these properties are extended to every

point in the disc. More precisely, there is a real number ε ∈ (0, δ′) such that:

(a) disc(sa, ε) ⊂ lune(p, q, δ) for all a ∈ {1, . . . , d};
(b) q ∈ lens(x, y) for all points x ∈ disc(ti,j , ε) and y ∈ disc(ti,`, ε) for all distinct

vertices vi,j and vi,` in the same subtree Ti;

(c) q 6∈ lens(x, y) for all points x, y ∈ disc(sa, ε) for all a ∈ {1, . . . , d}; and

(d) lens(x, y) ∩ disc(sb, ε) = ∅ for all distinct a, b ∈ {1, . . . , d} and for all points

x, y ∈ disc(sa, ε).

For i ∈ {1, . . . , k} and j ∈ {1, . . . , di}, let Ti,j be the component of T − r that

contains vi,j . Each subtree Ti,j is rooted at vi,j , and {T1 ∩ Ti,j , . . . , Tk ∩ Ti,j} is

a partition of Ti,j into outdegree-3 subtrees. By induction, there is a non-crossing
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drawing of Ti,j contained in lune(q, ti,j , ε) such that:

(e) vi,j , which is drawn at ti,j , is in lens(x, q) for every vertex x of Ti,j − vi,j ; and

(f) for all ` ∈ {1, . . . , k}, the subtree T`∩Ti,j is drawn as the relative neighbourhood

graph of its vertex set; and

(g) the drawing of Ti,j has angular resolution greater than

π

max{∆+(Ti,j)− 1, 4} ,

which is at least

π

max{∆+(T )− 1, 4} .

Draw r at q, and draw a straight-line edge from r to each neighbour vi,j of r.

The angle between two edges incident to r is at least

π

d− 1
≥ π

∆+(T )− 1
.

The angle between an edge rvi,j and each edge vi,jx in Ti,j is at least π
4 . With (g),

this proves the third claim of the lemma.

Each subtree Ti,j is drawn outside of disc(q, δ′), while the edges incident to r

are contained within disc(q, δ′), and therefore do not cross any other edge. Hence

the drawing of T is non-crossing. By (a), Ti,j is drawn within lune(q, ti,j , ε) ⊂
disc(ti,j , ε) ⊂ lune(p, q, δ). The edges incident to r are drawn within lune(p, q, δ).

Hence all of T is drawn within lune(p, q, δ).

Now consider a vertex x of T − r. Then x is in Ti,j for some i ∈ {1, . . . , k} and

j ∈ {1, . . . , di}. Thus x is drawn in disc(q, δ)− disc(p, |pq|), implying |xq| < δ < |xp|
and |pq| < |px|. Hence q ∈ lens(x, p), implying r ∈ lens(x, p). This proves the first

claim of the lemma.

It remains to prove that each subtree Ti is drawn as the relative neighbourhood

graph of its vertex set. Consider distinct vertices v and w in Ti. We must show that

lens(v, w) ∩ V (Ti) = ∅ if and only if vw ∈ E(Ti). Without loss of generality, w 6= r.

Case 1. v = r and vw ∈ E(Ti): So w = vi,j for some j ∈ {1, 2, 3}. Then v is

drawn at q, and w is drawn at ti,j . Now lens(q, ti,j) ⊂ disc(q, δ′), which contains no

vertex except r (at q). Thus lens(v, w) ∩ V (T ) = ∅, as desired.

Case 2. v = r and vw 6∈ E(Ti): Then w is in Ti,j for some j ∈ {1, 2, 3}, but

w 6= vi,j . Since v is drawn at q, by (e), the vertex vi,j , which is in Ti, is in lens(v, w),

as desired.

Now assume that v 6= r and w 6= r.

Case 3. v and w are in the same component T`,j of T−r, for some ` ∈ {1, . . . , k}:
Then v and w are drawn within disc(t`,j , ε). Each vertex in Ti is r, is in T`,j , or

is in Ti,j′ for some (i, j′) 6= (`, j). Since r is drawn at q, (c) implies that r 6∈
lens(v, w). Since Ti,j′ is drawn within disc(ti,j′ , ε), by (d), lens(v, w) ∩ V (Ti,j′) = ∅.
Hence lens(v, w) ∩ V (Ti) = ∅ if and only if lens(v, w) ∩ V (T`,j) ∩ Ti = ∅. By (f),

lens(v, w) ∩ V (Ti) = ∅ if and only if v and w are adjacent in Ti, as desired.
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Case 4. v and w are in distinct components of T − r: Thus r is in Ti, v is in

Ti,j and w ∈ Ti,j′ for some j 6= j′, and v and w are not adjacent. By construction,

v is drawn in disc(ti,j , ε) and w is drawn in disc(ti,j′ , ε). Thus (b) implies that

q ∈ lens(v, w). Thus r, which is drawn at q, is in lens(v, w), as desired.

Therefore the subtree Ti is drawn as the relative neighbourhood graph of its

vertex set. This completes the proof.

5. Drawings Based on a Covering

Theorem 8 below establishes a result for relative neighbourhood graphs that implies

Theorem 4 for minimum spanning trees. Before proving Theorem 8 we give a simpler

proof of a weaker result, in which the obtained drawing might have crossings.

Proposition 1. Let {T1, T2} be a covering of a tree T by degree-5 subtrees. Then

there is a drawing of T in which each Ti is drawn as the relative neighbourhood

graph of its vertex set.

Proof. We proceed by induction on |V (T )|. If ∆(T ) ≤ 5 then T ∼= RNG(P ) for

some point set P by Lemma 1. This drawing is crossing-free since it also a minimum

spanning tree. Furthermore, each Ti is drawn as the relative neighbourhood graph of

the subset of P representing Ti. Now assume that ∆(T ) ≥ 6. Thus degT (v) ≥ 6 for

some vertex v. Hence there are edges vx ∈ E(T1)−E(T2) and vy ∈ E(T2)−E(T1).

Let T ′ be the tree obtained from T by identifying x and y into a new vertex w.

(This operation is called an elementary homomorphism or folding ; see [5, 10, 21, 23]

and Fig. 6.) Let T ′i be the subtrees of T ′ determined by Ti for i ∈ {1, 2}. Note that

the edge vw is in T ′1 ∩ T ′2. Observe that {T ′1, T ′2} is a covering of T ′ by degree-5

subtrees. By induction, there is a drawing of T ′ such that each T ′i is the relative

neighbourhood graph of its vertex set. Moreover, for some ε > 0, if w is moved

to any point in disc(w, ε) then in the resulting drawing of T ′, each T ′i is drawn

as the relative neighbourhood graph of its vertex set. Consider a drawing of T in

which every vertex in V (T ) − {x, y} inherits is position in the drawing of T ′, and

x and y are assigned distinct points in disc(w, ε). Since x ∈ V (T1) − V (T2) and

y ∈ V (T2) − V (T1), each Ti is drawn as the relative neighbourhood graph of its

vertex set in the drawing of T .

We now strengthen Proposition 1 by showing that the drawing of T can be made

crossing-free. Theorem 4 is implied by the following stronger result:

Theorem 8. Let {T1, T2} be a covering of a tree T by degree-5 subtrees. Then

there is a non-crossing drawing of T such that each Ti is drawn as the relative

neighbourhood graph of its vertex set.

The proof of Theorem 8 depends on the following definition. A combinatorial

embedding of a graph is a cyclic ordering of the edges incident to each vertex. We

define a combinatorial embedding of a graph G, with respect to a covering {G1, G2}
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v yx

⊆ T1 − T2 ⊆ T2 − T1

v

w

⊆ T1 − T2 ⊆ T2 − T1

∈ T1 ∩ T2

Fig. 6. Folding the tree T in the proof of Proposition 1.

of G, to be good if for each vertex v of G, in the clockwise ordering of the edges

incident to v, the edges in E(G1) − E(G2) are grouped together, followed by the

edges in E(G1)∩E(G2), followed by the edges in E(G2)−E(G1). Since every tree

covered by two subtrees obviously has a good embedding, Theorem 8 now follows

from the next lemma:

Lemma 4. Let {T1, T2} be a covering of a tree T by degree-5 subtrees. For every

good combinatorial embedding of T , with respect to {T1, T2}, there is a non-crossing

drawing of T such that each Ti is drawn as the relative neighbourhood graph of its

vertex set, and the given combinatorial embedding of T is preserved in the drawing.

Proof. We proceed by induction on |V (T )|. If ∆(T ) ≤ 5 then T ∼= RNG(P ) for

some point set P by Lemma 1. This drawing is crossing-free since it also a minimum

spanning tree. Moreover, by examining the proof of Lemma 1, it is easily seen that

any given combinatorial embedding of T can be preserved in the drawing. Each

Ti is drawn as the relative neighbourhood graph of the subset of P representing

Ti. Now assume that degT (v) ≥ 6 for some vertex v. Hence there are edges vx ∈
E(T1)−E(T2) and vy ∈ E(T2)−E(T1) such that vx and vy are consecutive in the

cyclic ordering of the edges incident to v.

Let T ′ be the tree obtained from T by identifying x and y into a new vertex w.

Let T ′i be the subtrees of T ′ determined by Ti for i ∈ {1, 2}. Note that the edge vw

is in T ′1 ∩ T ′2. The cyclic ordering of the edges in T ′ incident to v is obtained from

the cyclic ordering of the edges in T incident to v by replacing vx and vy (which

are consecutive) by vw. And NT ′(w) is ordered (NT1−E(T2)(x), wv,NT2−E(T1)(y)).

Other vertices keep their ordering in T .

Observe that {T ′1, T ′2} is a covering of T ′ by degree-5 subtrees. By induction,

there is a non-crossing drawing of T ′ such that each T ′i is the relative neighbourhood

graph of its vertex set, and the given combinatorial embedding of T is preserved in

the drawing. For some ε > 0, if w is moved to any point in disc(w, ε) then in the
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resulting drawing of T ′, each T ′i is drawn as the relative neighbourhood graph of

its vertex set, and the given combinatorial embedding of T is preserved. Consider a

drawing of T in which every vertex in V (T )−{x, y} inherits is position in the drawing

of T ′, and x and y are assigned distinct points in disc(w, ε). Since x ∈ V (T1)−V (T2)

and y ∈ V (T2)−V (T1), each Ti is drawn as the relative neighbourhood graph of its

vertex set in the drawing of T . It remains to assign points for x and y in disc(w, ε)

so that the drawing of T is crossing-free. In the drawing of T ′, the edges incident to

w are ordered (NT1−E(T2)(x), wv,NT2−E(T1)(y)). Let R be a ray centred at w that

separates the edges in T1 − E(T2) incident to w and those in T2 − E(T1) incident

to w, such that v is not on the extension of R. At most one of x and y, say x, has

neighbours on both sides of the extension of R. As illustrated in Fig. 7, position x

at w, and position y on R and inside disc(w, ε). It follows that there are no crossings

and the correct ordering of edges is preserved at v, x and y.

⊆ T1

⊆ T1

⊆ T1

⊆ T1

⊆ T2

⊆ T2

ε

v

w

R

⊆ T1

⊆ T1

⊆ T1

⊆ T1

⊆ T2

⊆ T2

v

x

y

R

Fig. 7. Producing a drawing of T given a drawing of T ′ in the proof of Lemma 4.

We now show that Theorem 4 cannot be generalised for coverings by three

or more subtrees. (Thus neither Proposition 1 nor Theorem 8 can be similarly

generalised.) Let T be the 6-star with root r and leaves v1, . . . , v6. Let {T1, T2, T3} be

the following covering of T . Let T1 be the subtree of T induced by {r, v1, v2, v3, v4}.
Let T2 be the subtree of T induced by {r, v1, v2, v5, v6}. Let T3 be the subtree of

T induced by {r, v3, v4, v5, v6}. Thus each Ti is a 4-star. Suppose on the contrary

that T has a drawing such that each Ti is drawn as a minimum spanning tree of its

vertex set. The angle ∠virvj between some pair of consecutive edges rvi and rvj (in

the cyclic order around r) is less than π
3 since no three vertices are collinear. Since

vi and vj are each in two subtrees, and r is in every subtree, the vertices r, vi, vj
are in a common subtree T`. Every minimum spanning tree has angular resolution

at least π
3 . Thus T` is not drawn as a minimum spanning tree. This contradiction
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proves there is no drawing of T such that each Ti is drawn as a minimum spanning

tree of its vertex set. Note that this argument generalises to show that if P1, . . . , P15

are the
(

6
2

)
paths through the root of the 6-star T , then in every drawing of T , some

Pi is not a minimum spanning tree of its vertex set.

6. Further Research

This paper has not analysed the area of the drawings produced by our algorithms.

It would be interesting to consider whether there are drawings whose area is poly-

nomial in the number of vertices of the given tree, for example when the tree is

partitioned into outdegree-3 subtrees. While the problem of drawing a tree as a

minimum spanning tree in polynomial area is open in the general case [31], Frati

and Kaufmann [22] proved that every degree-4 tree has a drawing as a minimum

spanning tree in polynomial area; also see [32].

A second direction for further research is to extend the approach used in this

paper to other types of proximity drawings of trees; see [30] for appropriate defi-

nitions. For example, every degree-4 tree admits a w-β-drawing for all values of β

in (cos( 2π
5 )−1,∞); see [12, Theorem 7]. Given a partition of a rooted tree T into

outdegree-3 subtrees and a value of β in the above interval, is there a drawing of T

in which each subtree is drawn as a w-β-drawing?

The results of this paper motivate studying coverings and partitions of trees by

subtrees of bounded degree. We consider these purely combinatorial problems in

our companion paper [37]. For example, given a tree T and integer d, we present

there a formula for the minimum number of degree-d subtrees that partition T ,

and describe a polynomial time algorithm that finds such a partition. Similarly, we

present a polynomial time algorithm that finds a covering of T by the minimum

number of degree-d subtrees.
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