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Abstract

We consider relations between the size, treewidth, and local crossing number
(maximum crossings per edge) of graphs embedded on topological surfaces. We
show that an n-vertex graph embedded on a surface of genus g with at most k
crossings per edge has treewidth O(

√
gkn) and layered treewidth O(gk), and that

these bounds are tight up to a constant factor. As a special case, the k-planar
graphs with n vertices have treewidth O(

√
kn) and layered treewidth O(k), which

are tight bounds that improve a previously known O(k3/4n1/2) treewidth bound.
Additionally, we show that for g < m, every m-edge graph can be embedded on a
surface of genus g with O((m/g) log2 g) crossings per edge, which is tight to within
a polylogarithmic factor.

1 Introduction

Treewidth is a graph parameter that measures how similar a graph is to a tree. It is a key
measure of the complexity of a graph and is of fundamental importance in algorithmic
graph theory and structural graph theory, especially in Robertson and Seymour’s graph
minors project. Treewidth is closely related to the size of a smallest separator, a set
of vertices whose removal splits the graph into connected components of at most 2n

3
vertices, where n (as always) is the number of vertices in the graph. Graphs of low
treewidth necessarily have small separators, and graphs in which every subgraph has
a small separator have low treewidth [2, 11]. See Section 2 for a detailed definition of
treewidth.

A graph is k-planar if it can be drawn in the plane with at most k crossings on
each edge. The local crossing number of the graph is the minimum k for which it is
k-planar [13, pages 51–53]. An important example is the p × q × r grid graph, with
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Figure 1: The p× q × r grid graph is (r − 1)-planar.

vertex set [p]×[q]×[r] and all edges of the form (x, y, z)(x+1, y, z) or (x, y, z)(x, y+1, z)
or (x, y, z)(x, y, z + 1). A suitable linear projection from the natural three-dimensional
embedding of this graph to the plane gives a (r − 1)-planar drawing, as illustrated in
Figure 1.

The starting point for our work is the following question: what is the maximum
treewidth of k-planar graphs? Grigoriev and Bodlaender [5] studied this question and
proved an upper bound of O(k3/4n1/2). We improve this and give the following tight
bound:

Theorem 1. The maximum treewidth of k-planar n-vertex graphs is

Θ
(

min
{
n,
√

(k + 1)n
})

.

More generally, define a graph to be (g, k)-planar if it can be drawn in a surface of
Euler genus at most g with at most k crossings on each edge.1 For instance, Guy et
al. [7] investigated the local crossing number of toroidal embeddings—in this notation,
the (2, k)-planar graphs. We again determine an optimal bound on the treewidth of
such graphs.

Theorem 2. The maximum treewidth of (g, k)-planar n-vertex graphs is

Θ
(

min
{
n,
√

(g + 1)(k + 1)n
})

.

In both these theorems, the k = 0 case (with no crossings) is well known [4]. We
prove our upper bounds by using the concept of layered treewidth [1], and we prove
matching lower bounds by finding (g, k)-planar graphs without large separators and
using the known relations between separator size and treewidth.

1The Euler genus is 2h for an orientable surface with h handles, and c for a non-orientable surface
with c cross-caps.
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Finally, we study the (g, k)-planarity of graphs as a function of their number of
edges. For (global) crossing number, a graph with m edges drawn on a surface of genus g
may require Ω(min{m2/g,m2/n}) crossings, and it can be drawn with O((m2 log2 g)/g)
crossings [14]. In particular, the lower bound implies that some graphs require Ω(m/g)
crossings per edge on average, and therefore also in the worst case. We prove a nearly-
matching upper bound:

Theorem 3. For every graph G with m edges, for every integer g > 1, there is a
drawing of G in the orientable surface with at most g handles and with

O

(
m log2 g

g

)
crossings per edge.

2 Background

For ε ∈ (0, 1), a set S of vertices in a graph G is an ε-separator of G if each component
of G− S has at most ε|V (G)| vertices. It is conventional to set ε = 2/3 but the precise
choice makes no difference to the asymptotic size of a separator.

A tree-decomposition of a graph G is given by a tree T whose nodes index a collection
(Bx ⊆ V (G) : x ∈ V (T )) of sets of vertices in G called bags, such that:

• For every edge vw of G, some bag Bx contains both v and w, and

• For every vertex v of G, the set {x ∈ V (T ) : v ∈ Bx} induces a non-empty
(connected) subtree of T .

The width of a tree-decomposition is maxx |Bx| − 1, and the treewidth tw(G) of a graph
G is the minimum width of any tree decomposition of G. Treewidth was introduced
(with a different but equivalent definition) by Halin [8] and tree decompositions were
introduced by Robertson and Seymour [12] who proved:

Lemma 4 ([12]). Every graph with treewidth k has a 1
2 -separator of size at most k+ 1.

The notion of layered tree decompositions is a key tool in proving our main theorems.
A layering of a graph G is a partition (V0, V1, . . . , Vt) of V (G) such that for every edge
vw ∈ E(G), if v ∈ Vi and w ∈ Vj , then |i − j| 6 1. Each set Vi is called a layer. For
example, for a vertex r of a connected graph G, if Vi is the set of vertices at distance
i from r, then (V0, V1, . . . ) is a layering of G, called the bfs layering of G starting from
r. A bfs tree of G rooted at r is a spanning tree of G such that for every vertex v of G,
the distance between v and r in G equals the distance between v and r in T . Thus, if
v ∈ Vi then the vr-path in T contains exactly one vertex from layer Vj for 0 6 j 6 i.

The layered width of a tree-decomposition (Bx : x ∈ V (T )) of a graph G is the
minimum integer ` such that, for some layering (V0, V1, . . . , Vt) of G, each bag Bx
contains at most ` vertices in each layer Vi. The layered treewidth of a graph G is
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the minimum layered width of a tree-decomposition of G. Note that if we only consider
the trivial layering in which every vertex is in a single layer, then layered treewidth
equals treewidth plus 1.

Dujmović, Morin, and Wood [1] introduced layered treewidth and proved the fol-
lowing results, where a graph G is apex if G− v is planar for some vertex v:

Theorem 5 (Dujmović, Morin, and Wood [1]). (a) Every planar graph has layered treewidth
at most 3.

(b) Every graph with Euler genus g has layered treewidth at most 2g + 3.

(c) For every apex graph H, there is a number c such that every H-minor-free graph
has layered treewidth at most c.

(d) If a minor-closed class has bounded layered treewidth, then it excludes a fixed apex
graph as a minor.

The same characterization by forbidden apex minors was previously known for
minor-closed classes of bounded local treewidth [3], establishing the equivalence of
bounded local treewidth and bounded layered treewidth in minor-closed classes; how-
ever, for families of graphs that are not minor-closed, layered treewidth and local
treewidth are distinct. Sergey Norin established the following connection between lay-
ered treewidth and treewidth:

Theorem 6 (Norin; see [1]). Every n-vertex graph with layered treewidth k has treewidth
at most 2

√
kn.

Several results that follow depend on expanders; see [9] for a survey.

Lemma 7. For k > 3 and n > k+1 (such that n is even if k is odd), there is a k-regular
n-vertex graph H (called an expander) such that for every ε ∈ (0, 1) there exists β > 0,
such that every ε-separator in H has size at least βn.

3 k-Planar Graphs

The following is our first contribution.

Theorem 8. Every k-planar graph has layered treewidth at most 6(k + 1).

Proof. Let G be k-planar; draw G with at most k crossings per edge, and arbitrarily
orient each edge of G. Let G′ be the graph obtained from G by replacing each crossing
by a new degree-4 vertex. Then G′ is planar. By Theorem 5(a), G′ has layered treewidth
at most 3. That is, there is a tree decomposition T ′ of G′, and a layering V ′0 , V

′
1 , . . . of

G′, such that each bag of T ′ contains at most three vertices in each layer V ′i . For each
vertex v of G′, let T ′v be the subtree of T ′ formed by the bags that contain v.

Let T be the decomposition of G obtained by replacing each occurrence of a dummy
vertex x in a bag of T ′ by the tails of the two edges that cross at x. We now show that
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T is a tree-decomposition of G. For each vertex v of G, let Tv be the subgraph of T
formed by the bags that contain v. Let G′v be the subgraph of G′ induced by v and the
division vertices on the edges for which v is the tail. Then G′v is connected. Thus T ′v,
which is precisely the set of bags of T ′ that intersect G′v, form a (connected) subtree of
T ′. Moreover, for each oriented edge vw of G, if x is the division vertex of vw adjacent
to w, then T ′x and T ′w intersect. Since Tv contains T ′x, and Tw contains T ′w, we have that
Tv and Tw intersect. Thus T is a tree-decomposition of G. By construction, each bag
of T contains at most six vertices in each layer V ′i .

Note that distG′(v, w) 6 k + 1 for each edge vw of G. Thus, if v ∈ V ′i and w ∈ V ′j
then |i − j| 6 k + 1. Let V0 be the union of the first k + 1 layers restricted to V (G),
let V1 be the union of the second k + 1 layers restricted to V (G), and so on. That is,
for i > 0, let Vi := V (G) ∩ (V ′(k+1)i ∪ V

′
(k+1)i+1 ∪ · · · ∪ V(k+1)(i+1)−1). Then V0, V1, . . .

is a partition of V (G). Moreover, if v ∈ Vi and w ∈ Vj for some edge vw of G, then
|i− j| 6 1. Thus V1, V2, . . . is a layering of G. Since each layer in G consists of at most
k + 1 layers in G′, the layered treewidth of this decomposition is at most 6(k + 1).

Theorem 5 does not imply Theorem 8, because 1-planar graphs may contain arbi-
trarily large complete graph minors. For example, the n× n× 2 grid graph is 1-planar,
and contracting the i-th row in the front grid with the i-th column in the back grid
gives a Kn minor.

Theorem 6 and Theorem 8 imply the upper bound in Theorem 1:

Theorem 9. Every k-planar n-vertex graph has treewidth at most 2
√

6(k + 1)n.

We now prove the corresponding lower bound.

Theorem 10. For 1 6 k 6 3
2n there is a k-planar graph on n vertices with treewidth

at least c
√
kn for some constant c > 0.

Proof. Let G be a cubic expander with n vertices. Then G has treewidth at least εn
for some constant ε > 0 (see for example Grohe and Marx [6]). Consider a straight-line
drawing of G. Clearly, each edge is crossed less than |E(G)| = 3

2n times. Subdivide
each edge of G at most 3n

2k times to produce a k-planar graph G′ with n′ vertices, where

n′ 6 n+ 3n
2

3n
2k <

4n2

k . Subdivision does not change the treewidth of a graph. Thus G′

has treewidth at least εn > ε
2

√
kn′.

Combining the bound of Theorem 9 with the trivial upper bound tw(G) 6 n for k ≥
n shows that the maximum treewidth of k-planar n-vertex graphs is Θ(min{n,

√
kn})

for arbitrary k and n. This completes the proof of Theorem 1.

4 (g, k)-Planar Graphs

Recall that a graph is (g, k)-planar if can be drawn in a surface of Euler genus at most
g with at most k crossings on each edge. The proof method used in Theorem 8 in
conjunction with Theorem 5(b) leads to the following theorem.
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Theorem 11. Every (g, k)-planar graph G has layered treewidth at most (4g+6)(k+1).

Proof. Consider a drawing of G with at most k crossings per edge on a surface Σ of
Euler genus g. Arbitrarily orient each edge of G. Let G′ be the graph obtained from G
by replacing each crossing by a new degree-4 vertex. Then G′ is embedded in Σ with
no crossings, and thus has Euler genus at most g. By Theorem 5(b), G′ has layered
treewidth at most 2g+3. That is, there is a tree decomposition T ′ of G′, and a layering
V ′0 , V

′
1 , . . . of G′, such that each bag of T ′ contains at most 2g+ 3 vertices in each layer

V ′i . For each vertex v of G′, let T ′v be the subtree of T ′ formed by the bags that contain
v.

Let T be the decomposition of G obtained by replacing each occurrence of a dummy
vertex x in a bag of T ′ by the tails of the two edges that cross at x. We now show that
T is a tree-decomposition of G. For each vertex v of G, let Tv be the subgraph of T
formed by the bags that contain v. Let G′v be the subgraph of G′ induced by v and the
division vertices on the edges for which v is the tail. Then G′v is connected. Thus T ′v,
which is precisely the set of bags of T ′ that intersect G′v, form a (connected) subtree of
T ′. Moreover, for each oriented edge vw of G, if x is the division vertex of vw adjacent
to w, then T ′x and T ′w intersect. Since Tv contains T ′x, and Tw contains T ′w, we have that
Tv and Tw intersect. Thus T is a tree-decomposition of G. By construction, each bag
of T contains at most 4g + 6 vertices in each layer V ′i .

Note that distG′(v, w) 6 k + 1 for each edge vw of G. Thus, if v ∈ V ′i and w ∈ V ′j
then |i−j| 6 k+1. Let V0 be the union of the first k+1 layers restricted to V (G), let V1
be the union of the second k+1 layers restricted to V (G), and so on. That is, for i > 0,
let Vi := V (G)∩ (V ′(k+1)i ∪V

′
(k+1)i+1 ∪ · · · ∪V(k+1)(i+1)−1). Then V0, V1, . . . is a partition

of V (G). Moreover, if v ∈ Vi and w ∈ Vj for some edge vw of G, then |i− j| 6 1. Thus
V1, V2, . . . is a layering of G. Since each layer in G consists of at most k + 1 layers in
G′, the layered treewidth of this decomposition is at most (4g + 6)(k + 1).

Theorem 11 and Theorem 6 imply:

Theorem 12. Every n-vertex (g, k)-planar graph has treewidth at most

2
√

(4g + 6)(k + 1)n.

We now show that this bound is tight up to a constant factor.

Theorem 13. For all g, k > 0 and infinitely many n there is an n-vertex (g, k)-planar
graph with treewidth Ω(

√
(g + 1)(k + 1)n.

The proof of this result depends on the separation properties of the p × q × r grid
graph (which is (r − 1)-planar). The next two results are not optimal, but have simple
proofs and are all that is needed for the main proof that follows.

Lemma 14. For q > ( 1
1−ε)r, every ε-separator of the q × r grid graph has size at least

r.
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Proof. Let S be a set of at most r − 1 vertices in the q × r grid graph. Some row R
avoids S, and at least q − r + 1 columns avoid S. The union of these columns with R
induces a connected subgraph with at least (q − r + 1)r > εqr vertices. Thus S is not
an ε-separator.

Lemma 15. For p > q > ( 1
1−ε)r, every ε-separator of the p× q × r grid graph has size

at least (1−ε1+ε)qr.

Proof. Let G be the p × q × r grid graph. Let n := |V (G)| = pqr. Let S be an ε-
separator of G. Let A1, . . . , Ac be the components of G − S. Thus |Ai| 6 εn. For
x ∈ [p], let Gx := {(x, y, z) : y ∈ [q], z ∈ [r]} called a slice. Say Gx belongs to Ai
and Ai owns Gx if |Ai ∩ Gx| > 1+ε

2 qr. Clearly, no two components own the same
slice. First suppose that at least two components each own a slice. That is, Gv belongs
to Ai and Gw belongs to Aj for some v < w and i 6= j. Let X := {(y, z) : (v, y, z) ∈
Gv, (w, y, z) ∈ Gw}. Then |X| > 2(1+ε2 )qr−qr = εqr. For each (y, z) ∈ X, the ‘straight’
path (v, y, z)(v + 1, y, z), . . . , (w, y, z) contains some vertex in S. Since these paths are
pairwise disjoint, |S| > |X| > εqr > 1−ε

1+εqr (since ε > 1
2). Now assume that at most one

component, say A1, owns a slice. Say A1 owns t slices. Thus t(1+ε2 )qr 6 |Ai| 6 εpqr
and t 6 2ε

1+εp. Hence, at least (1− 2ε
1+ε)p slices belong to no component. For such a slice

Gv, each component of Gv − S is contained in some Ai and thus has at most (1+ε2 )qr
vertices. That is, S ∩Gv is a (1+ε2 )-separator of the q× r grid graph induced by Gv. By
Lemma 14, |S ∩Gv| > r. Thus |S| > (1− 2ε

1+ε)pr > (1−ε1+ε)qr.

Proof of Theorem 13. Let r := k + 1.
First suppose that g 6 19. Let G be the q × q × r grid graph where q > 2r. As

observed above, G is k-planar and thus (g, k)-planar. Lemma 15 implies that every
1
2 -separator of G has size at least 1

3qr. Lemma 4 thus implies that G has treewidth at

least 1
3qr − 1, which is at least Ω(

√
(g + 1)(k + 1)n), as desired.

Now assume that g > 20. By Lemma 7 there is a 4-regular expander H on m :=
bg4c > 5 vertices. Thus H has 2m edges, H embeds in the orientable surface with 2m

handles, and thus has Euler genus at most 4m 6 g. We may assume that q :=
√
n/rm

is an integer with q > 8r. Let G be obtained from H by replacing each vertex v of H
by a copy of the q × q × r grid graph with vertex set Dv, and replacing each edge of H
by a matching of qr edges, so that G[Dv ∪Dw] is a 2q× q× r grid, as shown in Figure 2.
Thus G is (g, k)-planar with q2rm = n vertices.

Let S be a 1
2 -separator in G. Let A1, . . . , Ac be the components of G − S. Thus

|Ai| 6 1
2n for i ∈ [c]. Initialise sets S′ := A′1 := · · · := A′c := ∅.

For each vertex v of H, if |S ∩Dv| > qr
14 then put v ∈ S′. Otherwise, |S ∩Dv| < qr

14 .

Note that Lemma 15 is applicable with ε = 13
15 since q > 8r > 1

1−13/15r and 1−13/15
1+13/15 = 1

14 .

Lemma 15 thus implies that S ∩ Dv is not a 13
15 -separator. Hence some component of

Dv − S has at least 13
15q

2r vertices. Since 13
15 >

1
2 , exactly one component of Dv − S has

at least 13
15q

2r vertices. This component is a subset of Ai for some i ∈ [c]; add v to A′i.
Thus S′, A′1. . . . , A

′
c is a partition of V (H).
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Figure 2: Construction of G in the proof of Theorem 13.

We now prove that S′ is a 15
26 -separator in H. Suppose that v ∈ A′i and w ∈ A′j for

some edge vw of H. Let D be the vertex set of the 2q × q × r grid graph induced by
Dv ∪ Dw. Since v 6∈ S′ and w 6∈ S′, we have |S ∩ Dv| < qr

14 and |S ∩ Dw| < qr
14 . Thus

|S ∩D| < qr
7 . Note that Lemma 15 is applicable with ε = 3

4 since q > 8r > 1
1−3/4r and

1−3/4
1+3/4 = 1

7 . Lemma 15 thus implies that S ∩ D is not a 3
4 -separator of G[D]. Hence

some component X of G[D]−S contains at least 3
4 |D| =

3
2q

2r vertices. Each of Dv and
Dw can contain at most q2r vertices in X. Thus Dv and Dw each contain at least 1

2q
2r

vertices in X. Thus, by construction, v and w are in the same A′i. That is, there is
no edge of H between distinct A′i and A′j , and each component of H − S′ is contained

in some A′i. For each i ∈ [c], we have 1
2q

2rm > |Ai| > 13
15q

2r|A′i| implying |A′i| 6 15
26m.

Therefore S′ is a 15
26 -separator in H.

By Lemma 7, |S′| > βm for some constant β > 0. Thus |S| > qr
14 |S

′| > β
14mqr. By

Lemma 4, G has treewidth at least β
14mqr − 1 = β

14

√
mrn − 1 > Ω(

√
g(k + 1)n), as

desired.

Note that the proof of Theorem 13 in the case k = 0 is very similar to that of
Gilbert, Hutchison, and Tarjan [4].

For gk > n the trivial upper bound of tw(G) 6 n is better than that given in The-
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orem 12. We conclude that the maximum treewidth of (g, k)-planar n-vertex graphs is
Θ(min{n,

√
(g + 1)(k + 1)n}) for arbitrary g, k, n. This completes the proof of Theo-

rem 2.

5 Drawings with Few Crossings per Edge

This section studies the following natural conjecture: for every surface Σ of Euler genus
g, every graph G with m edges has a drawing in Σ with O( m

g+1) crossings per edge.
This conjecture is trivial at both extremes: with g = 0, every graph has a straight-line
drawing in the plane (and therefore a drawing in the sphere) with at most m crossings
per edge, and with g = 2m, every graph has a drawing in the the orientable surface
with one handle per edge. Moreover, if this conjecture is true, it would provide a simple
proof of Theorem 13 in the same manner as the proof of Theorem 10.

Our starting point is the following well-known result of Leighton and Rao [10, The-
orem 22, p. 822]:

Theorem 16 (Leighton and Rao [10]). Let G be a graph with bounded degree and n
vertices, mapped one-to-one onto the vertices of an expander graph H. Then the edges
of G can be mapped onto paths in H so that each path has length O(log n) and each edge
of H is used by O(log n) paths.

It is straightforward to extend this result to regular graphs G of unbounded degree,
with the number of paths per edge of H increasing in proportion to the degree. However,
there are two difficulties with using it in our application. First, it does not directly
handle graphs in which there is considerable variation in degree from vertex to vertex:
in such cases we would want the number of paths per edge to be controlled by the
average degree in G, but instead it is controlled by the maximum degree. And second,
it does not allow us to control separately the sizes of G and H; instead, both must have
the same number of vertices. To handle these issues, we do not map the vertices of our
input graph G directly to the vertices of an expander H; instead, we keep the vertices of
G and the vertices of H disjoint from each other, connecting them by a bipartite graph
that balances the degrees, according to the following lemma.

Lemma 17. Let d1, d2, . . . , dn be a sequence of positive integers, and let q be any pos-
itive integer. Then there exists a bipartite graph with colour classes {v1, . . . , vn} and
{w1, . . . , wq}, at most n+ q− 1 edges, and a labeling of the edges with positive integers,
such that

• each vertex vi is incident to a set of edges whose labels sum to di, and

• each pair of distinct vertices wi and wj are incident to sets of edges whose label
sums differ by at most 1.

Proof. Preassign label sums of b
∑
di/qc or d

∑
di/qe to each vertex wi so that the

resulting values sum to
∑
di. We will construct a bipartite graph and a labeling whose

9



7 1 4 4 1 4 2 1 3 2 1

7 5 5 4 3 3 2 1

72 1

4

33

5 5

8 8 7 7

Figure 3: A graph (left) with degree sequence 7, 5, 5, 4, 3, 3, 2, 1 and a bipartite graph
(right) formed from this degree sequence by Lemma 17. The large numbers are the edge
labels of the lemma, and the small numbers along the top and bottom of the bipartite
graph give the sums of incident edge labels at each vertex. The top sums match the
given degree sequence, while the bottom sums all differ by at most 1.

sums match the numbers d1, . . . , dn on one side of the bipartition and whose sums match
the preassigned numbers on the other side.

Build this graph and its labeling one edge at a time, starting from a graph with no
edges. At each step, let vi and wj be the vertices on each side of the bipartition with
the smallest indices whose edge labels do not yet sum to the required values, add an
edge from vi to wj , and label this edge with the largest integer that does not exceed
the required sum on either vertex.

Each such step completes the sum for at least one vertex. Because the required
values on the two sides of the bipartition both sum to

∑
di, the final step completes

the sum for two vertices, vn and wq. Therefore, the total number of steps, and the total
number of edges added to the graph, is at most n+ q − 1.

By combining this load-balancing step with the Leighton-Rao expander-routing
scheme, we may obtain a more versatile mapping of our given graph G to a host graph
H, with better control over the genus of the surface we obtain from H. This genus will
be determined by the cyclomatic number of H, where the cyclomatic number of a graph
with n vertices and m edges is m − n + 1. This number is the dimension of the cycle
space of the graph, and the first Betti number of the topological space obtained from
the graph by replacing each edge by a line segment.

Lemma 18. Let G be an arbitrary graph, with m edges, and let Q be a q-vertex bounded-
degree expander graph. Then there exists a host graph H, a one-to-one mapping of the
vertices of G to a subset of vertices of H, and a mapping of the edges of G to paths in
H, with the following properties:

• The vertices of H that are not images of vertices in G induce a subgraph isomor-
phic to Q.

• The image of an edge e in G forms a path of length O(log q) that starts and ends
at the image of the endpoints of e, and passes through the image of no other vertex
of G.

10



• Each vertex of H that is not an image of a vertex in G is crossed by O((m log q)/q)
paths.

• The cyclomatic number of H is O(q).

Proof. Let the vertices of G be u1, . . . , un. Apply Lemma 17 to the degree sequence of
G to form a bipartite graph with bipartition {v1, . . . , vn}, {w1, . . . , qq}. Then add edges
between pairs of vertices (wi, wj) so that {w1, . . . , wq} induces a subgraph isomorphic to
Q. In this way, each vertex ui in G is mapped to a vertex vi in H so that the mapping
is one-to-one and the unmapped vertices form a copy of Q, as required. The cyclomatic
number of H equals the cyclomatic number of Q, plus n+ q− 1 (for the added edges in
the bipartite graph), minus n (for the added vertices relative to Q). These two added
and subtracted terms cancel, leaving the cyclomatic number of Q plus q − 1, which is
O(q) as required.

It remains to find paths in H corresponding to the edges in G. Assign each edge
uiuj of G to a pair of vertices (wi′ , wj′) adjacent to the images vi and vj in H, so that
the number of edges of G assigned to each edge between {v1, . . . , vn} and {w1, . . . , wq}
equals the corresponding label. Complete each path by applying Theorem 16 to the
copy of Q; this gives paths of length O(log q) connecting each pair (wi′ , wj′) obtained in
this way. These pairs do not form a bounded-degree graph, but they can be partitioned
into O(m/q) bounded-degree graphs, each of which causes each vertex in the copy of Q
to be crossed O(log q) times. Combining these suproblems, each vertex in the copy of
Q is crossed by a total of O((m log q)/q) paths, as required.

We are now ready to prove the existence of embeddings with small local crossing
number, on surfaces of arbitrary genus.

Proof of Theorem 3. Given a graph G, to be embedded on a surface with at most g
handles and with few crossings per edge, choose q so that the O(q) bound on the
cyclomatic number of the graph H in Lemma 18 is at most g, and apply Lemma 18 to
find a graph H and a mapping from G to H obeying the conditions of the lemma.

To turn this mapping into the desired embedding of G, replace each vertex of degree
d in H by a sphere, punctured by the removal of d unit-radius disks, and form a surface
(as an abstract topological complex, not necessarily embedded into three-dimensional
space) by replacing each edge xy of H by a unit-radius cylinder connecting boundaries
of removed disks on the spheres for vertices x and y. The number of handles on the
resulting surface (shown in Figure 4) equals the cyclomatic number of H. which is at
most g.

Embed each vertex of G as an arbitrarily chosen point on the sphere of the corre-
sponding vertex of H, and each edge of G as a curve through the sequence of spheres
and cylinders corresponding to its path in H. Choose this embedding so that no inter-
section of edge curves occurs within any of the cylinders, and so that every pair of edges
that are mapped to curves on the same sphere meet at most once, either at a crossing
point or a shared endpoint.
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Figure 4: A topological surface obtained by replacing each vertex of a graph by a punc-
tured sphere, and each edge of the graph by a cylinder connecting two punctures. Image
Square pyramid pyramid.png by Tom Ruen on Wikimedia commons, made available
under a Creative Commons CC-BY-SA 4.0 International license.

Because the spheres that contain vertices of G only contain curves incident to those
vertices, they do not have any crossings. Each edge is mapped to a curve through
O(log g) of the remaining spheres, and can cross at most O((m log g)/g) other curves
within each such sphere. Therefore, the maximum number of crossings per edge is
O((m log2 g)/g).
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