GENERAL POSITION SUBSETS AND INDEPENDENT HYPERPLANES IN d-SPACE

JEAN CARDINAL, CSABA D. TÓTH, AND DAVID R. WOOD

Abstract

Erdős asked what is the maximum number $\alpha(n)$ such that every set of n points in the plane with no four on a line contains $\alpha(n)$ points in general position. We consider variants of this question for d-dimensional point sets and generalize previously known bounds. In particular, we prove the following two results for fixed d : - Every set \mathcal{H} of n hyperplanes in \mathbb{R}^{d} contains a subset $S \subseteq \mathcal{H}$ of size at least $c(n \log n)^{1 / d}$, for some constant $c=c(d)>0$, such that no cell of the arrangement of \mathcal{H} is bounded by hyperplanes of S only. - Every set of $c q^{d} \log q$ points in \mathbb{R}^{d}, for some constant $c=c(d)>0$, contains a subset of q cohyperplanar points or q points in general position. Two-dimensional versions of the above results were respectively proved by Ackerman et al. [Electronic J. Combinatorics, 2014] and by Payne and Wood [SIAM J. Discrete Math., 2013].

1. Introduction

Points in general position. A finite set of points in \mathbb{R}^{d} is said to be in general position if no hyperplane contains more than d points. Given a finite set of points $P \subset \mathbb{R}^{d}$ in which at most $d+1$ points lie on a hyperplane, let $\alpha(P)$ be the size of a largest subset of P in general position. Let $\alpha(n, d)=\min \{\alpha(P):|P|=n\}$.

For $d=2$, Erdős [5] observed that $\alpha(n, 2) \gtrsim \sqrt{n}$ and proposed the determination of $\alpha(n, 2)$ as an open problem ${ }^{1}$. Füredi [6] proved $\sqrt{n \log n} \lesssim \alpha(n, 2) \leq o(n)$, where the lower bound uses independent sets in Steiner triple systems, and the upper bound relies on the density version of the Hales-Jewett Theorem [7, 8]. Füredi's argument combined with the quantitative bound for the density Hales-Jewett problem proved in the first polymath project [13] yields $\alpha(n, 2) \lesssim n / \sqrt{\log ^{*} n}$ (Theorem 2.2).

Our first goal is to derive upper and lower bounds on $\alpha(n, d)$ for fixed $d \geq 3$. We prove that the multi-dimensional Hales-Jewett theorem [8] yields $\alpha(n, 3) \in o(n)$ (Theorem 2.4). But for $d \geq 4$, only the trivial upper bound $\alpha(n, d) \in O(n)$ is known. We establish lower bounds $\alpha(n, d) \gtrsim(n \log n)^{1 / d}$ in a dual setting of hyperplane arrangements in \mathbb{R}^{d} as described below.
Independent sets of hyperplanes. For a finite set \mathcal{H} of hyperplanes in \mathbb{R}^{d}, Bose et al. [2] defined a hypergraph $G(\mathcal{H})$ with vertex set \mathcal{H} such that the hyperplanes containing the facets of each cell of the arrangement of \mathcal{H} form a hyperedge in $G(\mathcal{H})$. A subset $S \subseteq \mathcal{H}$ of hyperplanes is called independent if it is an independent set of $G(\mathcal{H})$; that is, if no cell of the arrangement of \mathcal{H} is bounded by hyperplanes in S only. Denote by $\beta(\mathcal{H})$ the maximum size of an independent set of \mathcal{H}, and let $\beta(n, d):=\min \{\beta(\mathcal{H}):|\mathcal{H}|=n\}$.

The following relation between $\alpha(n, d)$ and $\beta(n, d)$ was observed by Ackerman et al. [1] in the case $d=2$.

Lemma 1.1 (Ackerman et al. [1]). For $d \geq 2$ and $n \in \mathbb{N}$, we have $\beta(n, d) \leq \alpha(n, d)$.

[^0]Proof. For every set P of n points in \mathbb{R}^{d} in which at most $d+1$ points lie on a hyperplane, we construct a set \mathcal{H} of n hyperplanes in \mathbb{R}^{d} such that $\beta(\mathcal{H}) \leq \alpha(P)$. Consider the set \mathcal{H}_{0} of hyperplanes obtained from P by duality. Since at most $d+1$ points of P lie on a hyperplane, at most $d+1$ hyperplanes in \mathcal{H}_{0} have a common intersection point. Perturb the hyperplanes in \mathcal{H}_{0} so that every $d+1$ hyperplanes that intersect forms a simplicial cell, and denote by \mathcal{H} the resulting set of hyperplanes. An independent subset of hyperplanes corresponds to a subset in general position in P. Thus $\alpha(P) \geq \beta(\mathcal{H})$.

Ackerman et al. [1] proved that $\beta(n, 2) \gtrsim \sqrt{n \log n}$, using a result by Kostochka et al. [11] on independent sets in bounded-degree hypergraphs. Lemma 1.1 implies that any improvement on this lower bound would immediately improve Füredi's lower bound for $\alpha(n, 2)$. We generalize the lower bound to higher dimensions by proving that $\beta(n, d) \gtrsim(n \log n)^{1 / d}$ for fixed $d \geq 2$ (Theorem 3.3).

Subsets either in General Position or in a Hyperplane. We also consider a generalization of the first problem, and define $\alpha(n, d, \ell)$, with a slight abuse of notation, to be the largest integer such that every set of n points in \mathbb{R}^{d} in which at most ℓ points lie in a hyperplane contains a subset of $\alpha(n, d, \ell)$ points in general position. Note that $\alpha(n, d)=\alpha(n, d, d+1)$ with this notation, and every set of n points in \mathbb{R}^{d} contains $\alpha(n, d, \ell)$ points in general position or $\ell+1$ points in a hyperplane.

Motivated by a question of Gowers [9], Payne and Wood [12] studied $\alpha(n, 2, \ell)$; that is, the minimum, taken over all sets of n points in the plane with at most ℓ collinear, of the maximum size a subset in general position. They combine the Szemerédi-Trotter Theorem [16] with lower bounds on maximal independent sets in bounded-degree hypergraphs to prove $\alpha(n, 2, \ell) \gtrsim \sqrt{n \log n / \log \ell}$. We generalize their techniques, and show that for fixed $d \geq 2$ and all $\ell \lesssim \sqrt{n}$, we have $\alpha(n, d, \ell) \gtrsim(n / \log \ell)^{1 / d}$ (Theorem 4.1). It follows that every set of at least $C q^{d} \log q$ points in \mathbb{R}^{d}, where $C=C(d)>0$ is a sufficiently large constant, contains q cohyperplanar points or q points in general position (Corollary 4.2).

2. Subsets in General Position and the Hales-Jewett Theorem

Let $[k]:=\{1,2, \ldots, k\}$ for every positive integer k. A subset $S \subseteq[k]^{m}$ is a t-dimensional combinatorial subspace of $[k]^{m}$ if there exists a partition of $[m]$ into sets $W_{1}, W_{2}, \ldots, W_{t}, X$ such that $W_{1}, W_{2}, \ldots, W_{t}$ are nonempty, and S is exactly the set of elements $x \in[k]^{m}$ for which $x_{i}=x_{j}$ whenever $i, j \in W_{\ell}$ for some $\ell \in[t]$, and x_{i} is constant if $i \in X$. A one-dimensional combinatorial subspace is called a combinatorial line.

To obtain a quantitative upper bound for $\alpha(n, 2)$, we combine Füredi's argument with the quantitative version of the density Hales-Jewett theorem for $k=3$ obtained in the first polymath project.

Theorem 2.1 (Polymath [13]). The size of the largest subset of $[3]^{m}$ without a combinatorial line is $O\left(3^{m} / \sqrt{\log ^{*} m}\right)$.

Theorem 2.2. $\alpha(n, 2) \lesssim n / \sqrt{\log ^{*} n}$.
Proof. Consider the m-dimensional grid $[3]^{m}$ in \mathbb{R}^{m} and project it onto \mathbb{R}^{2} using a generic projection; that is, so that three points in the projection are collinear if and only if their preimages in $[3]^{m}$ are collinear. Denote by P the resulting planar point set and let $n=3^{m}$. Since the projection is generic, the only collinear subsets of P are projections of collinear points in the original m-dimensional grid, and [3] ${ }^{m}$ contains at most three collinear points. From Theorem 2.1, the largest subset of P with no three collinear points has size at most the indicated upper bound.

To bound $\alpha(n, 3)$, we use the multidimensional version of the density Hales-Jewett Theorem.

Theorem 2.3 (see [7, 13]). For every $\delta>0$ and every pair of positive integers k and t, there exists a positive integer $M:=M(k, \delta, t)$ such that for every $m>M$, every subset of $[k]^{m}$ of density at least δ contains a t-dimensional subspace.
Theorem 2.4. $\alpha(n, 3) \in o(n)$.
Proof. Consider the m-dimensional hypercube $[2]^{m}$ in \mathbb{R}^{m} and project it onto \mathbb{R}^{3} using a generic projection. Let P be the resulting point set in \mathbb{R}^{3} and let $n:=2^{m}$. Since the projection is generic, the only coplanar subsets of P are projections of points of the m dimensional grid [2] ${ }^{m}$ lying in a two-dimensional subspace. Therefore P does not contain more than four coplanar points. From Theorem 2.3 with $k=t=2$, for every $\delta>0$ and sufficiently large m, every subset of P with at least δn elements contains $k^{t}=4$ coplanar points. Hence every independent subset of P has $o(n)$ elements.

We would like to prove $\alpha(n, d) \in o(n)$ for fixed d. However, we cannot apply the same technique, because an m-cube has too many co-hyperplanar points, which remain cohyperpanar in projection. By the multidimensional Hales-Jewett theorem, every constant fraction of vertices of a hi-dimensional hypercube has this property. It is a coincidence that a projection of a hypercube to \mathbb{R}^{d} works for $d=3$, because $2^{d-1}=d+1$ in that case.

3. Lower Bounds for Independent Hyperplanes

We also give a lower bound on $\beta(n, d)$ for $d \geq 2$. By a simple charging argument (see Cardinal and Felsner [3]), one can establish that $\beta(n, d) \gtrsim n^{1 / d}$. Inspired by the recent result of Ackerman et al. [1], we improve this bound by a factor of $(\log n)^{1 / d}$.

Lemma 3.1. Let \mathcal{H} be a finite set of hyperplanes in \mathbb{R}^{d}. For every subset of d hyperplanes in \mathcal{H}, there are are most 2^{d} simplicial cells in the arrangement of \mathcal{H} such that all d hyperplanes contain some facets of the cell.

Proof. A simplicial cell σ in the arrangement of \mathcal{H} has exactly $d+1$ vertices, and exactly $d+1$ facets. Any d hyperplanes along the facets of σ intersect in a single point, namely at a vertex of σ. Every set of d hyperplanes in \mathcal{H} that intersect in a single point can contains d facets of at most 2^{d} simplicial cells (since no two such cells can lie on the same side of all d hyperplanes).

The following is a reformulation of a result of Kostochka et al. [11], that is similar to the reformulation of Ackerman et al.[1] in the case $d=2$.

Theorem 3.2 (Kostochka et al. [11]). Consider an n-vertex ($d+1$)-uniform hypergraph H such that every d-tuple of vertices is contained in at most $t=O(1)$ edges, and apply the following procedure:
(1) let X be the subset of vertices obtained by choosing each vertex independently at random with probability p, such that $p n=(n /(t \log \log \log n))^{3 /(3 d-1)}$,
(2) remove the minimum number of vertices of X so that the resulting subset Y induces a triangle-free linear ${ }^{2}$ hypergraph $H[Y]$.
Then with high probability $H[Y]$ has an independent set of size at least $\left(\frac{n}{t} \log \frac{n}{t}\right)^{\frac{1}{d}}$.
Theorem 3.3. For fixed $d \geq 2$, we have $\beta(n, d) \gtrsim(n \log n)^{1 / d}$.
Proof. Let \mathcal{H} be a set of n hyperplanes in \mathbb{R}^{d} and consider the $(d+1)$-uniform hypergraph H having one vertex for each hyperplane in \mathcal{H}, and a hyperedge of size $d+1$ for each set of $d+1$ hyperplanes forming a simplicial cell in the arrangement of \mathcal{H}. From Lemma 3.1,

[^1]every d-tuple of vertices of H is contained in at most $t:=2^{d}$ edges. Applying Theorem 3.2, there is a subset S of hyperplanes of size $\Omega\left(\left(\left(\frac{n}{2^{d}}\right) \log \left(\frac{n}{2^{d}}\right)\right)^{1 / d}\right)$ such that no simplicial cell is bounded by hyperplanes of S only.

However, there might be nonsimplicial cells of the arrangement that are bounded by hyperplanes of S only. Let p be the probability used to define X in Theorem 3.2. It is known [10] that the total number of cells in an arrangement of d-dimensional hyperplanes is less than $d n^{d}$. Hence for an integer $c \geq d+1$, the expected number of cells of size c that are bounded by hyperplanes of X only is at most

$$
p^{c} d n^{d} \leq \frac{n^{(4-3 d) c /(3 d-1)}}{\left(2^{d} \log \log \log n\right)^{3 /(3 d-1)}} \cdot d n^{d} \lesssim d n^{(4-3 d) c /(3 d-1)+d}
$$

Note that for $c \geq d+2$, the exponent of n satisfies

$$
\frac{(4-3 d) c}{3 d-1}+d<0
$$

Therefore the expected number of such cells of size at least $d+2$ is vanishing.
On the other hand we can bound the expected number of cells that are of size at most d, and that are bounded by hyperplanes of X only, where the expectation is again with respect to the choice of X. Note that cells of size d are necessarily unbounded, and in a simple arrangement, no cell has size less than d. The number of unbounded cells in a d-dimensional arrangement is $O\left(d n^{d-1}\right)$ [10]. Therefore, the number we need to bound is at most

$$
p^{d} O\left(d n^{d-1}\right) \lesssim n^{(4-3 d) d /(3 d-1)+d-1} \lesssim n^{1 /(3 d-1)}=o\left(n^{1 / d}\right)
$$

Consider now a maximum independent set S in the hypergraph $H[Y]$, and for each cell that is bounded by hyperplanes of S only, remove one of the hyperplane bounding the cell from S. Since $S \subseteq X$, the expected number of such cells is $o\left(n^{1 / d}\right)$, hence there exists an X for which the number of remaining hyperplanes in $S \subseteq X$ is still $\Omega\left((n \log n)^{1 / d}\right)$, and they now form an independent set.

We have the following coloring variant of Theorem 3.3.
Corollary 3.4. Hyperplanes of a simple arrangement of size n in \mathbb{R}^{d} for fixed $d \geq 2$ can be colored with $O\left(n^{1-1 / d} /(\log n)^{1 / d}\right)$ colors so that no cell is bounded by hyperplanes of a single color.

Proof. From Theorem 3.3, there always exists an independent set of hyperplanes of size at least $c(n \log n)^{1 / d}$ for some constant c, where logarithms are base 2. We define a new constant c^{\prime} such that

$$
c^{\prime}=\left(\frac{1}{c}+c^{\prime}\right) 2^{2 / d-1} \Leftrightarrow c^{\prime}=\frac{2^{2 / d-1}}{c\left(1-2^{2 / d-1}\right)}
$$

We now prove that n hyperplanes forming a simple arrangement in \mathbb{R}^{d} can be colored with $c^{\prime}\left(n^{1-1 / d} /(\log n)^{1 / d}\right)$ colors so that no cell is bounded by hyperplanes of a single color. We proceed by induction and suppose this holds for $n / 2$ hyperplanes. We apply the greedy algorithm and iteratively pick a maximum independent set until there are at most $n / 2$ hyperplanes left. We assign a new color to each independent set, then use the induction hypothesis for the remaining hyperplanes. This clearly yields a proper coloring.

Since every independent set has size at least $c\left(\frac{n}{2} \log \frac{n}{2}\right)^{1 / d}$, the number of iterations before we are left with at most $n / 2$ hyperplanes is at most

$$
t \leq \frac{\frac{n}{2}}{c\left(\frac{n}{2} \log \frac{n}{2}\right)^{1 / d}}
$$

The number of colors is therefore at most

$$
\begin{aligned}
t+c^{\prime}\left(\frac{\left(\frac{n}{2}\right)^{1-1 / d}}{\left(\log \frac{n}{2}\right)^{1 / d}}\right) & \leq \frac{\frac{n}{2}}{c\left(\frac{n}{2} \log \frac{n}{2}\right)^{1 / d}}+c^{\prime}\left(\frac{\left(\frac{n}{2}\right)^{1-1 / d}}{\left(\log \frac{n}{2}\right)^{1 / d}}\right) \\
& =\left(\frac{1}{c}+c^{\prime}\right)\left(\frac{\left(\frac{n}{2}\right)^{1-1 / d}}{\left(\log \frac{n}{2}\right)^{1 / d}}\right) \\
& \leq\left(\frac{1}{c}+c^{\prime}\right)\left(2^{2 / d-1} \frac{n^{1-1 / d}}{(\log n)^{1 / d}}\right) \\
& =c^{\prime}\left(\frac{n^{1-1 / d}}{(\log n)^{1 / d}}\right),
\end{aligned}
$$

as claimed. In the penultimate line, we used the fact that $\log \frac{n}{2}>\frac{1}{2} \log n$ for $n>4$.

4. Large Subsets in General Position or in a Hyperplane

We wish to prove the following.
Theorem 4.1. Fix $d \geq 2$. Every set of n points in \mathbb{R}^{d} with at most ℓ cohyperplanar points, where $\ell \lesssim n^{1 / 2}$, contains a subset of $\Omega\left((n / \log \ell)^{1 / d}\right)$ points in general position. That is,

$$
\alpha(n, d, \ell) \gtrsim(n / \log \ell)^{1 / d} \text { for } \ell \lesssim \sqrt{n} .
$$

This is a higher-dimensional version of the result by Payne and Wood [12]. The following Ramsey-type statement is an immediate corollary.

Corollary 4.2. For fixed $d \geq 2$ there is a constant c such that every set of at least $c q^{d} \log q$ points in \mathbb{R}^{d} contains q cohyperplanar points or q points in general position.

In order to give some intuition about Corollary 4.2, it is worth mentioning an easy proof when $c q^{d} \log q$ is replaced by $q \cdot\binom{q}{d}$. Consider a set of $n=q \cdot\binom{q}{d}$ points in \mathbb{R}^{d}, and let S be a maximal subset in general position. Either $|S| \geq q$ and we are done, or S spans $\binom{|S|}{d} \leq\binom{ q}{d}$ hyperplanes, and, by maximality, every point lies on at least one of these hyperplanes. Hence by the pigeonhole principle, one of the hyperplanes in S must contain at least $n /\binom{q}{d}=q$ points.

We now use known incidence bounds to estimate the maximum number of cohyperplanar $(d+1)$-tuples in a point set. In what follows we consider a finite set P of n points in \mathbb{R}^{d} such that at most ℓ points of P are cohyperplanar, where $\ell:=\ell(n) \lesssim n^{1 / 2}$ is a fixed function of n. For $d \geq 3$, a hyperplane h is said to be γ-degenerate if at most $\gamma \cdot|P \cap h|$ points in $P \cap h$ lie on a ($d-2$)-flat. A flat is said to be k-rich whenever it contains at least k points of P. The following is a standard reformulation of the classic Szemerédi-Trotter theorem on point-line incidences in the plane [16].

Theorem 4.3 (Szemerédi and Trotter [16]). For every set of n points in \mathbb{R}^{2}, the number of k-rich lines is at most

$$
O\left(\frac{n^{2}}{k^{3}}+\frac{n}{k}\right) .
$$

This bound is the best possible apart from constant factors.
Elekes and Tóth proved the following higher-dimensional version, involving an additional non-degeneracy condition.

Theorem 4.4 (Elekes and Tóth [4]). For every integer $d \geq 3$, there exist constants $C_{d}>0$ and $\gamma_{d}>0$ such that for every set of n points in \mathbb{R}^{d}, the number of k-rich γ_{d}-degenerate planes is at most

$$
C_{d}\left(\frac{n^{d}}{k^{d+1}}+\frac{n^{d-1}}{k^{d-1}}\right)
$$

This bound is the best possible apart from constant factors.
We prove the following upper bound on the number of cohyperplanar $(d+1)$-tuples in a point set.
Lemma 4.5. Fix $d \geq 2$. Let P be a set of n points in \mathbb{R}^{d} with no more than ℓ in a hyperplane, where $\ell \in O\left(n^{1 / 2}\right)$. Then the number of cohyperplanar $(d+1)$-tuples in P is $O\left(n^{d} \log \ell\right)$.
Proof. We proceed by induction on $d \geq 2$. The base case $d=2$ was established by Payne and Wood [12], using the Szemerédi-Trotter bound (Theorem 4.3). We reproduce it here for completeness. We wish to bound the number of collinear triples in a set P of n points in the plane. Let h_{k} be the number of lines containing exactly k points of P. The number of collinear 3-tuples is

$$
\begin{aligned}
\sum_{k=3}^{\ell} h_{k}\binom{k}{3} & \leq \sum_{k=3}^{\ell} k^{2} \sum_{i=k}^{\ell} h_{i} \\
& \lesssim \sum_{k=3}^{\ell} k^{2}\left(\frac{n^{2}}{k^{3}}+\frac{n}{k}\right) \\
& \lesssim n^{2} \log \ell+\ell^{2} n \lesssim n^{2} \log \ell
\end{aligned}
$$

We now consider the general case $d \geq 3$. Let P be a set of n points in \mathbb{R}^{d}, no ℓ in a hyperplane, where $n \geq d+2$ and $\ell \lesssim \sqrt{n}$. let $\gamma:=\gamma_{d}>0$ be a constant specified in Theorem 4.4. We distinguish the following three types of $(d+1)$-tuples:
Type 1: $(d+1)$-tuples contained in some $(d-2)$-flat spanned by P. Denote by s_{k} the number of $(d-2)$-flats spanned by P that contain exactly k points of P. Project P onto a $(d-1)$-flat in a generic direction to obtain a set of points P^{\prime} in \mathbb{R}^{d-1}. Now s_{k} is the number of hyperplanes of P^{\prime} containing exactly k points of P^{\prime}. By applying the induction hypothesis on P^{\prime}, the number of cohyperplanar d-tuples is

$$
\sum_{k=d}^{\ell} s_{k}\binom{k}{d} \lesssim n^{d-1 / 2} \log \ell
$$

Hence the number of $(d+1)$-tuples of P lying in a $(d-2)$-flat spanned by P satisfies

$$
\sum_{k=d+1}^{\ell} s_{k}\binom{k}{d+1} \lesssim \ell n^{d-1} \log \ell \leq n^{d} \log \ell
$$

Type 2: $(d+1)$-tuples of \boldsymbol{P} that span a γ-degenerate hyperplane. Let h_{k} be the number of γ-degenerate hyperplanes containing exactly k points of P. By Theorem 4.4,

$$
\begin{aligned}
\sum_{k=d+1}^{\ell} h_{k}\binom{k}{d+1} & \leq \sum_{k=d+1}^{\ell} k^{d} \sum_{i=k}^{\ell} h_{i} \\
& \lesssim \sum_{k=d+1}^{\ell} k^{d}\left(\frac{n^{d}}{k^{d+1}}+\frac{n^{d-1}}{k^{d-1}}\right) \\
& \lesssim n^{d} \log \ell+\ell^{2} n^{d-1} \lesssim n^{d} \log \ell
\end{aligned}
$$

Type 3: $(d+1)$-tuples of P that span a hyperplane that is not γ-degenerate. Recall that if a hyperplane H panned by P is not γ-degenerate, then more than a γ fraction of its points lie in a $(d-2)$-flat $L(H)$. We may assume that $L(H)$ is also spanned by P. Consider a $(d-2)$-flat L spanned by P and containing exactly k points of P. The hyperplanes spanned by P that contain L partition $P \backslash L$. Let n_{r} be the number of hyperplanes containing L and exactly r points of $P \backslash L$. We have $\sum_{r=1}^{\ell} n_{r} r \leq n$.

If a hyperplane H is not γ-degenerate, contains a $(d-2)$-flat $L=L(H)$ with exactly k points, and r other points of P, then $k>\gamma(r+k)$, hence $r<\left(\frac{1}{\gamma}-1\right) k$. Furthermore, all $(d+1)$-tuples that span H must contain at least one point that is not in L. Hence the number of $(d+1)$-tuples that span H is at most $O\left(r k^{d}\right)$. The total number of $(d+1)$ tuples of type 3 that span a hyperplane H with a common $(d-2)$-flat $L=L(H)$ is is therefore at most

$$
\sum_{r=1}^{\ell} n_{r} r k^{d} \leq n k^{d}
$$

Recall that s_{k} denotes the number of $(d-2)$-flats containing exactly k points. Summing over all such $(d-2)$-flats and applying the induction hypothesis yields the following upper bound on the total number of $(d+1)$-tuples spanning hyperplanes that are not γ-degenerate:

$$
\sum_{k=d+1}^{\ell} s_{k} n k^{d} \lesssim n^{d} \log \ell
$$

Summing over all three cases, the total number of cohyperplanar $(d+1)$-tuples is $O\left(n^{d} \log \ell\right)$ as claimed.

In the plane, Lemma 4.5 gives an $O\left(n^{2} \log \ell\right)$ bound for the number of collinear triples in an n-element point set with no ℓ on a line, where $\ell \in O(\sqrt{n})$. This bound is tight for $\ell=\Theta(\sqrt{n})$ for a $\lfloor\sqrt{n}\rfloor \times\lfloor\sqrt{n}\rfloor$ section of the integer lattice. It is almost tight for $\ell \in \Theta(1)$, Solymosi and Soljaković [14] recently constructed n-element point sets for every constant ℓ and $\varepsilon>0$ that contains at most ℓ points on a line and $\Omega\left(n^{1-\varepsilon}\right)$ collinear ℓ-tuples, hence $\Omega\left(n^{1-\varepsilon}\binom{\ell}{3}\right) \subset \Omega\left(n^{1-\varepsilon}\right)$ collinear triples.

Armed with Lemma 4.5, we now apply the following standard result from hypergraph theory due to Spencer [15].

Theorem 4.6 (Spencer [15]). Every r-uniform hypergraph with n vertices and m edges contains an independent set of size at least

$$
\begin{equation*}
\frac{r-1}{r^{r /(r-1)}} \frac{n}{\left(\frac{m}{n}\right)^{1 /(r-1)}} \tag{1}
\end{equation*}
$$

Proof of Theorem 4.1. We apply Theorem 4.6 to the hypergraph formed by considering all cohyperplanar $(d+1)$-tuples in a given set of n points in \mathbb{R}^{d}, with no ℓ cohyperplanar. Substituting $m \lesssim n^{d} \log \ell$ and $r=d+1$ in (1), we get a lower bound

$$
\frac{n}{\left(n^{d-1} \log \ell\right)^{1 / d}}=\left(\frac{n}{\log \ell}\right)^{1 / d}
$$

for the maximum size of a subset in general position, as desired.

References

[1] Eyal Ackerman, János Pach, Rom Pinchasi, Radǒs Radoičić, and Géza Tóth. A note on coloring line arrangements. Electronic J. Combinatorics, 21(2):\#P2.23, 2014.
[2] Prosenjit Bose, Jean Cardinal, Sébastien Collette, Ferran Hurtado, Matias Korman, Stefan Langerman, and Perouz Taslakian. Coloring and guarding arrangements. Discrete Math. Theor. Comput. Sci., 15(3):139-154, 2013.
[3] Jean Cardinal and Stefan Felsner. Covering partial cubes with zones. In Proc. 16th Japan Conference on Discrete and Computational Geometry and Graphs (JCDCG 2013), Lecture Notes in Computer Science. Springer-Verlag, 2014.
[4] György Elekes and Csaba D. Tóth. Incidences of not-too-degenerate hyperplanes. In Proc. ACM Symposium on Computational Geometry (SoCG), pages 16-21, 2005.
[5] Paul Erdős. On some metric and combinatorial geometric problems. Discrete Math., 60:147-153, 1986.
[6] Zoltán Füredi. Maximal independent subsets in Steiner systems and in planar sets. SIAM J. Discrete Math., 4(2):196-199, 1991.
[7] Hillel Furstenberg and Yitzhak Katznelson. A density version of the Hales-Jewett theorem for $k=3$. Discrete Math., 75(1-3):227-241, 1989.
[8] Hillel Furstenberg and Yitzhak Katznelson. A density version of the Hales-Jewett theorem. J. d'analyse mathématique, 57:64-119, 1991.
[9] Timothy Gowers. A geometric Ramsey problem. 2012. http://mathoverflow.net/questions/50928/.
[10] Dan Halperin. Arrangements. In Jacob E. Goodman and Joseph O'Rourke, editors, Handbook of Discrete and Computational Geometry, chapter 24. CRC Press, 2nd edition, 2004.
[11] Alexandr V. Kostochka, Dhruv Mubayi, and Jacques Verstraëte. On independent sets in hypergraphs. Random Struct. Algorithms, 44(2):224-239, 2014.
[12] Michael S. Payne and David R. Wood. On the general position subset selection problem. SIAM J. Discrete Math., 27(4):1727-1733, 2013.
[13] D. H. J. Polymath. A new proof of the density Hales-Jewett theorem. Ann. of Math., 175(2):12831327, 2012.
[14] József Solymosi and Miloš Stojaković. Many collinear k-tuples with no $k+1$ collinear points. Discrete Comput. Geom., 50:811-820, 2013.
[15] Joel Spencer. Turán's theorem for k-graphs. Discrete Math., 2(2):183-186, 1972.
[16] Endre Szemerédi and William T. Trotter. Extremal problems in discrete geometry. Combinatorica, 3(3):381-392, 1983.

[^0]: Research of Wood is supported by the Australian Research Council.
 ${ }^{1}$ We use the shorthand notation \lesssim to indicate inequality up to a constant factor for large n. Hence $f(n) \lesssim g(n)$ is equivalent to $f(n) \in \widetilde{O}(g(n))$, and $f(n) \gtrsim g(n)$ is equivalent to $f(n) \in \Omega(g(n))$.

[^1]: ${ }^{2}$ A hypergraph is linear if it has no pair of distinct edges sharing two or more vertices.

