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ABSTRACT

The aim for a more accurate representation of tropical convection in global circulation models is a long-
standing issue. Here, the relationships between large and convective scales in observations and a stochastic
multicloud model (SMCM) to ultimately support the design of a novel convection parameterization with
stochastic elements are investigated. Observations of tropical convection obtained at Darwin and Kwajalein
are used here. It is found that the variability of observed tropical convection generally decreases with in-
creasing large-scale forcing, implying a transition from stochastic to more deterministic behavior with in-
creasing forcing. Convection shows a more systematic relationship with measures related to large-scale
convergence compared to measures related to energetics (e.g., CAPE). Using the observations, the param-
eters in the SMCM are adjusted. Then, the SMCM is forced with the time series of the observed large-scale
state and the simulated convective behavior is compared to that observed. It is found that the SMCM cloud
fields compare better with observations when using predictors related to convergence rather than energetics.
Furthermore, the underlying framework of the SMCM is able to reproduce the observed functional de-
pendencies of convective variability on the imposed large-scale state—an encouraging result on the road
toward a novel convection parameterization approach. However, establishing sound cause-and-effect re-
lationships between tropical convection and the large-scale environment remains problematic and warrants
further research.

1. Introduction

General circulation models (GCMs) employed in cli-
mate projections are the tool of choice when quantifying
the anthropogenic influence on Earth’s climate, ultimately
answering the question as to the degree to which humanity
has an influence on global-mean surface temperature.Over

the past decades, GCMs have undergone considerable
development, manifested in an ever larger increase in
complexity and resolution. However, uncertainty in cli-
mate sensitivity has not been substantially reduced since
its ad hoc introduction by Charney et al. (1979) andmajor
atmospheric processes are still subject to considerable
uncertainties. Of these, atmospheric convection and the
clouds and feedbacks associatedwith it aremost probably
the most uncertain in the latest generation of GCMs
(Randall et al. 2007). This is not only true for the multi-
model ensemble of the phase 3 of the Coupled Model
Intercomparison Project (CMIP3; Meehl et al. 2007), but
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model parameters associated with convection are often
the most sensitive in perturbed parameter ensembles
(Murphy et al. 2004; Klocke et al. 2011).
Uncertainties in the representation of convection in

current-generation GCMs not only lead to uncertainties
in estimates of climate sensitivity, but also manifest
themselves in an erroneous simulation of precipitation.
Generally, GCMs are capable of capturing the overall
amount of precipitation well, but the spatial distribution
and variance often compare poorly to observations (e.g.,
Dai 2006; Pincus et al. 2008). Because of the limited spa-
tial resolution of a GCM, atmospheric convection is of
subgrid-scale nature and can thus not be explicitly re-
solved and must be parameterized. Since the emergence
of the first convection parameterization techniques some
four decades ago, the response of convective elements to a
given large-scale atmospheric state has mostly been for-
mulated as purely deterministic [see Arakawa (2004) for
a review], which implicitly prevents a particular model
integration fromdeveloping convective variability beyond
that given by the atmospheric state at the gridpoint level.
It is just in the last decade that a possible solution to this

lack of variability in parameterized subgrid-scale pro-
cesses has emerged. This solution is based on represent-
ing the variability in the response of unresolved processes
to the large-scale environment in a dynamically stochastic
rather than in a purely deterministic manner (Palmer
2001) and has been shown to increase predictive skill of
numerical weather prediction (i.e., Buizza et al. 1999).
Specifically targeted toward improving the represen-

tation of convection, Lin and Neelin (2000, 2003) intro-
duced random perturbations to convective available
potential energy (CAPE) or the heating profile of the
host convective scheme and found that even such a simple
approach significantly enhanced precipitation variance
toward that of observations. Randomly perturbing the
trigger function of the Kain–Fritsch convection scheme
also proved to yield an increase in predictive skill (Bright
andMullen 2002). Teixeira andReynolds (2008) randomly
sampled convective-parameterization-relevant variables
from a subgrid-scale distribution and found an increase
in the spread of an ensemble prediction system and in
particular a better representation of tropical convection.
A similarly simple approach was taken by Tompkins and
Berner (2008), who randomly sampled a subgrid-scale
relative humidity distribution to perturb a convective
parcel’s initial humidity and/or the humidity of the en-
trained air during ascent. Although promising results
were obtained for midlatitudes, the methodology em-
ployed did not yield improvements in tropical convection.
In all the studiesmentioned above, the randomly sampled
deviations were assumed proportional to the mean of the
perturbed variable, an assumption shown to be valid

when using cloud-resolving model data as a surrogate for
observations (Shutts and Palmer 2007).
Taking a step further from just modifying the input

parameters for existing convective parameterization clo-
sures and cloud models, several recent studies focused on
formulating more advanced stochastic schemes. Majda
and Khouider (2002) introduced a stochastic parameter-
ization of convective inhibition (CIN) based on the Ising
model of statistical mechanics. It is coarse grained to
obtain a Markov birth–death process, which is two-
way coupled to the large-scale dynamics and which can
be integrated with very little computational overhead
(Khouider et al. 2003). The stochastic CIN model is
used in Khouider et al. (2003) and in Majda et al. (2008)
to improve the wave variability and climate in an other-
wise deficient mass flux–like parameterization in the
context of a simple 1.5-layer toy GCM. Plant and Craig
(2008) calculated a distribution of convective plumes
and then randomly sampled this distribution to obtain
a plume ensemble that matches a required gridbox-mean
mass flux given by a CAPE closure. Testing in a single-
column model environment yielded high variability for
small grid boxes, approaching the deterministic limit with
increasing gridbox size. Recently, this scheme was tested
in a limited-area model ensemble over central Europe
and results showed a promising increase in precipitation
variance (Groenemeijer and Craig 2012). Although not
concentrating on deep convection, the study ofDorrestijn
et al. (2013) represents a notable approach to stochastic
parameterization of shallow cumulus convection. They
applied a Markov chain method to sample pairs of tur-
bulent heat andmoisture fluxes obtained from large-eddy
simulations (LESs) and found a good agreement in the
calculated ensemble spread compared to the LES data.
Following the coarse-graining ideas used in Khouider
et al. (2003), Khouider et al. (2010, hereafter KBM10)
designed the stochastic multicloudmodel (SMCM) based
on a birth–death process to represent tropical convec-
tion. The SMCM calculates the evolution of a cloud
population consisting of three cloud types associated with
tropical convection (congestus, deep convection, strati-
form) constrained by the large-scale atmospheric state.
The state of the cloud ensemble at any given time and
large-scale forcing is represented by area fractions per
cloud type on a subgrid-scale lattice. The SMCM was
shown to reasonably simulate tropical convection and
associated wave features when coupled to a simple two-
layer atmospheric model [KBM10; Frenkel et al. 2012
(hereafter FMK12), 2013].
As the vast majority of today’s GCM convection

schemes are mass flux schemes, the cloud area fractions
simulated by the SMCM could prove valuable for in-
troducing a stochastic component to such schemes. Then
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at least one part (area) of the cloud-basemass flux would
yield a stochastic component, leaving the other part
(updraft velocity) to be assigned in another suitable
fashion.
It is the aim of this study to provide an assessment of

whether the underlying framework of the SMCM is suit-
able to reproduce observed convective behavior. In doing
so, we analyze observed convective behavior and sub-
sequently adjust the model parameters, which have so far
been based on sensible empirical assumptions (KBM10),
tomatch the observedmean response of convection to the
large-scale state.We then use the resulting adjustedmodel
to test whether its underlying framework is suitable to
reproduce the statistical mean behavior of observed con-
vection, the positive outcome of which would render the
SMCM a useful tool for convection parameterization.
The observational dataset that we use in this study is

described in Davies et al. (2013) and represents a long-
term, large-scale dataset for three consecutive wet seasons
over Darwin, Australia, complemented by an identically
derived but shorter dataset representative for Kwajalein.
The Darwin dataset has been shown to contain valuable
information for characterizing relationships between at-
mospheric convection and the large-scale state, with one
of the most notable findings being that the relationships
between convection and CAPE or vertical velocity are
shown to be entirely stochastic or quasi deterministic,
respectively (Davies et al. 2013).
We introduce the basics of the SMCM, the observa-

tional dataset, and the observation-derived forcing for the
SMCM in section 2 and present the statistical relation-
ships of observed convection to large-scale variables in
section 3. We then adjust the parameters of the SMCM,
force it with the observed large-scale state, and analyze
the statistics of the modeled convection as well as the
stochasticity of the model solution in section 4. Section 5
gives a summary, conclusions, and a short outlook.

2. Prerequisites: The model and the observations

In this study, we utilize the recently introduced SMCM
(KBM10) in conjunction with a large-scale observational
dataset representative of a tropical location. In a nut-
shell, we investigate the degree to which the mathemat-
ical framework of the SMCM is suitable to reproduce the
behavior of observed tropical convection, a necessary
step toward a possible future usage in GCMs. In the fol-
lowing, we briefly introduce the SMCM (section 2a) and
the observational dataset (section 2b).

a. The SMCM: A short introduction

Given the temporal evolution of a large-scale atmo-
spheric state representative of a tropical location, the

SMCM simulates the evolution of an ensemble of three
cloud types associated with tropical convection on a
lattice containing n3 n sites. The considered cloud types
are congestus and deep convective as well as stratiform
clouds (shallow convection is not considered) and the
large-scale atmospheric state is given by two variables:
one representing a proxy for convective propensity and
the other representing a proxy for midtropospheric
dryness (cf. section 2c). In the SMCM, the evolution of
the cloud ensemble is represented by a coarse-grained
birth–death process. This process is evolved in time
by means of an acceptance–rejection Markov chain
Monte Carlo method based on Gillespie’s exact algo-
rithm (Gillespie 1975; see KBM10 for details of the
implementation). Each individual lattice site can take
one of four states: clear sky, congestus cloud, deep
convective cloud, or stratiform cloud. The total size of
this lattice, say 20 3 20 sites, is assumed as being rep-
resentative of a GCM grid box, but there is no explicit
spatial scale associated with either the individual lat-
tice sites or the total lattice. There is also no spatial
coherence between individual lattice sites (i.e., the tem-
poral evolution at one site is completely independent
of that of its neighbors). However, local interactions
between lattice sites can be easily incorporated, pro-
vided the strength and nature of these interactions are
understood (Khouider 2013).
The evolution of this birth–death process is deter-

mined by a set of equations that define transition rates
from one of the four states (see above) to another. In-
dividual transition rates can, but need not, be dependent
on the given large-scale state and their formulation is
mainly inspired by physical intuition and based on spe-
cific rules; for example, a deep convective cloud is not
allowed to form from a stratiform cloud (see KBM10 for
details). The individual transition rates are associated
with time scales assumed to be representative for a spe-
cific transition. These transition time scales have been
chosen in an ad hoc but physically meaningful manner
and represent the only parameters that can be used to
tune the SMCM in its current formulation. KBM10
presented two sets of transition time scales, both ofwhich
are based on physical intuition gained from observations
and modeling studies of tropical convection and should
be considered as rough estimates. Recently, FMK12
found a third set of transition rates that improves the
intermittency of simulated convection compared to the
results of KBM10. In this study, we use observations to
take a closer look at these previously made choices of
transition time scales.
So far, the SMCM has not been used in combination

with observations but was coupled to a simple two-
layer atmospheric model capable of capturing the main
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characteristics of tropical convection and associated
wave features (Khouider and Majda 2006, 2008a,b;
KBM10). There, simple formulations of precipitation
formation and the associated heating profiles accounted
for the feedback to the dynamics. Recently, FMK12 used
the SMCM to explore its capabilities in the context of
improving GCM convection parameterizations by using
the abovementioned two-layer model to flows about an
equatorial ring. They found that using the SMCM in-
creases the variability of tropical convection compared
to a deterministic convection parameterization and
that the SMCM is able to produce a realistic Walker
cell circulation when forced with a longitudinal SST
gradient.
One may argue that the capability of the SMCM to

produce sensible results is given by its design principles
(e.g., prescribing certain transition time scales, assuming
tropical convection to be dependent on two predictors
only, or coupling it to a simple two-layer atmospheric
model). In fact, a comparison of the SMCM-simulated
cloud area fractions to observational data is still out-
standing. It is the aim of this study to use the SMCM in
a diagnostic fashion by forcing it with an observed large-
scale state to investigate the feasibility of using its
underlying stochastic concept for convective parameter-
izations in full GCMs.

b. Two datasets of observed large-scale atmospheric
state over tropical areas

We utilize two datasets comprising various quantities
describing the large-scale atmospheric state over a trop-
ical location for the purpose of this study. One dataset
covers an approximately 190 3 190 km2 pentagon-
shaped area centered over Darwin, Australia (Davies
et al. 2013), investigated during the Tropical Warm
Pool-International Cloud Experiment (TWP-ICE; May
et al. 2008). The size of the area is chosen to approxi-
mately represent that of a typical GCM grid box and the
gridbox-mean values of atmospheric variables are com-
puted using a variational analysis after Zhang and Lin
(1997). This variational analysis is applied to a large part
of three consecutive wet seasons (2004/05, 2005/06, 2006/
07). Over northern Australia, the wet season is defined as
the time period between September of one year andApril
of the following year. The dataset and its documentation
can be obtained via the Atmospheric Radiation Mea-
surement (ARM) Climate Research Facility’s website
(http://www.arm.gov/data/pi/46) and we use all available
data for the analysis presented here. Atmospheric vari-
ables are available every 6 h. Information on clouds and
precipitation is retrieved from radar observations by the
C-band polarimetric (CPOL) research radar (Keenan
et al. 1998) located at Gunn Point and operated by the

AustralianBureau ofMeteorology. From those data, rain
area fractions attributable to either stratiform or con-
vective precipitation are determined after Steiner et al.
(1995) and used as a proxy for stratiform and convective
cloud fractions (Kumar et al. 2013b). Convective clouds
are separated into congestus and deep convection ac-
cording to cloud-top height (CTH): convective clouds
having CTHs of less than 7km are classified as congestus
whereas clouds having higher CTHs are classified as deep
convective clouds (Kumar et al. 2013a). The dataset en-
compasses the period of TWP-ICE (May et al. 2008),
which took place in the same area during January and
February 2006. The collected data of meteorological re-
gimes encountered during TWP-ICE have already proven
to be very valuable for the evaluation of GCM convective
parameterizations (e.g., Lin et al. 2012).
The second dataset represents the large-scale atmo-

spheric state over Kwajalein and is obtained by applying
the same variational analysis as is used for the Darwin
dataset. Convective- and stratiform-precipitation area
fractions are also calculated according to Steiner et al.
(1995); however, congestus area fractions are not avail-
able because the radar data available to us only consist
of horizontal 2D scans. The Kwajalein dataset covers
a shorter time period (May 2008–January 2009) and was
produced to match the observation intensive period of
the Year of Tropical Convection (YOTC; Waliser and
Moncrieff 2007) project. For better comparability, the
Kwajalein data are derived for an area identical to the
pentagon-shaped one over Darwin.
We use both datasets in this study to show that the

functional dependency of tropical convection on a given
large-scale atmospheric state is similar for both locations
although they are subject to distinctly different bound-
ary conditions (e.g., land–sea distribution or monsoonal
forcing).
To illustrate the multitude of meteorological regimes

found in the datasets, we show the time series of se-
lected atmospheric parameters for the time period of
10 November 2005–18April 2006 over Darwin in Fig. 1.
It is evident that apart from the variability during the
TWP-ICE period (19 January–28 February 2006; May
et al. 2008), the snapshot shown in Fig. 1 alone contains
a number of evident meteorological regime changes
that result in distinctly different cloud populations.
Characterizing the middle-troposphere level, the time
series of relative humidity qualitatively exemplifies ‘‘wet’’
periods around 20 January or 1 April 2006 (among
others) and ‘‘dry’’ periods around 25 November 2005 or
1March 2006 (among others) of the time series.As shown
in the plot of derived convective and stratiform cloud
fractions, the abovementioned wet and dry periods are
each associated with specific cloud regimes: the wet
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periods are generally associated with higher cloud frac-
tions compared to the dry periods. Stratiform clouds ex-
hibit the highest cloud area fractions, with deep convective
cloud fraction being about an order of magnitude less and
congestus cloud fraction being again an order of magni-
tude less than that. It must be noted that the derived cloud
area fractions are representative for precipitating clouds
only.However, this does not present a serious issue; that is,
fractions of tropical congestus, deep convective, or strati-
form clouds derived from the scanning rain radar compare
very well to those derived from a vertically pointing cloud
radar (Kumar et al. 2013a).
It should be mentioned at this point that the obser-

vational data to which we are comparing the SMCM-
simulated cloud fractions are also subject to uncertainties
and give room for interpretation. The most prominent
uncertainty, of course, is the estimation of rain rates from
radar echoes, which is not too straightforward itself, and
the subsequent assumption that the area of a particu-
lar type of rainfall [derived after Steiner et al. (1995)] is
equal to the cloud fraction of that particular cloud type.
Therefore, this analysis is limited to precipitating clouds

only. Also, land surface characteristics of the geographical
area covered by the large-scale observational dataset used
in this study are far from homogeneous. The CPOL radar
at Gunn Point covers both water and land surfaces, with
some of the land surface areas being subject to a pro-
nounced convective diurnal cycle that results in some of
the deepest convection on the planet (Keenan et al. 1990;
Crook 2001). As these events are locally driven, envi-
ronmental conditions leading to their initiation cannot be
represented in the observational dataset. This uncertainty
in environmental conditions obviously does not apply to
the Kwajalein data.

c. Deriving model forcing parameters from the
observations

The evolution of the cloud ensemble as simulated by
the SMCM with respect to the large-scale atmospheric
state is designed to be dependent on two predictors. One
parameter is used as a proxy for the environment’s po-
tential to develop and sustain convection C and the
other is used as a proxy for midtropospheric dryness
D. Here, the underlying assumption is that convection is

FIG. 1. Subset of the dataset comprising the atmospheric large-scale state over Darwin as used in this study. Time
series covering the time period from 10 Nov 2005 to 15 Apr 2006 showing (top) vertically resolved relative humidity
as well as (middle) convective and (bottom) stratiform cloud fractions obtained from a scanning rain radar situated at
Darwin, Australia. See text for details.
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initiated (sustained) and hindered (depleted) by high
values of C (D). Because we aim to use the SMCM in
a diagnostic manner by forcing it with an observed large-
scale atmospheric state, we have to derive C andD from
the available observational data. This requires us to
adapt the formulas for calculating C and D as given in
KBM10 as these are defined to be used for a large-scale
state given by the simple two-layer model (Majda and
Shefter 2001; Khouider and Majda 2006).
As mentioned above, C andD are used as proxies for

the convective potential of the tropospheric column and
midtropospheric dryness, respectively. In the original
SMCM these quantities are scaled to vary roughly be-
tween 0 and 2. For the evaluation of the SMCM, we
derive a total of five (instead of just two) forcing pre-
dictors. We proceed in this way because there may exist
a multitude of possible predictor constellations for ad-
equately describing the dependency of tropical convec-
tion on the large-scale atmospheric state.

1) C—A PROXY VALUE FOR CONVECTIVE

PROPENSITY

In the original formulation given inKBM10,C is given
by the scaled CAPE (calculated for a parcel lifted from
990 hPa; CC in the following). CAPE corresponding to
the time series shown in Fig. 1 yields values in the range
0–1700 J kg21; we therefore scale the CAPE values by
1000 J kg21 to achieve the desired range of CC 2 [0; 2].
As it has been argued before that CAPE alone may

not be a good proxy for characterizing the occurrence
of tropical convection (e.g., Mapes and Houze 1992;
Sherwood 1999; Sobel et al. 2004; Fletcher and Bretherton
2010), we also define additional versions ofC, represented
by scaled values of either the ratio of low-level CAPE
(LCAPE; i.e., CAPE integrated only to the freezing level),
to total CAPE (CrC), or large-scale vertical velocity at
500 hPa v500 (Cv):

CrC 5 2

!
LCAPE

CAPE

"
,

Cv 52

!
1

10
hPa21 h

"
v500, v500 , 0. (1)

The choice to investigate the proxies CC and Cv is rel-
atively intuitive and straightforward, whereas the choice
of CrC warrants explanation. KBM10 found that as-
suming that congestus activity is positively related to
LCAPE (derived from a two-layer atmospheric model)
rather than total CAPE improves the SMCMvariability.
However, our observations show that LCAPE alone is
roughly constant throughout the whole observational
period and it is only the ratio to total CAPE that re-
sembles some relationship with observed convection.

For illustrative purposes, we show the time series of C
for the subset of the data shown in Fig. 1 in the top two
panels in Fig. 2.
Recalling the preceding short analysis of wet and dry

periods (section 2b), the pattern of CC (Fig. 2, top) re-
veals no evident correlation to these periods. The rela-
tively high values of CC during the first 40 days of the
time series should yield intense convective activity, but
the observed cloud fractions do not support this. How-
ever, the observed low convective activity during those
roughly 40 days could be explained by a relatively dry
middle troposphere as indicated by the time series of
DRH, which may hinder the development of deep con-
vection (e.g., Redelsperger et al. 2002). Furthermore,
the wetter periods are characterized by low CC values
throughout. However, stratiform cloud fraction, most
probably originating from deep convection, is notably
high during these periods. This supports a separate anal-
ysis of the present dataset, which indeed suggests that, in
the area of interest, convective precipitation shows no
significant correlation with CAPE (Davies et al. 2013).
In fact, CAPE has been shown to be approximately an-
ticorrelated with or be entirely unrelated to precipitation
for regions in relatively close proximity to the areas cov-
ered by our dataset (Mapes andHouze 1992;McBride and
Frank 1999; Sobel et al. 2004).
When convective activity is high, CrC exhibits large

values (cf. Figs. 1 and 2), implying that in situations of
intense convection the total CAPE is dominated by the
contribution coming from below the freezing level. Be-
cause low-level CAPE itself does not vary toomuch, it is
the lack of contributions to total CAPE coming from
above the freezing level that makes up for high values of
CrC, consistent with the findings of McBride and Frank
(1999), who concluded that high values of CAPE are
dominated by contributions from above 600 hPa. High
values of CrC thus imply that during periods of intense
convection, such as those shown in Fig. 1, the specific
heating profile of stratiform precipitation (i.e., latent
heating of the upper troposphere and evaporative cooling
of the lower troposphere; e.g., Houze 1997) serves to
adjust the lapse rate toward the moist adiabat. However,
it is the occurrence of convection itself that may enforce
high values of CrC, resulting in possible ambiguities when
attempting to use it as a predictor for convection.
From a dynamical perspective, it is well known that

large-scale vertical ascent, and thus moisture conver-
gence, is associated with and facilitates the development
of deep convection [cf. the recent study of Hohenegger
and Stevens (2013)]. Like the convective area fractions
shown in Fig. 1, the time series ofCv also appears highly
intermittent and seems to very closely follow the former.
This is especially true for the first roughly 40 days of the
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time series in which the observed stratiform and con-
vective cloud fractions are relatively low. During that
particular period, Cv shows relatively small values with
higher ones occurring sparsely, indicating a weakly but
somewhat constantly forced convective regime. How-
ever, ambiguities in establishing sound cause-and-effect
relationships between C and convection are apparent
for Cv, which is directly related to large-scale conver-
gence, which can in turn be considered as both a cause
and consequence of convective heating. In fact, discus-
sion of these ambiguities is one of the most persistent
issues in the meteorological community. Ambiguities
may also arise from the method to derive Cv itself.
Vertical pressure velocity v is the key parameter ob-
tained from the variational analysis used to derive the
large-scale atmospheric state we use here. Since the
variational analysis itself is constrained by total areal
rainfall, v is somewhat tuned to match observed rain
rates. However, because we use area fractions, and not
rain rates, of convective and stratiform rain in our
analysis, the causal link to the data processing in the
variational analysis is weak.

2) D—A PROXY FOR MIDTROPOSPHERIC

DRYNESS

In the original formulation of the SMCM, the proxy
for midtropospheric dryness Due is given by

Du
e
5

ue,BL 2 ue,m
15K

, (2)

where ue,BL is the equivalent potential temperature in the
boundary layer, ue,m is the equivalent potential temper-
ature in themidtroposphere, and 15K is a climatological-
mean scaling factor (Khouider and Majda 2006). Here,
the underlying assumption is that the difference between
the equivalent temperatures as given in Eq. (2) is large
when the middle troposphere is dry compared to the
boundary layer. For the calculation of Due from the ob-
served large-scale state, we define ue,BL and ue,m as the
equivalent potential temperatures at 1000 and 500hPa,
respectively. To yield the desired range ofDue 2 [0; 2], we
use a scaling factor of 10K instead of 15K.
Additional to the original formulation of D, we intro-

duce a simpler proxy for representing the midtropospheric

FIG. 2. Time series of model forcing predictors obtained from the large-scale state shown in Fig. 1. (top), (middle)
Values for C (i.e., the proxy for convective propensity). (bottom) Values for D (i.e., the proxy for midtropospheric
dryness). See text for calculation of the predictors.
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dryness by use of the relative humidity at 500hPa. Then,
DRH is given by

DRH 5 23 (12RH500) , (3)

with RH500 2 [0; 1]. The resulting time series of D cal-
culated with both methods are shown in Fig. 2 (bottom).
Unlike the time series ofC, the ones forD show a very

high level of agreement. It is just for two short time
periods when the values of Due and DRH disagree sig-
nificantly, namely around 5 February and 10 April 2006
of the time series displayed in Figs. 1 and 2. These pe-
riods are relatively dry compared to the rest of the time
series, with low values of relative humidity reaching
down into the boundary layer. For these two cases, rel-
atively high values of DRH indicate a dry case, whereas
the low (or even negative) values ofDue indicate a rather
wet case. This is because low values of ue occur through-
out the tropospheric column down to the surface, thereby
not yielding the anticipated large difference between ue
at 1000 and 500 hPa. Defining Due by Eq. (2) therefore
poses a limitation for running the SMCM when using
observational data. As DRH agrees very well with Due

throughout the rest of the time series, wewill useDRH for
all further analyses presented in this study. Also, KBM10
used Due simply because it is more convenient in the
context of the two-layer model.

3. The observed mean convective state at Darwin
and Kwajalein

Before assessing whether the mathematical frame-
work of the SMCM is suitable for reproducing observed
convective behavior of tropical convection, we first an-
alyze the observations laid out in section 2b in a manner
suitable for direct comparison with SMCM output.
Given the specific values of the forcing parameters C
and D (cf. section 2c), the birth–death process used in
the SMCM yields stationary cloud fraction distributions
of every cloud type. Hence, it is possible to calculate a
2D histogram of the stationary cloud fraction as a func-
tion of C and D. Examples of such equilibrium cloud
fraction distributions for a given set of transition time
scales are given in KBM10. Here, we therefore calculate
joint histograms of observed convective and stratiform
cloud fractions in the parameter space of observed values
of C and D to enable a straightforward comparison be-
tween observed and modeled convective behavior.
We show such joint histograms ofmean observed cloud

fractions for three sets of forcing parameters, as well as
their relative standard deviations and number of mea-
surements, in Figs. 3–5, for Darwin and Kwajalein. In
the three sets of forcing parameters, the midtropospheric

dryness parameter is represented by DRH and the convec-
tion parameterC is represented byCC,CrC, orCv. Because
of the observational limitations mentioned above, we only
analyze deep convective and stratiform cloud fractions
and neglect congestus clouds in the context of this study.
We only discuss the results for Darwin in detail. Gen-

erally, the data forKwajalein show the same relationships
as for Darwin, but with less frequent high values of the
C parameter and generally smaller stratiform cloud
fractions. The important finding to keep in mind is that
convective and stratiform cloud area fractions show very
similar behavior at both locations given a particular large-
scale atmospheric state, justifying using the observations
from both locations together to investigate cloud frac-
tions simulated by the SMCM. These results are also not
impaired by the inconsistent treatment of congestus cloud
area fractions between the two regions (i.e., excluding
such clouds for Darwin observations and necessarily in-
cluding them for Kwajalein observations).
When we stratify the observational data using CC as

indicator for convective propensity (cf. Fig. 3), we obtain
maximum area fractions for both cloud types for some of
the smallest values of CC and DRH, indicating relatively
high convective activity for small values of CAPE and
a moist middle troposphere. Most observations fall
into a range spanning the lower half of both parameter
ranges, also resulting in the lowest cloud area fraction
variability (i.e., relative standard deviation) in that range.
Similar results are presented in McBride and Frank
(1999), who found an inverse relationship betweenCAPE
and precipitation when analyzing data obtained during
active and break monsoon periods for a location in the
Gulf of Carpentaria.
When stratifying the observations according to either

one of the other two choices for C (cf. Figs. 4 and 5), we
obtain a completely different functional dependency of
convective and stratiform cloud fractions on C and D.
Using CrC and Cv as choices for C leads to

1) maximum values for both cloud area fractions for
highest values of C,

2) high and low cloud area fraction variability for low
and high values of C respectively,

3) a sharp increase in cloud area fractions above a
certain value of C and low values of D, and

4) most observations for lowvalues ofC spanning awide
range of DRH values.

The results give valuable insight into tropical convective
behavior. For weak forcing of convective activity (i.e.,
small values ofC), average cloud area fractions are small
but exhibit large variability, indicating a somewhat sto-
chastic behavior. This is particularly interesting because
a large part of the observations yields weak forcing,
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which would normally act to reduce sample variability.
The stronger the forcing of convective activity gets, the
fewer observations are registered per bin, suggestive of an
expected increase in sample variability. However, cloud
area fraction variability is lowest for strong forcing of
convection, suggesting a more and more deterministic
behavior of convectionwith increasing forcing, in linewith
other results derived from the same dataset (Davies et al.
2013). Physically, this implies that as forcing is weak,
convection occursmore randomly in the domain, inducing
large-scale convergence itself, which may lead to more
large-scale organization and greater area fraction of con-
vection. Examples for this behavior could be forcing of
convection by local heterogeneities in land surface prop-
erties (and thus surface fluxes) or effects of land–sea
breezes. This could in fact lead to a positive feedback loop
on various scales. However, assessing the effect that this
kind of feedback behavior would have on the vertical
ascent on the scales considered here (i.e., 1903 190km2)
is beyond the scope of our study.

Our results, however, do not support the idea that the
stochastic component of unresolved subgrid-scale pro-
cesses scales linearly with their mean response as put
forward in earlier studies (e.g., Buizza et al. 1999; Shutts
and Palmer 2007). The sharp increase in cloud area
fraction above a certain value of C, accompanied by low
values of D, is consistent with the ‘‘threshold behavior’’
of convection as laid out in, for instance, Peters and
Neelin (2006). Furthermore, the histograms we show in
Figs. 4 and 5 indicate that at least for these two choices of
C, deep convective as well as stratiform area fractions
are anticorrelated with dryness at midlevels, broadly
consistent with earlier findings from observational studies
(Redelsperger et al. 2002; Derbyshire et al. 2004; Takemi
et al. 2004; Takayabu et al. 2010).
We also note that regimes exhibiting both a strong

forcing of convection and a dry middle troposphere
basically do not exist at the locations considered in this
study. This may be obvious, but such a result is not ap-
parent from Fig. 3 where there still exist a quite large

FIG. 3. Joint histogram of observed cloud area fractions and relative standard deviations as function of large-scale variablesCC andDRH

at the (left)Darwin and (right) Kwajalein sites: (top) deep convective clouds, (middle) stratiform clouds, and (bottom) sample size per bin.
Only pixels having more than five observations are shown. The black markers denote the mean values of CC and DRH.
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number of measurements yielding a combination of
a dry middle troposphere and high values of CC.
Histograms similar to those shown in Figs. 3–5 could

in principle also be derived from GCM output. Because
mass flux–based convective parameterization closures
currently employed in state-of-the-art GCMs do not
normally predict a parameter that directly corresponds
to the deep convective area fraction that we use here,
one could, for example, analyze the functional depen-
dence of the total mass flux itself on large-scale param-
eters. Such an analysis, however, is beyond the scope of
this study and will be left for future work.

4. Reproducing observed convective behavior
using the SMCM

a. Adjusting the model parameters

The equilibrium cloud fractions of the multistate
Markov chain used in the SMCM are calculated by ana-
lytically determining its stationary equilibrium distribu-
tion (cf. KBM10 for details). The purpose of this section is

thus not to evolve the SMCM in time but to arrive at
analytically exact equilibrium cloud fractions that allow
for a tuning of the model to the observations presented
in section 3. By the ergodic theorem of Markov chains,
the equilibrium measure is unique and coincides with
long-time-average area fractions of the three cloud types
for each given set of model parameters (i.e., the transition
time scales and the large-scale forcing). We show results
from evolving tuned versions of the SMCM in time in
section 4b. Here, the analytically derived equilibrium dis-
tribution is represented by area fractions for each of the
four allowed states of the Markov chain (i.e., clear sky,
congestus, deep convection, or stratiform clouds). The
sum of all four area fractions for each pair of discrete C
and D values is 1 and the distribution of area fractions
among the four states can be adjusted bymanipulating the
transition time scales associated with the transition from
one state to another.
In previous publications, the transition time scales

used in the SMCM either were chosen in an ad hoc but
physically meaningful manner (KBM10) or were picked
to improve the intermittency of the simulated convection

FIG. 4. As in Fig. 3, but for CrC and DRH. The black markers denote the mean values of CrC and DRH.

NOVEMBER 2013 P ETER S ET AL . 3565



in idealized experiments (FMK12). Here we use obser-
vations to gauge the applicability of the chosen time scales
to represent observed convective behavior. For reference
purposes, we show the joint histograms of the analytically
derived equilibrium deep convective area fractions for the
transition time scales introduced in KBM10 and FMK12
(cf. Table 1) in Fig. 6. These joint histograms clearly in-
dicate that the previously used transition time scales are
not suited for reproducing the statistics of observed con-
vection laid out in section 3 for several reasons. First, the
transition time scales used in case 1 of KBM10 and in
FMK12 yield equilibrium deep convective area fractions
about an order of magnitude larger than those observed.
Second, the transition time scales used in case 2 ofKBM10
result in a deep convective area distribution unsuitable for
reproducing observed behavior.
To obtain a model that is most suitable for repro-

ducing the observed convective behavior, we systemat-
ically adjust the transition time scales until we arrive at
a close visual match between the analytical equilibrium
solution of the SMCM and the observed mean deep

convective cloud fractions for each convective proxy
(CC,CrC,Cv) for Darwin shown in Figs. 3–5 (we only use
data for Darwin here to test the robustness of the ad-
justed transition time scales by applying it to the Kwa-
jalein data in the next section). This close match should
ideally agree to the general cloud fraction distribution in
C–D space in both magnitude and shape. Additionally,
the equilibrium area fraction calculated for the mean
observedC andD values (black dots in Figs. 3–5) should
also match closely. The second requirement achieves
a tuning of the model to the ‘‘mean observed climate,’’
thus yielding an optimal representation of observed
tropical convective cloud distribution, given that the
cloud-type relationships imposed in the SMCM corre-
spond to those in nature. We find that it proves difficult
to adequately satisfy both conditions, leading to a trade-
off of getting either the mean climate or the maxima
right. In general, we focus on arriving at the correct
mean climate cloud fractions as this is of higher rele-
vance regarding a possible future implementation into
GCMs. The final ‘‘best fit’’ transition time scales for

FIG. 5. As in Fig. 3, but for Cv and DRH. The black markers denote the mean values of Cv and DRH.
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each convective proxy C are listed in Table 1 and a
comparison of modeled equilibrium and observed mean
deep convective area fractions as f(C,D) is displayed in
Fig. 7. Given the number of transition time scales (seven),
we acknowledge that our approach toward tuning the
SMCM appears simple and ad hoc and that there may be
more sophisticated and quantitative methods. However,
we are confident about the time scales we arrive at, as
these do represent the visually closest match possible and
any deviations from the chosen sets lead to substantial
deterioration of the resulting equilibrium cloud fraction
distributions shown in Figs. 3–5.
As expected from the observed mean cloud fractions

as f(C,D), we find that matching the SMCMequilibrium
cloud fractions to the observed cloud fractions stratified
by CC results in starkly different time scales compared
to the other two convection proxies (Table 1). However,
all three sets of best-fit transition time scales preserve an
important constraint laid out in KBM10, namely that

cloud decay acts on identical or longer time scales than
cloud formation. It must be kept in mind, however, that
these best-fit time scales were found by visually match-
ing the joint histograms of modeled and observed area
fractions.
The joint histograms displayed in Fig. 7 indicate that

each of the three analytical equilibrium deep convective
area distributions corresponding to the best-fit transition
time scales in Table 1 has some difficulty in reproducing
certain aspects of the corresponding observations at
Darwin. For every version ofC, themodel overestimates
deep convective area fraction for almost the entire range
of considered combinations of C and D.
This overestimation is highest when using CrC to

stratify the observations; however, the overall functional
relationship is captured (cf. Fig. 4). Using observations
stratified byCC to adjust the transition time scales yields
higher modeled area fractions at nearly every con-
sidered C–D pair, with the degree of overestimation

TABLE 1. Transition time scales (h) as used in the SMCM. The three leftmost columns contain the transition time scales introduced in
previous studies (KBM10, FMK12), yielding the equilibrium deep convective area fraction distributions in Fig. 6. The three rightmost
columns contain the visually derived ‘‘best fitting’’ transition time scales for each of the three convection proxies leading to the modeled
equilibrium cloud fractions in Fig. 7 at Darwin.

KBM10 This study

Process Case 1 Case 2 FMK12 CC CrC Cv

Formation of congestus (t01) 1 3 1 1 1 1
Decay of congestus (t10) 5 2 1 1 1.2 1.2
Conversion of congestus to deep (t12) 1 2 1 3 1.2 1.2
Formation of deep (t02) 2 5 3 4 2.2 2.2
Conversion of deep to stratiform (t23) 3 0.5 3 0.13 0.16 0.16
Decay of deep (t20) 5 5 3 5 2.2 2.4
Decay of stratiform (t30) 5 24 5 5 4 4

FIG. 6. Analytical equilibrium deep convective area fraction of the SMCM’s birth–death process given the two sets of transition time
scales introduced in KBM10 and FMK12 (Table 1): (left),(middle) case 1 and 2 time scales of KBM10, respectively, and (right) time scales
used in FMK12. For the two cases of KBM10, the transition from deep convective to stratiform area depends on C. See text and KBM10
for details regarding the calculation of equilibrium area fractions.
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FIG. 7. (left) Joint histograms of analytically computed equilibrium deep convective area fractions of the SMCM
and (right) the relative difference to observedmean deep convective area fractions at Darwin as a function of large-
scale variables (top) CC, (middle) CrC, and (bottom) Cv and DRH. SMCM cloud fractions for each version of C
correspond to the transition time scales shown in Table 1. Only histogram boxes havingmore than five observations
are shown. The markers denote the mean observed values of CC, CrC, and Cv and DRH at Darwin, respectively.
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showing no functional dependence on C and D. Using
Cv, the SMCM’s equilibrium distribution resembles the
functional dependency of the observations well. Further-
more, the relative difference of modeled versus observed
area fractions shows an evident dependency on C and D.
The model over- and underestimates deep convective
area fractions for low and high values of C, respectively.
This transition from over- to underestimating the area
fractions appears systematic and gradual, a promising
result in terms of possible future model adjustments (see
below). The modeled joint histograms in Fig. 7, however,
do not show the capability of the SMCM concept to re-
produce observed temporally resolved tropical convec-
tion; they are merely analytical equilibrium solutions of
the SMCM’s internal birth–death process given a partic-
ular set of transition time scales (cf. KBM10 and refer-
ences therein for details).
We conjecture that the main reason why the SMCM

over- and underestimates deep convective area fraction
for low and high values of Cv (and CrC), respectively, is
not a matter of finding the correct transition time scales
or of ill-formulated ‘‘transition rules’’ but is due to the
functional dependency of transition rates on C and D.
KBM10 formulate this dependency as

G(x)5 12 e2x, x 2 [0; 2] , (4)

with x being either C or D and Eq. (4) being directly
linked to transition rates R; for example,

Rab }G(C)G(D) (5)

indicates the transition rate R from cloud state a to b.
This formulation leads pronounced changes in transition
rates for small values of C or D with the response be-
coming less strong with increasing values of C and D.
Therefore, the SMCM in its original formulation is not
designed to reproduce the sharp increase in observed
cloud fractions shown in Figs. 4 and 5 for higher values
ofC. Alternative formulations of G(x) could be sought to
improve the SMCM’s capability to reproduce observed
cloud area fraction distributions. This will be investi-
gated in future research.

b. Applying the SMCM to observations

In this section, we use the three sets of observation-
derived parameters discussed in sections 2c and 3 in
combination with the best-fit transition time scales shown
in Table 1 to perform simulations with the SMCM. We
first quantitatively discuss the temporally resolved re-
production of cloud area fractions compared to observa-
tions in section 4b(1) and then carry out a more thorough
statistical analysis in section 4b(2).

1) SMCM TEMPORALLY RESOLVED TROPICAL

CONVECTION

We use the subsets of the data from the Darwin and
Kwajalein locations introduced in section 4b to compare
the time series of observed cloud area fractions to those
modeled by the SMCM for illustrative purposes. As we
obtained the best-fit transition time scales shown in
Table 1 from analyzing just Darwin data, application of
these time scales to Kwajalein provides a strong test for
our method. We force the SMCMwith each of the three
combinations ofCC,CrC, andCvwithDRH. The internal
model time step is set to 5min. The 6-hourly observa-
tions were linearly interpolated to match themodel time
step. The subgrid-scale lattice of the SMCM is set up to
have 20 3 20 sites. As the whole domain covers an area
of about 1903 190 km2, each lattice site thus has an edge
length of about 10 km. There is currently no fixed spatial
scale for an individual lattice point considered in the
formulation of the SMCM. Preliminary analysis shows
that an increase in lattice sites, and the reduction of
lattice size going with it, reduces the simulated temporal
variability compared to observations but has no effect
on correlations. This is mainly an effect of the SMCM-
modeled cloud fractions approaching the deterministic
limit of the Markov process (cf. KBM10).
From a GCM convection parameterization perspec-

tive it thus seems attractive to use SMCM lattice sites
with a globally uniform fixed spatial scale (e.g., 1 3
1 km2), leading to increased convective variability with
increasing GCM resolution (i.e., reduced GCM gridbox
size). This would yield a more realistic representation of
convection compared to current deterministic schemes.
The resulting modeled time series of deep convective

cloud area fractions for Darwin and Kwajalein are shown
in Figs. 8 and 9, with the observed time series included
for reference purposes. We show neither observed and
modeled congestus nor stratiform cloud fractions because
our main interest lies in assessing the representation of
deep convection as this is our current target for GCM
convection parameterizations.
We first consider the observed and modeled deep

convective area fractions over Darwin shown in Fig. 8 as
we have adjusted the model parameters of the SMCM
specifically for this location. Forcing the SMCMwithCC

results in more or less constant convective cloud area
fractions showing no resemblance of the different re-
gimes found in the observations. Because of the non-
negative andmostly nonzero values of theCC time series
(cf. Fig. 2), the SMCM cannot reproduce the intermit-
tency of cloud area fractions found in the observations.
The same issue is apparent when forcing the SMCM
with CrC. However, periods of higher modeled deep
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convective cloud fraction seem to loosely correspond to
periods of higher observed fractions, giving slightly
more confidence in using CrC over CC.
The results from using Cv to force the SMCM show

substantially more agreement with the observations,
withCv leading tomore variability during periods of low
convective activity, especially during the first month or
so of the considered time period. Analysis of correla-
tions between modeled and observed deep convective
area fraction time series and probability distribution
functions thereof confirms that using Cv as proxy for
convective propensity results in a better representation
of convective behavior compared to the other two proxies

(not shown). Despite these encouraging results, the is-
sues raised toward the end of section 4 are apparent. For
periods of weak forcing, the SMCM produces too high
a deep convective cloud fraction whereas cloud fractions
during strongly forced periods are substantially under-
estimated compared to observations. This is exactly what
is to be expected from the modeled equilibrium cloud
fractions shown in Fig. 7.
The observed and modeled time series of deep

convective area fraction for the Kwajalein area (Fig. 9)
generally show the same behavior as the ones for the
Darwin area (Fig. 8). In particular, the over- and un-
derestimation of deep convective area fractions for

FIG. 8. Observed and SMCM-modeled time series of deep convective area fraction over Darwin during the time
period 10 Nov 2005–18 Apr 2006. SMCM time series are obtained by forcing the SMCM with the observed C andD
parameters introduced in section 2c and the transition time scales shown in Table 1. Results indicate one possible
solution of the stochastic modeling approach.
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small and large values of Cv, respectively, is evident.
Nevertheless, Cv proves to be the parameter of choice
for reproducing deep convective features over Kwajalein
with the SMCM. Considering that we did not use the
Kwajalein data to adjust the transition time scales in
the SMCM in the preceding part of this paper, this re-
sult confirms the findings presented in section 3, namely
that convection over Kwajalein shows similar func-
tional dependencies to the large-scale environment as
does convection over Darwin. Furthermore, this result
indicates that at least in the framework of the SMCM,
tropical convection acts on similar time scales for both
tropical locations considered here. It is, however, im-
portant to keep in mind the possible ambiguities when
attempting to establish cause-and-effect relationships
between the large-scale state and convection when using
Cv (cf. section 3).

2) STATISTICS OF SMCM-MODELED VERSUS

OBSERVED TROPICAL CONVECTION

We now analyze the SMCM-modeled tropical con-
vection to quantify the capability of the SMCM frame-
work to reproduce the observed statistical properties of
deep convective and stratiform area fractions laid out in
section 3 as well as the actual stochasticity of the mod-
eled convection. For the sake of brevity, we limit this
analysis to experiments in which convection in the
SMCM is determined byCv.We choose to do so because
the SMCM versions using the two other parameters CC

and CrC were shown unsuitable for reproducing the
basic temporal behavior of convection [cf. section 4b(1)].
Similar to the analysis of observed convection pre-

sented in section 3, we stratify the modeled time series
of deep convective and stratiform area fractions by the

FIG. 9. As in Fig. 8, but over Kwajalein during the time period 2 May 2008–31 Jan 2009.
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values of Cv and DRH used for forcing the model. To
ensure comparability with the observations, we average
the modeled area fractions over 6-h periods centered
over each time step of the observed large-scale atmo-
spheric state. Similar to the histograms shown inFigs. 3–5,
we show the results obtained for Darwin and Kwajalein
separately in Fig. 10, again providing a test for the validity
of the chosen transition time scales for both locations.
As expected, the joint histogram of SMCM deep

convective area fractions obtained from the modeled
time series of the Darwin location very much resembles
that of the analytically derived equilibrium area fraction
for the same set of transition time scales (Fig. 7, bottom).
These statistics of the modeled time series more clearly
reveal the shortcomings of the SMCM framework in
reproducing observed convection already mentioned in
sections 4a and 4b(1). The order of magnitude of deep
convective area fraction is generally well captured, with
the SMCM over- and underestimating area fractions for
weak and strong convective forcing, respectively. The
same also holds for the simulated stratiform cloud frac-
tions for the Darwin area, which we show here for illus-
trative purposes, mainly to highlight that the transition
time scales that we determined in section 4a also yield
sensible values for that cloud type. More importantly,
the sample standard deviations of deep convective and
stratiform area fractions of the modeled time series

show similar behavior compared to those of the ob-
servations (i.e., area fractions show higher and lower
variability for weaker and stronger convective forcing,
respectively). Sensitivity tests in which we force ‘‘un-
tuned’’ versions of the SMCM with the observed large-
scale atmospheric state show that this behavior is in
fact an intrinsic property of the SMCM framework
and does not depend on the chosen set of transition
time scales. The modeled time series underestimate
the degree of variability throughout, however (note the
different color scales in Fig. 10 compared to Fig. 5). So
for the Darwin area, the SMCM framework is suitable
for reproducing observed behavior of tropical convec-
tion, both in terms of deep convective and stratiform
cloud area fractions and variability, as a function of the
observed large-scale environment.
For the Kwajalein area, the joint histograms in Fig. 10

lead us to similar conclusions, thereby supporting the
applicability of the SMCM framework to both tropical
locations considered here.However, because of the sparse
sampling of strong convective forcing over Kwajalein,
the overestimation of cloud area fractions for weak
convective forcing dominates the statistics. As men-
tioned in section 4a, the sometimes substantial over-
estimation of cloud area fractions could be mediated by
using alternative formulations of Eq. (4), which will be
a topic of future research.

FIG. 10. Joint histogram of modeled cloud area fractions and relative standard deviations as function of large-scale variables Cv and
DRH at the (left) Darwin and (right) Kwajalein sites derived from sampling the modeled cloud area fraction time series using all the
available forcing data from observations (cf. section 4b) and the transition time scales from Table 1. Only pixels having more than five
observations are shown. (top) Deep convective clouds and (bottom) stratiform clouds. Sample sizes per bin are as in Fig. 5. The black
markers denote the mean values of Cv and DRH.
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5. Summary and conclusions

This study was driven by the need for alternatives to
the mostly deterministic convection parameterizations
used in general circulation models (GCMs). For this,
we first determined statistics of observed tropical con-
vection over Darwin and Kwajalein stratified by envi-
ronmental conditions. Then, we used these observed
statistics to investigate whether the underlying frame-
work of the stochastic multicloud model (SMCM;
KBM10) is suitable for reproducing observed tropical
convection, a prerequisite to using the underlying sto-
chastic framework of the SMCM in a GCM convection
parameterization.
We investigated the dependency of tropical convec-

tion, given by the fractional area coverage with deep
convective or stratiform clouds, on a set of two proxy
values obtained from the observed large-scale atmo-
spheric state (derived by means of variational analysis;
Davies et al. 2013). One proxy (C) represents the ability
of the atmospheric column to initiate/sustain convection
whereas the second proxy (D) representsmidtropospheric
dryness. As there exists no generally accepted theory of
which environmental conditions actually lead to tropical
convection, we used three different formulations for C:
CAPE, the ratio of low-level CAPE (LCAPE; i.e., CAPE
integrated up to the freezing level) to CAPE, and vertical
velocity at 500hPa. The value of D is obtained from rel-
ative humidity at 500hPa.
We found that the relationship of observed cloud area

fractions with CAPE is very different compared to the
other two C proxies. We find the highest deep convec-
tive and stratiform cloud area fractions for low values
of CAPE, supporting earlier findings that CAPE is ap-
proximately anticorrelated or only weakly correlated
with tropical precipitation (Mapes and Houze 1992;
McBride and Frank 1999; Sobel et al. 2004; Fletcher and
Bretherton 2010). Here, the studies ofMapes andHouze
(1992) and Sobel et al. (2004) are of particular interest
as they base their findings on observations gathered at
Darwin and Kwajalein, respectively. On the other hand,
deep convective and stratiform cloud area fractions are
positively correlated with the other two C proxies. The
cloud area fraction distributions as function of C and D
also revealed that, for those two C proxies,

1) high and low cloud area fraction variability occurs
for low and high values of C, respectively, implying
that convection appears more random under weakly
forced conditions and gets more and more determin-
istic with increasing forcing (cf. also Davies et al.
2013), thus contradicting the idea that the stochastic
component of unresolved subgrid-scale processes

scales linearly with their mean response (e.g., Buizza
et al. 1999; Shutts and Palmer 2007);

2) cloud area fractions increase sharply above a certain
value ofC given low values ofD, consistent with earlier
reports on critical behavior of tropical convection (e.g.,
Peters and Neelin 2006);

3) cloud area fractions show identical relationships to
environmental conditions for both locations (Darwin
and Kwajalein), albeit with starkly different boundary
conditions (e.g., land–sea distribution, monsoonal forc-
ing); and

4) deep convective and stratiform cloud area fractions
are anticorrelated with midtropospheric dryness [con-
sistent with Redelsperger et al. (2002), Derbyshire
et al. (2004), Takemi et al. (2004), and Takayabu et al.
(2010)].

By design, the SMCMhas a stationary equilibrium cloud
area fraction distribution. By adjusting this distribution
to the mean observed cloud area fractions, we tuned the
SMCM for it to potentially reproduce the observed
convection most closely. It proved difficult to exactly
match the mean observed cloud area fraction distribu-
tion as f(C, D), especially for the data stratified by
CAPE. Generally, the SMCM yields too high and too
low a cloud fraction for weak and strong large-scale
forcing, respectively. We found that the values of the
tuning parameters leading to a sensible match with the
observed convection also respect the general rules for
cloud transition probabilities laid out in KBM10, an
overall very encouraging result.
Using the parameter-adjusted SMCM, we simulated

convective area fractions using the time series of the
observed large-scale state. We thus applied the SMCM
in a diagnostic fashion and found that the modeled area
fractions of deep convective and stratiform clouds com-
pare better to observations when using the convection
proxy related to convergence (i.e., vertical velocity at
500hPa) rather than those related to stability (i.e., total
CAPE and the ratio of low-level to total CAPE). This is
most probably related to the nonintermittent andpositive-
definite nature of the latter proxies, which does not allow
for simulation of the intermittent cloud features found in
the observations.
When using the convergence-based convection proxy

to force the SMCM to generate time series of tropical
convection, we found that the framework of the SMCM
is capable of reproducing the overall functional re-
lationships as well as the statistics of observed tropical
convection well. In particular, the SMCM tropical con-
vection also shows higher variability in weakly forced
conditions compared to stronger forced conditions. The
degree of variability is underestimated compared to
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observations though. We conjecture that the variability
of the modeled convection would be higher if the
SMCMwere used in a prognostic framework rather than
the diagnostic framework that we applied it to in this
study. Furthermore, the 6-hourly time step of the ob-
served large-scale state that we employ here may smear
out part of the convective-scale variability, thus possibly
constraining the stochastic process employed in the
SMCM too strongly and also limiting the applicability to
analysis of the diurnal cycle. Future work should thus
also concentrate on deriving large-scale, long-term data-
sets of improved temporal resolution.
We acknowledge that there do exist ambiguities in

establishing sound cause-and-effect relationships when at-
tempting to relate tropical convection to large-scale con-
vergence.Here, we argue for an integrated view of tropical
convection over the entire range of atmospheric forcing
strength of large-scale convergence. For weak (or even
negative) convergence, convective area fractions are
very small and show substantial variability about the
mean (i.e., induced by very localized forcing such as land
surface heterogeneities or land–sea breezes). However,
these small-scale features induce some low-level con-
vergence themselves, whichmay lead tomore large-scale
organization and greater area fraction of convection.
This could in fact lead to a positive feedback loop on
various scales. However, assessing the effect that this
kind of feedback behavior would have on the vertical
ascent on the scales considered here (i.e., 1903 190km2)
is beyond the scope of our study. In conclusion, we ac-
knowledge the complex interactive relationship between
convection and area-averaged vertical motion while not-
ing that both directions in the interaction are likely at play
and of importance with different weights based on the
large-scale synoptic situation.
This study has shown that the stochastic concept be-

hind the SMCM has the potential to underpin novel
convection parameterizations in GCMs. As mass-flux
convection parameterizations need to predict the verti-
cal mass flux at cloud base, the concept of the SMCM
would yield a stochastically based area and the updraft
velocity could be given by another adequate formulation
[e.g., such as that introduced in Jakob and Siebesma
(2003)]. Furthermore, a reduction of GCM gridbox size
(i.e., increasing resolution) would then lead to increased
convective variability, making it superior to currently
used deterministic convection schemes. Ultimately, fu-
ture efforts will converge toward implementing a pro-
totype version of a parameterization incorporating the
SMCM framework into a full GCM.
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