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ABSTRACT

Observed regional rainfall characteristics can be analyzed by examining both the frequency and intensity of

different categories of rainfall. A complementary approach is to consider rainfall characteristics associated

with regional synoptic regimes. These two approaches are combined here to examine daily rainfall charac-

teristics over the Australian region, providing a target for model simulations. Using gridded daily rainfall data

for the period 1997–2007, rainfall at each grid point and averaged over several sites is decomposed into the

frequency of rainfall events and the intensity of rainfall associated with each event. Daily sea level pressure is

classified using a self-organizing map, and rainfall on corresponding days is assigned to the resulting synoptic

regimes. This technique is then used to evaluate rainfall in the new Australian Community Climate and Earth-

System Simulator (ACCESS) global climate model and separate the influence of large-scale circulation errors

and errors due to the representation of subgrid-scale physical processes. The model exhibits similar biases to

many other global climate models, simulating too frequent light rainfall and heavy rainfall of insufficient

intensity. These errors are associated with particular synoptic regimes over different sectors of the Australian

continent and surrounding oceans. The model simulates only weak convective rainfall over land during the

summer monsoon, and heavy rainfall associated with frontal systems over southern Australia is also not

simulated. As the model captures the structure and frequency of synoptic patterns, but not the associated

rainfall intensity or frequency, it is likely that the source of the rainfall errors lies in model physical param-

eterizations rather than large-scale dynamics.

1. Introduction

The distribution and variability of rainfall are among

the most important climate variables for human society,

agriculture, and natural ecosystems, but capturing ob-

served rainfall characteristics remains a challenge for

global climate models (e.g., Trenberth et al. 2003; Meehl

et al. 2005; Randall et al. 2007). Evaluation of rainfall

in global climate models is often focused on monthly

and interannual time scales (e.g., Randall et al. 2007).

However, the simulation of mean rainfall and monthly

to interannual variability requires that models capture

the physical processes producing rainfall on the time scale

of individual synoptic events (e.g., Trenberth et al. 2003;

Dai 2006). Even if models are able to simulate the correct

amount of rainfall at a given location, it is also important

that this occurs for the right reason: does the model

simulate the observed atmospheric circulation and mois-

ture transport, and does the model simulate the dominant

local rainfall processes, such as convective or stratiform

precipitation? This study outlines an approach to char-

acterizing daily rainfall over the Australian region, using

both regional atmospheric circulation and grid-scale rain-

fall frequency and intensity, to evaluate global climate

model performance.

The use of daily rainfall allows the separation into fre-

quency ( fraction of rain days) and intensity (rainfall per

rain day) of observed and modeled rainfall (e.g., Dai 2006;
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Sun et al. 2006). Sun et al. (2006) apply this approach to

a set of 18 coupled climate models, dividing rainfall into

light and heavy categories and comparing the simulated

rainfall characteristics with daily observations. They find

that most models overestimate the frequency of light rain-

fall and underestimate the intensity of heavy rainfall. Thus,

while models may simulate the correct mean rainfall, they

may not capture the correct combination of frequency and

intensity. The studies of Dai (2006) and Sun et al. (2006)

consider the influence of model convective parameter-

ization, but they do not explicitly evaluate the role of

synoptic-scale circulation.

Several recent studies have used clustering techniques,

such as self-organizing maps (SOMs), to investigate

Australian rainfall variability (Hope 2006; Hope et al.

2006; Alexander et al. 2010) using observational re-

cords of sea level pressure (SLP) and rainfall. In those

studies, SOMs were used to define a set of synoptic re-

gimes or pressure patterns and their associated rainfall

distributions, with the goal of identifying drivers of recent

rainfall trends. However, these studies did not directly

consider rainfall as a function of frequency and intensity,

or consider different processes producing light and heavy

rainfall. The studies were also limited to rainfall obser-

vations over land.

Here, we apply a combination of the approaches de-

scribed above to better understand rainfall behavior over

Australia and the adjacent ocean areas. Including both

land and ocean areas in the analysis provides a more

complete picture of regional rainfall processes and there-

fore allows a more comprehensive model evaluation. We

carry out an analysis of synoptic regimes using SOMs, while

at the same time separating rainfall into light and heavy

categories, and considering rainfall frequency and intensity.

We then apply our findings to evaluate rainfall character-

istics in a simulation with the new Australian Community

Climate and Earth-System Simulator (ACCESS; available

online at www.accessimulator.org.au) model.

Section 2 describes the data and methods used. Sec-

tion 3 outlines the seasonal rainfall climatology and

daily rainfall characteristics in both the observations and

the model. In section 4, the observed and simulated daily

rainfall frequency and intensity are examined for each

synoptic regime derived from the SOM analysis. A brief

discussion of the results is given in section 5 and the main

conclusions of the study are summarized.

2. Data and methods

a. Rainfall and SLP data

The study makes use of gridded rainfall datasets from

the Global Precipitation Climatology Project (GPCP).

Monthly rainfall was obtained from the GPCP version 2

dataset for the period 1979–2008 at 2.58 3 2.58 resolution

(Adler et al. 2003). Daily rainfall was also obtained from

GPCP 1 degree daily (1DD) version 1.1 dataset for the

period 1997–2007 at 18 3 18 resolution (Huffman et al.

2001). The GPCP gridded rainfall datasets are constructed

from merged satellite and rain gauge data, providing

an estimate of rainfall amount over regions with sparse

direct observations. As global, gridded datasets, GPCP

rainfall products have a spatial scale appropriate for

climate model evaluation. The GPCP datasets can be

readily compared with gridded model rainfall with a

similar grid size, whereas station data are not suitable for

direct comparison. The GPCP rainfall is referred to in

this study as ‘‘observed’’ rainfall, while it is noted that

the GPCP dataset is only partially derived from direct

observations.

Monthly and daily gridded sea level pressure data

were obtained from the National Centers for Environ-

mental Prediction and National Center for Atmospheric

Research (NCEP–NCAR) reanalysis (Kalnay et al.

1996). These data are available for the period 1948–

present; however, in this study, only data from the pe-

riod 1979–2008 are used to allow comparison with the

model simulation. Using only data from 1979 onward

also excludes biases because of a lack of satellite data

before the late 1970s.

b. Model simulation

A 22-yr simulation from 1979 to 2000 was carried out

with the atmospheric component of the ACCESS cli-

mate model. The model version used is based on the

Hadley Centre Global Environmental Model version 2

(HadGEM2; Pope et al. 2007) with some modifica-

tions, including the use of the prognostic condensate and

prognostic cloud fraction scheme (PC2; Wilson et al. 2008;

see http://www.hpsc.csiro.au/users/dix043/access_amip/ for

details of model version and boundary conditions). The

horizontal resolution used is N96 (1.8758 3 1.258), with

38 vertical levels.

The experimental design followed the protocol of the

Atmospheric Modeling Intercomparison Project Phase

II (AMIP-II), with sea surface temperature (SST) and

sea ice boundary conditions prescribed from the AMIP-II

forcing data (Taylor et al. 2000). The experiment includes

the full aerosol scheme with sulfate, soot, biomass,

and mineral dust. Carbon dioxide, methane, N2O, and

chloroflurocarbons (CFCs) were set at average values for

the AMIP period. The CO2 concentration is 348 ppm, the

methane concentration is 1650 ppb, and N2O concentra-

tion is 306 ppb. The model uses the Met Office Surface

Exchange Scheme (MOSES) with nine surface types.
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c. Regime analysis using SOMs

The study uses the technique of SOMs (Kohonen 2001)

applied to daily sea level pressure maps over Australia and

the adjacent oceans to investigate regimes of atmospheric

circulation and associated rainfall. The SOM method is

an artificial neural network algorithm that can be used

to visualize and cluster large numbers of observations

into a specified number of patterns or ‘‘nodes’’ to allow

easier interpretation. The SOM algorithm matches each

input vector to a reference vector (node) based on the

minimum Euclidean distance between them. The match-

ing node and those adjacent to it are then updated, leading

to an array of nodes that span the input vectors in an or-

dered manner (e.g., Cassano et al. 2006; Hope et al. 2006).

When creating the SOM, all data are assigned to a node, in

contrast with some techniques where only a subset of the

data may be used.

SOMs have been used in a wide range of climate appli-

cations, including classifying satellite images (Richardson

et al. 2003), investigating rainfall extremes and trends

(e.g., Cavazos 2000; Cassano et al. 2006; Hope et al.

2006; Uotila et al. 2007), and mapping variability of

ENSO (Leloup et al. 2007) and the Indian Ocean dipole

(Tozuka et al. 2008).

SOMs can be used to map climate variables, such as

SLP, to construct patterns corresponding to synoptic

types or regimes (e.g., Hewitson and Crane 2002; Tennant

2003). The SOM method preserves the probability density

of the input data and produces a set of approximately

equally probable nodes. The nodes are arranged with

similar types located adjacent to each other in the two-

dimensional ordered array, facilitating interpretation of

the synoptic types and their relationship. The dominant

synoptic patterns influencing a subregion can also be

investigated (e.g., Schuenemann et al. 2009). A more

detailed description of the SOM method as applied to

synoptic classification is given in Cassano et al. (2006).

The SOM method is applied here to daily SLP pat-

terns over the Australian region (08–508S, 1108–1608E).

The use of daily model and observed fields to construct

SOMs allows us to identify patterns of circulation on

synoptic time scales and investigate the correspond-

ing daily rainfall variability. As the allocation of each

daily model or observed state to a SOM node occurs in

postprocessing, the SOM can be constructed from ob-

served (NCEP–NCAR reanalysis) SLP and then model

SLP can be mapped to the same SOM nodes. To facili-

tate model–data comparison, the SOM is constructed

from observed SLP from the period 1979–2008, incor-

porating the period of the model simulation but also

overlapping with the daily GPCP rainfall data period of

1997–2007.

A number of rainfall characteristics are examined.

The rainfall frequency is the number of ‘‘rain days’’

(days with more than 1 mm of rainfall) divided by the

total number of days. The rainfall intensity is the average

rainfall amount per rain day, while the mean rainfall is

the average rainfall amount over all days.

The decomposition of rainfall frequency and intensity

is combined with clustering using SOMs to explore the

model errors as a function of synoptic regime. The total

rainfall over a given period (Rtotal) can be considered as

the sum over regimes with occurrence frequency Fi and

mean regime rainfall Ri:
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The mean rainfall for a given regime (Ri) is the product

of the rainfall frequency (Qi) for the regime multiplied

by the rainfall intensity (Ni) for the regime. Therefore,

an error in total rainfall over a region can be considered

to be the sum of the products of the error in the fre-

quency of occurrence of the regime (F ), the error in the

regime rainfall frequency (Q), and the error in the re-

gime rainfall intensity (N). Synoptic regime frequency is

a property of the large-scale atmospheric circulation,

whereas the rainfall frequency and intensity associated

with each regime may be associated with local or subgrid-

scale processes. Using this approach, we aim to determine

whether the model correctly represents both large-scale

circulation and local rainfall processes for the region of

interest.

3. Rainfall climatology

a. Seasonal rainfall climatology

Before considering the daily rainfall characteristics,

we examine the seasonal climatology of global rainfall,

making use of the longer 22-yr record of monthly data.

The difference between the seasonal average rainfall in

the ACCESS AMIP simulation and the GPCP seasonal

rainfall for the same period (1979–2000) is shown in Fig. 1.

The GPCP seasonal rainfall climatologies for the periods

1979–2000 and 1997–2007 were also compared (not shown)

to determine whether the use of a different period for

GPCP daily data and ACCESS daily data will influence the

results. The differences between the two periods of GPCP

rainfall are much smaller than the difference between

GPCP and ACCESS rainfall (less than 1 mm day21).
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Errors in model seasonal average rainfall are largest

in the tropics, with too much rainfall over the western

tropical Pacific and in the region of the South Pacific

convergence zone (SPCZ). In June–August (JJA), the

model Indian summer monsoon is too dry, with a rainfall

maximum located over the tropical Indian Ocean rather

than over the continent, a known bias in the HadGEM

family of models (Martin et al. 2004). In December–

February (DJF), the model simulates the intertropical

convergence zone (ITCZ) located too far north over the

Indonesian Maritime Continent region, resulting in too

little summer monsoon rainfall over northern Australia.

Over the Australian continent, the largest errors are seen

over northern Australia in summer. Rainfall errors over

southern Australia are less than 1 mm day21 for all sea-

sons, with the exception of larger dry biases of up to

2 mm day21 over southwest Western Australia and

southeast Australia during winter and spring, when the

majority of rainfall is received. To explore the source of

these biases, we now extend our investigation to daily

time scales.

b. Rainfall frequency and intensity

Daily rainfall characteristics can be analyzed as a

combination of the frequency and the intensity of

rainfall events. The frequency and intensity of rain-

fall can also be separated into categories such as ‘‘light’’

(1–10 mm day21) and ‘‘heavy’’ (.10 mm day21), which

may be considered to represent different classes of rain-

fall (Sun et al. 2006). Previous studies have found that

climate models often overestimate the frequency of light

rainfall and underestimate the intensity of heavy rainfall

(Sun et al. 2006). We examine ACCESS and observed

GPCP rainfall frequency over the Australian region in

Southern Hemisphere summer (DJF) and winter (JJA)

to determine whether the model is able to capture both

aspects of rainfall variability. Daily model rainfall for the

22-yr AMIP simulation (1979–2000) is compared with

daily GPCP precipitation data for the 11-yr period from

1997 to 2007. The two different periods are used to

maximize the length of the daily rainfall record. Com-

parison of the shorter, overlapping period from 1997 to

2000 demonstrated that the rainfall characteristics were

not dependent on the period analyzed (not shown).

Figure 2 shows the mean daily frequency of light

and heavy rainfall over the Australian region for DJF

and JJA. Following Sun et al. (2006), rainfall less than

1 mm day21 is excluded, as drizzle will generally con-

tribute little to rain gauge observations. We note that

a slight discontinuity is visible in the GPCP rainfall data

FIG. 1. Difference between seasonal rainfall climatology (mm day21) from ACCESS AMIP simulation and GPCP

monthly rainfall data (1979–2000). The locations of Perth (P), Melbourne (M), and Darwin (D) are indicated in (a).

The dashed line indicates the zero contour.
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FIG. 2. Mean daily rainfall frequency (% days) at each grid point: (left) GPCP rainfall (1997–2007), (right) AC-

CESS rainfall (1979–2000), (top four plots) DJF light and heavy rainfall, and (bottom four plots) JJA light and heavy

rainfall.
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at 408S (e.g., Fig. 2a) because of the use of different data

sources north and south of this latitude (Huffman et al.

2001); however, this discontinuity does not alter the

results. In DJF, the model simulates more frequent light

rainfall than observed in the tropics, including over

northern Australia, and also over the Southern Ocean.

The frequency of heavy rainfall is in closer agreement

between model and observations, with the most frequent

heavy rainfall occurring within the tropical convergence

zones. A notable exception is the underestimation of

heavy rainfall over northern Australia. In JJA, the model

simulates noticeably more frequent light rainfall than

observed except over continental Australia, where the

arid conditions are well captured. The frequency of heavy

rainfall in winter is largely consistent with the observed

distribution, although biases over the tropical Indian

Ocean reflect mean rainfall errors. Heavy rainfall is un-

derestimated over southern Australia in winter, with the

model simulating a low frequency (,5%) of days with

heavy rainfall over land.

Figure 3 shows the mean daily intensity of light and

heavy rainfall over the Australian region for DJF and

JJA. Rainfall of less than 1 mm day21 is again excluded,

and grid points with no rainfall are shown in white. The

spatial distribution of the intensity of light rainfall

(1–10 mm day21) is fairly uniform in the GPCP data-

set, with most light rainfall occurring at the rate of

4–5 mm day21 in both DJF and JJA. In contrast, the

model simulates intensities of 5–7 mm day21 in the trop-

ical convergence zones, with the most intense rainfall over

the islands of the Maritime Continent, and much lighter

rainfall over the extratropics, especially southern Aus-

tralia in DJF and northern Australia in JJA. The model’s

spatial distribution of heavy rainfall (.10 mm day21) is

in closer agreement with observations, although the

model significantly underestimates the amount of heavy

rainfall over land, including the Indian and Australian

summer monsoons and winter rainfall over southern

Australia.

c. Rainfall at Perth, Melbourne, and Darwin

As the three regions of largest rainfall error over

Australia correspond to the locations of the cities of

Perth, Melbourne, and Darwin (shown as ‘‘P,’’ ‘‘M,’’ and

‘‘D,’’ respectively, in Fig. 1a), a more detailed analysis of

daily rainfall variability is now carried out comparing

model rainfall in the region around each city with GPCP

daily rainfall. Note that while city names are used for

orientation, the analysis represents larger regions around

the cities themselves that are typical for southwestern,

southeastern, and northern Australian rainfall processes.

The nearest four land grid boxes to the cities of Perth

(328S, 1168E), Melbourne (388S, 1458E), and Darwin

(128S, 1318E) are used to calculate a time series of daily

rainfall. While this time series will not correspond to

rainfall at a given station, it is more appropriate for

comparison between the two gridded datasets to use the

average of several grid boxes. The 18 3 18 GPCP rainfall

data was interpolated to the 1.8758 3 1.258 ACCESS

model grid for the calculation of rainfall time series, so

model and observed rainfall time series represent the

same area.

A box-and-whisker diagram for the daily rainfall dis-

tribution is shown for Perth (Fig. 4a), Melbourne (Fig.

4b), and Darwin (Fig. 4c) for all days with rainfall ex-

ceeding 1 mm. The upper and lower limits of the whiskers

are the 95th and 5th percentiles, respectively. The me-

dian and interquartile ranges are also shown, and rain

day frequency (percent of days with rainfall .1 mm) is

indicated above each box. Seasonal distributions in-

clude all days in DJF, March–May (MAM), JJA, and

September–November (SON), and all months (ALL).

The number of days in the model is less than the ob-

servations, as the model uses a 360-day year (each

month is 30 days).

Perth is located in the southwest of the Australian

continent, receiving the majority of its annual rainfall in

winter (JJA) and very little rainfall in summer (DJF). The

main sources of winter rainfall are prefrontal air masses

within the dominant westerly airstream (e.g., Hope et al.

2006). The model underestimates the rainfall for all sea-

sons except summer, and it fails to simulate the strong

observed seasonal cycle of rainfall at Perth. The GPCP

Perth-area mean rainfall in JJA is 2.2 and the intensity

is 9.3 mm day21. In contrast, the model simulates JJA

mean rainfall of 1.7 and intensity of 4.1 mm day21, failing

to reproduce the extreme winter rainfall events of above

20 mm day21 seen in the GPCP record.

Melbourne is located in southeast Australia, a region

that receives moderate rainfall in all months, with larger

totals in winter and spring. Southeast Australian rainfall

can result from both frontal and cut-off low pressure

systems in these seasons (e.g., Pook et al. 2006; Risbey

et al. 2009). The model underestimates the rainfall for

all seasons and simulates more rainfall in summer than

winter, in contrast to the observations. The model fails

to simulate the high-intensity rainfall events that con-

tribute a large component of observed winter rainfall

(JJA model intensity is 3.4 mm day21, compared to

observed intensity of 9.6 mm day21). While the in-

tensity of model rainfall is too low in MAM and JJA, the

frequency is higher than observed in these seasons.

Darwin is located in the ‘‘Top End’’ of northern Aus-

tralia and experiences the direct influence of the Aus-

tralian summer monsoon system, with the majority of
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FIG. 3. As in Fig. 2, but for mean daily rainfall intensity. White areas indicate grid points with no heavy rainfall.
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rainfall in the months from December to March and

little rainfall during the dry season, corresponding to

austral winter. The model is able to capture the observed

strong seasonal cycle at Darwin, with the largest rainfall

in summer and less than 0.1 mm day21 mean rainfall in

winter. However, the model underestimates the mean

summer rainfall at Darwin (5.4 mm day21 compared to

the observed value of 10.8 mm day21), predominantly

due to the lower intensity of model rainfall (8.1 mm day21

compared to 12.5 mm day21 observed), as well as slightly

lower rainfall frequency in the model compared with ob-

servations.

Having established the overall model errors in fre-

quency and intensity of rainfall, an immediate question

that arises is whether these errors are caused by the in-

ability of the model to simulate the observed synoptic

conditions over the regions of interest or if the model is

unable to translate the correct large-scale conditions

into correct rainfall behavior. We therefore extend our

above analysis of frequency and intensity by studying

rainfall behavior as a function of synoptic regime, with

the aim to provide some further insight into the reasons

for the model errors. Using this approach, we can de-

termine whether the model captures the frequency of

the main synoptic regimes, as well as the intensity and

frequency of rainfall associated with each regime.

4. Synoptic regimes

a. SOM

A SOM was constructed using gridded daily-average

SLP data over the Australian region (08–508S, 1108–

1608E) from the NCEP–NCAR reanalysis for the period

1979–2008. A set of 20 SOM patterns (4 3 5) was chosen

to span the range of synoptic conditions for all seasons.

The choice of the number of SOM patterns is subjective;

however, previous studies have found that this number is

appropriate to capture the synoptic patterns influencing

the Australian region (e.g., Hope et al. 2006; Nicholls

et al. 2009; Alexander et al. 2010). It is important to note

that the SOM will cover the probability space of SLP

states; however, it may not represent particular condi-

tions with a variable location, such as cut-off low pres-

sure systems (Nicholls et al. 2009).

The 20 SOM patterns or nodes constructed from the

NCEP SLP data are shown in Fig. 5. The frequency of

occurrence (F) of each SOM node is indicated above the

plots. The nodes are arranged with similar patterns closer

together and the most different patterns in opposite cor-

ners as a consequence of the SOM mapping algorithm

(Hewitson and Crane 2002). In the top-left corner of the

SOM are patterns with a strong trough to the south of the

continent, while the patterns in the bottom-right corner

FIG. 4. Box-and-whisker diagrams of daily rainfall (mm)

at (a) Perth, (b) Melbourne, and (c) Darwin by season. The

bottom and top limits of whiskers are the 5% and 95%

percentile of rainfall, respectively. Days with less than

1 mm day21 of rainfall are excluded. For each season,

GPCP (ACCESS) rainfall is shown as the white (gray)

bars. Rain day frequency (%) is shown above each box.

GPCP daily rainfall (1997–2007) and ACCESS daily

rainfall (1979–2000) are used.
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FIG. 5. SOM of SLP (hPa) over the Australian region (08–508S, 1108–1608E) constructed using daily average NCEP SLP data from 1979 to

2008; frequency of occurrence (F ) is shown in percent.
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are dominated by a high pressure system centered over

southern Australia. The adjacent nodes appear to capture

the progression of low pressure systems and fronts to the

south of the continent, as well as the intensification of high

pressure systems and the development of the continental

heat low over the monsoon tropics. As SLP variability is

larger in extratropics than the tropics, the SOM nodes are

grouped according to midlatitude SLP patterns, while

tropical SLP patterns do not always vary smoothly, for

example, between nodes 1 and 5.

The frequency of each pattern can be determined for

the whole period of the SLP data or for individual sea-

sons. Each daily model SLP field is also mapped onto

one of these 20 nodes using its Euclidean distance from

the node-average SLP field. The observed (upper) and

modeled (lower) frequencies (% days) of the SOM

nodes for DJF (left) and JJA (right) are shown in Fig. 6.

The dominant nodes in summer (DJF) are in the top-left

region of the SOM, corresponding to patterns with

a developed heat low over the north of Australia. The

dominant nodes in winter (JJA) are those along the

lower edge of the SOM, and particularly the bottom-left

corner, as well as the top-left and top-right corners (but

not surrounding nodes). The most common winter pat-

terns are those with a trough to the southwest of the

Australian continent (see Fig. 5), although states with

a trough to the southeast also occur for close to 20% of

days. The ACCESS daily SLP fields map to a similar

pattern of nodes for summer and winter as the observed

daily SLP, with a slightly different frequency of occur-

rence for some nodes.

As each day of the observed or model simulation

period can be mapped to the closest SOM node, this

mapping can be used to construct a composite of rainfall

for each SOM node (e.g., Hope et al. 2006). The daily

NCEP SLP states are allocated to 1 of the 20 nodes for

the period 1997–2007, and the corresponding rainfall is

composited from GPCP daily rainfall data. The model

SLP is also allocated to 1 of the 20 SOM nodes for each

day of the AMIP simulation (1979–2000), and a rainfall

composite is constructed. The observed and model

rainfall anomaly composites for the SOM nodes are

FIG. 6. Frequency map (% days) of SOM nodes for (top left) DJF and (top right) JJA for SOM derived from NCEP

SLP from 1979 to 2008, and mapping of ACCESS (1979–2000) daily SLP to SOM nodes for (bottom left) DJF and

(bottom right) JJA.

15 DECEMBER 2010 B R O W N E T A L . 6513



shown in Figs. 7 and 8. As the SLP patterns are domi-

nated by the larger gradients in the extratropics while

rainfall anomalies are largest in the tropics, some nodes

have rainfall anomaly patterns that are not closely as-

sociated with their neighboring nodes, such as node 1.

To obtain a more consistent set of regimes for the tropical

region, it would be necessary to construct regimes based

on alternative variables such as wind.

The ACCESS rainfall anomaly composites (Fig. 8)

show that the model captures many of the same large-

scale patterns of rainfall for each SOM node compared

with the observed GPCP rainfall anomalies (Fig. 7). How-

ever, the model rainfall anomalies are generally of smaller

magnitude, despite similar SLP composites (not shown)

for each node. In particular, the heavy rainfall over

northern Australia seen in nodes 3, 5, 6, 7, 9, 10, and

11 (‘‘summer monsoon’’ nodes) is substantially reduced in

the model composites and is located further north, in-

dicating the monsoon does not penetrate far enough

inland.

Nodes 1–4 represent pressure troughs bringing winter

rainfall to southeast Australia (‘‘wet southeast’’ nodes),

while nodes 17–20 (‘‘wet southwest’’ nodes) represent a

trough or front to the southwest of the continent, bringing

winter rainfall to southwest Australia. The model cap-

tures the meridional and zonal gradients of rainfall as-

sociated with these nodes, but it does not capture the

amount of rainfall over land in both southeast and south-

west Australia.

b. SOMs and frequency and intensity of rainfall

The allocation of observed and model simulation days

to SOM nodes is now used to decompose daily rainfall

into frequency and intensity associated with each syn-

optic regime. In Fig. 9, the GPCP rainfall frequency

for each SOM node is shown, while the model rainfall

frequency by node is shown in Fig. 10. There is broad

agreement between the observed and simulated spatial

patterns of rainfall frequency over the Australian re-

gion, although differences are larger in the tropics and

southern midlatitudes (see Fig. 2). In both observed and

model rainfall, the highest frequency occurs over the

tropics, including northern Australia, and over the South-

ern Ocean. The spatial patterns in the midlatitudes fol-

low the SLP patterns in Fig. 5, with highest rainfall

frequency over regions of low pressure. Over northern

Australia, the model simulates frequent rainfall over

land but not over adjacent ocean for the summer mon-

soon nodes (e.g., nodes 6 and 10), while the frequency

over southeast and southwest Australia is also higher in

the model than observed for the wet southeast and wet

southwest nodes.

In Fig. 11, the GPCP rainfall intensity by SOM node

is shown. It is evident that the most intense rainfall (heavier

than 20 mm day21) occurs over northern Australia in

SOM nodes 3, 5, 6, 7, 9, 10, and 11 (summer monsoon).

Relatively heavy rainfall over southeast Australia occurs

in SOM nodes 1–4 (wet southeast), while the heaviest

rainfall over southwest Australia occurs in SOM nodes

17–20 (wet southwest). In comparison, the model rainfall

intensity by SOM node (Fig. 12) displays heavy rainfall in

the summer monsoon nodes only over ocean and the is-

lands of Papua and Indonesia but not over northern

Australia. Note that this is in contrast to the model rain-

fall frequency in those nodes, which was highest over

land. These errors are consistent with the seasonal mean

rainfall errors over northern Australia and at the site

of Darwin, as discussed in section 3. Rainfall intensity

over southern Australia is uniformly light, with the wet

southeast and wet southwest nodes failing to produce

rainfall more than 10 mm day21, also consistent with

the findings in section 3.

Sharp gradients in rainfall intensity at the edge of

continents suggest a differentiation between maritime

and continental rainfall regimes in the model. These

sharp gradients are not seen in the observed GPCP

rainfall, implying that the model may have an unrealistic

division between rainfall triggers or processes over land

and over ocean. The analysis approach used here reveals

this bias is most extreme in cases of heavy rainfall over

northern Australia during active summer monsoon re-

gimes, and is accompanied by a sharp distinction in

rainfall frequency between land and ocean, with more

frequent (light) rain as well as a lack of heavy rain over

land. This information provides useful guidance for model

development, as it indicates an unrealistically strong

dependence of rainfall on surface type and/or a possible

lack of the influence of coastal effects on rainfall in the

model.

c. Synoptic decomposition of rainfall at Perth,
Melbourne, and Darwin

Having successfully applied the SOM decomposition

of SLP to the Australian region, we now make use of

it to separate rainfall characteristics at a given loca-

tion into components because of rainfall frequency and

rainfall intensity associated with each node. The main

purpose of doing so is to determine whether errors in

model-simulated rainfall are due to the incorrect fre-

quency of occurrence of a particular synoptic pattern or

the incorrect rainfall intensity for this pattern. We de-

scribe here a comparison of the rainfall frequency and

rainfall intensity at the locations of Perth, Melbourne, and

Darwin for the 20 SOM nodes. The analysis compares

daily rainfall for all seasons from the ACCESS simulation
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FIG. 7. Composite rainfall anomalies (mm day21) for each SOM node derived from NCEP SLP: GPCP 1DD rainfall from 1997 to 2007.
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FIG. 8. Composite rainfall anomalies (mm day21) for each SOM node derived from NCEP SLP: ACCESS AMIP simulation daily rainfall

from 1979 to 2000 (daily model SLP is allocated to a SOM node, and rainfall composites constructed based on this allocation).
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FIG. 9. Rainfall frequency (% days) by SOM node: GPCP 1DD rainfall from 1997 to 2007.
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FIG. 10. Rainfall frequency (% days) by SOM node: ACCESS AMIP simulation daily rainfall from 1979 to 2000.
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FIG. 11. As in Fig. 9, but for rainfall intensity (mm day21).
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FIG. 12. As in Fig. 10, but for rainfall intensity (mm day21).
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and the GPCP 1DD rainfall dataset mapped onto the SOM

derived from NCEP SLP, with the Perth, Melbourne, and

Darwin records constructed from the nearest four land

grid points as in section 3c. Using Eq. (1), we can de-

compose the error in total rainfall at the three locations

into error in the frequency of occurrence of each synoptic

regime (F), and error in the rainfall frequency (Q) and

rainfall intensity (N) associated with each regime. As the

observed and model values of F, Q, and N are known for

each node, we can substitute the observed values into the

TABLE 1. The calculation of Rtotal at Perth, Melbourne, and Darwin using Eq. (1). The model values of F, Q, and N for each node are

substituted in turn into Eq. (1), as shown in column 2, to investigate their relative influence on rainfall error at the three locations. The

DRtotal (mm day21) and percentage error (%) are shown in columns 4 and 5.

Location Variables used to calculate Rtotal Rtotal (mm day21) DRtotal (mm day21) Percentage error (%)

Perth Observed F, Q, N 1.1 — —

Model F, Q, N 0.7 20.4 236

Model F, observed Q and N 1.2 10.1 19

Model Q, observed F and N 1.3 10.2 118

Model N, observed F and Q 0.6 20.5 245

Melbourne Observed F, Q, N 2.0 — —

Model F, Q, N 1.3 20.7 235

Model F, observed Q and N 1.9 20.1 25

Model Q, observed F and N 2.5 10.5 125

Model N, observed F and Q 1.1 20.9 245

Darwin Observed F, Q, N 4.3 — —

Model F, Q, N 1.8 22.5 258

Model F, observed Q and N 3.9 20.4 29

Model Q, observed F and N 3.3 21.0 223

Model N, observed F and Q 2.6 21.7 240

FIG. 13. (a) SOM node F, (b) R, (c) Q, and (d) N for grid points near Perth. In (a), SOM node F is calculated for the

entire domain, using NCEP daily SLP (1979–2008), shown in light gray, and ACCESS daily SLP (1979–2000), shown

in dark gray. In (b)–(d), GPCP daily rainfall (1997–2007) is shown in light gray and ACCESS daily rainfall (1979–

2000) is shown in dark gray.
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equation for two out of three variables to identify the

relative magnitude of error associated with the model F,

Q, and N, as shown in Table 1.

The rainfall frequency, rainfall intensity, and mean

rainfall at Perth for each SOM node are shown in Fig. 13,

as well as the frequency of occurrence for each node.

The observed and model rainfall frequency is greatest

for SOM nodes 17–20, which are predominantly winter

patterns with a trough to the southwest of the continent.

The model also simulates rainfall on more than 20% of

days for node 1, in contrast with the drier observed

pattern. It is clear that the underestimation of mean

Perth rainfall by the model is primarily due to the low

intensity of rainfall for all SOM nodes. The model

rainfall intensity is almost uniform (average intensity 5

3.7 mm day21), whereas the observed intensity is almost

2 times greater (average intensity 5 7.0 mm day21),

with more intense rainfall for nodes 17–20. The de-

composition of errors in Table 1 indicates that the un-

derestimation of N is the largest source of error at Perth,

while this is partially offset by the overestimation of Q.

In Fig. 14, the rainfall frequency, rainfall intensity, and

mean rainfall for each SOM node is shown for the grid

points nearest to Melbourne. In the case of observations,

the highest mean rainfall and highest rainfall frequency

occur for SOM nodes 1–4, consistent with the rainfall

anomalies in Fig. 7. The highest rainfall frequency in the

model occurs for nodes 1, 4, 8, and 16. The most im-

portant difference between observations and model

appears to be the rainfall intensity, with the model sim-

ulating too low rainfall intensity for all SOM nodes, es-

pecially the wet southeast nodes 1–4. The mean rainfall in

the model is lower for these same nodes. Therefore, the

lower annual mean rainfall at Melbourne simulated by

the model (1.3 compared with 2.0 mm day21 in the ob-

servations) is predominantly due to the low intensity of

rainfall for all SOM nodes, and particularly the key wet

southeast nodes 1–4 with a trough to the southeast of

Australia. As shown in Table 1, model N is the largest

source of error at Melbourne as at Perth, and again is

partially offset by the overestimation of Q.

Figure 15 shows the rainfall frequency, rainfall in-

tensity, and mean rainfall at Darwin by SOM node. The

model broadly captures the rainfall frequency by node at

Darwin, although the frequency of all the key summer

monsoon nodes (3, 5, 6, 7, 9, 10, and 11) is somewhat

underestimated. The most important difference between

observed and model rainfall at Darwin is again rainfall

intensity, as the model underestimates the intensity of

the summer monsoon node rainfall by up to 50%. This

bias results in substantially lower mean rainfall than

observed for these key monsoon nodes, and summer

(DJF) mean rainfall of less than half the observed value,

as discussed in section 3. The low intensity of rainfall

FIG. 14. As in Fig. 13, but near Melbourne.
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at Darwin is consistent with the suppression of heavy

convective rainfall over land in the model, as seen for

the summer monsoon nodes in Fig. 12. Errors calculated

in Table 1 show that N is the largest source of error at

Darwin but that Q is also underestimated, leading to

a larger total percentage error in rainfall than for Perth

or Melbourne.

5. Summary and conclusions

Previous studies have suggested that characteristics

such as rainfall frequency and intensity are central to

understanding and predicting the response of rainfall to

climate change (e.g., Trenberth et al. 2003). Therefore,

it is important to evaluate the ability of climate models

to capture spatial and temporal patterns of rainfall fre-

quency and intensity, and their relationship with atmo-

spheric circulation regimes. We can then determine

whether regional biases in model rainfall are due to the

inability to simulate the dominant synoptic patterns, or

the inability to capture the frequency and intensity of

rainfall associated with such patterns. In this study, a

combination of techniques was used to examine rainfall

over the Australian continent and surrounding ocean.

Daily rainfall from GPCP gridded observations was used

to determine rainfall characteristics over the Australian

region, providing a target for the model simulations.

Comparison between observations and ACCESS model

output revealed a range of systematic biases in the

model rainfall characteristics.

Comparison of the seasonal climatology of the model

and GPCP rainfall over the Australian region revealed

that the model was too dry over northern Australia

during the summer monsoon, and that winter frontal

rainfall over southern Australia was underestimated. An

analysis of the frequency and intensity of light and heavy

daily rainfall showed that ACCESS simulates too fre-

quent light rainfall, both in the tropics and over southern

Australia, while the frequency of heavy rainfall was

more realistic. In addition, the model significantly un-

derestimates the intensity of heavy rainfall over land,

including the summer monsoon as well as winter rainfall

over southern Australia, providing some explanation of

the dry biases found in the model seasonal climatology.

Having identified a series of biases in the simulation

of rainfall frequency and intensity over the region, the

possible sources of the rainfall error were then inves-

tigated by considering the association between rainfall

frequency and intensity and the dominant atmospheric

circulation patterns. A self-organizing map was used to

construct a set of SLP patterns or synoptic regimes, and

the corresponding observed and model rainfall patterns

FIG. 15. As in Fig. 13, but near Darwin.
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were examined. The rainfall for each synoptic regime

was also decomposed into frequency and intensity to

determine whether the model captured the distribution

of rainfall associated with each regime. Three locations

were considered in more detail: southwestern Australia

(Perth), southeastern Australia (Melbourne), and north-

ern Australia (Darwin).

It was found that ACCESS broadly captures the fre-

quency of occurrence of the synoptic regimes repre-

sented by the SOM nodes [F in Eq. (1)], implying that

the majority of errors in rainfall amount are not due to

an inability to simulate the large-scale atmospheric cir-

culation. In all three regions, the dominant source of

error is the rainfall intensity (N) of key SOM nodes or

regimes, with a smaller contribution due to the rainfall

frequency (Q) associated with the nodes. In particular,

the model does not capture the difference in rainfall

intensity between nodes, failing to simulate more in-

tense rainfall for regimes of intense convection or strong

frontal systems.

Over northern Australia, ACCESS simulates too light

rainfall over land, and too infrequent heavier rainfall over

adjacent ocean for the ‘‘summer monsoon’’ SOM nodes.

Over southern Australia, the model simulates light rain-

fall for all SOM nodes, failing to capture heavier rain-

fall (.10 mm day21) over the Perth and Melbourne

regions in the ‘‘wet southeast’’ and ‘‘wet southwest’’

SOM nodes. The frequency of rainfall in these regions is

overestimated by the model in the same nodes, partially

offsetting the errors in model rainfall intensity. The oc-

currence of too frequent light rainfall is consistent with

previous studies (e.g., Sun et al. 2006). The behavior of

rainfall in the model as exposed by our analysis leads us to

conclude that the most likely causes for the model errors

lie in the representation of local subgrid-scale processes,

such as convection and/or the representation of coast-

lines, rather than in the ability of the model to simulate

the large-scale synoptic flow, while acknowledging that

the two are, of course, not entirely independent of each

other. That is, since the atmospheric circulation is rela-

tively well simulated, we speculate that the error lies in

the local processes that translate this large-scale circula-

tion into rainfall. Further investigations are required to

identify the details of the mechanisms responsible. These

will include model sensitivity studies in particular for

those regimes that exhibit large errors, with the ultimate

aim to identify pathways to improved representations of

subgrid-scale processes. As the main purpose of this study

was to develop a methodology for a more insightful

evaluation of model rainfall errors, such sensitivity stud-

ies are beyond the scope of this paper.

We have shown that the combination of techniques

that were previously used independently provides a useful

set of tools for analyzing rainfall in observations and

models, and for providing additional insight into the

sources of model rainfall errors. The analysis could be

refined further by considering the frequency and intensity

of light and heavy rainfall by regime, as well as focusing

on a single season. Further analysis of convective pro-

cesses, moisture transport and sources, cloud properties,

and microphysics is required to determine the detailed

cause of the too frequent and too light rainfall simulated

by the model, and the unrealistic sharp land–ocean gra-

dients. This study has provided a useful new framework

for doing so.
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