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We consider the development of nonlinear three-dimensional vortex–wave interaction
equilibria of laminar plane Couette flow for a range of spanwise wavenumbers. The
results are computed using a hybrid approach that captures the required asymptotic
structure while at the same time providing a direct link with full numerical
calculations of equilibrium states. Each equilibrium state consists of a streak flow,
a roll flow and a wave propagating on the streak. Direct numerical simulations at
finite Reynolds numbers using initial conditions constructed from these parts confirm
that the scheme generates equilibrium solutions of the Navier–Stokes equations.
Consideration of the form of the vortex–wave interaction equations in the high-
spanwise-wavenumber limit predicts that for small wavelengths the equilibria take
on a self-similar structure confined near the centre of the flow. These states feel no
influence from the walls, and lead to a class of canonical states relevant to arbitrary
shear flows. These predictions are supported by an analysis of computational results
at increasing values of the spanwise wavenumber. For the wave part of these new
canonical states, it is shown that the mass-specific kinetic energy density per unit
wavenumber scales with the �5/3 power of the wavenumber.
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1. Introduction

Understanding the fundamental mechanisms at work in turbulent shear flows is
one of the outstanding problems of classical mechanics. Two facets of this problem
that exist at opposite ends of the Reynolds-number spectrum are the mechanism of
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transition in flows such as Hagen–Poiseuille flow and plane Couette flow, which
are linearly stable and whose instability mechanisms have not yielded to analysis
with linear tools, and the universal inertial-range scaling of turbulence kinetic energy
with wavenumber first proposed by Kolmogorov (1941), which applies at very high
Reynolds numbers. In recent years much interest in the dynamics of shear flows
has come through the discovery of three-dimensional nonlinear equilibrium states
(Nagata 1990; Waleffe 1997, 2001; Faisst & Eckhardt 2003; Wedin & Kerswell
2004; Wang, Gibson & Waleffe 2007; Gibson, Halcrow & Cvitanovic 2009). These
equilibria have been shown to act either as ‘edge states’ which locally divide
the basin of attraction between relaminarized or turbulent outcomes (‘lower branch’
equilibria) or as ‘organizing centres’ about which the flow slowly cycles during the
approach to turbulence (‘upper branch’ equilibria) (Wang et al. 2007). The physical
mechanism supporting the self-sustaining lower branch states was proposed (Waleffe
1997) as a tripartite coupled nonlinear system in which the dominant component is
two-dimensional high- and low-speed streaks of O(1) appearing on the underlying
streamwise flow; these streaks are driven by weaker two-dimensional rolls, which in
turn are driven nonlinearly by the divergence of streamwise-average Reynolds stresses
of still weaker three-dimensional waves that are neutrally stable eigenmodes of the
streak flow. Waleffe (1997), in dealing with plane Couette flow, supplied no direct
means of determining the required amplitudes of the roll and wave components
relative to the streak flow, but in Wang et al. (2007), where nonlinear equilibria
were found directly using Newton’s method applied to full Navier–Stokes solutions,
it was observed that the strength of the rolls fitted an O(R�1) dependence (where
Reynolds number R is based on half the relative wall speeds and their semi-distance
d) while the strength of the three-dimensional waves fitted O(R�0.9). On this basis it
was suggested by Wang et al. (2007) that an asymptotic theory for the lower branch
equilibria appeared feasible.

The appropriate asymptotic structure for these kinds of interactions in shear flows
had been laid down some years earlier and referred to as a ‘vortex–wave interaction’
(VWI) theory (Hall & Smith 1988, 1991). This theory effectively takes R out of
consideration and reduces an unsteady three-dimensional Navier–Stokes problem to
a steady two-dimensional Navier–Stokes problem coupled to an advection–diffusion
equation and a wave equation. Recognition that the solutions of Nagata (1990),
Waleffe (1997), Faisst & Eckhardt (2003), Wedin & Kerswell (2004), Wang et al.

(2007) and Gibson et al. (2009) were finite-R analogues of VWI states stimulated
application of the theory to plane Couette flow (Hall & Sherwin 2010). Outcomes of
that asymptotic approach agreed remarkably with the ‘lower branch’ equilibria found
in Wang et al. (2007) and explicitly provide asymptotic scaling relations R�1 and
R�11/12=�0.916̄ for roll and wave components. We note that the sum of the streak and
roll flows constitutes the vortex engaged in vortex–wave interaction.

Our aim here is to extend the results of Hall & Sherwin (2010) to a large range of
streamwise (↵) and spanwise (� ) wavenumbers and show how the key components
of the interaction perform. In order to simplify the computation associated with
the asymptotic approach, we introduce a new method that can be seen as a direct
hybrid of the streak–roll–wave coupling described originally in Waleffe (1997) with
the asymptotic scaling of components used in Hall & Sherwin (2010). This hybrid
approach may be considered as a regularization of the VWI equations, and used for
quite general shear flows. Direct numerical simulations (DNS) are also carried out
to investigate the temporal evolution of VWI states, and their energetics confirm the
scaling approach employed and the status of the VWI equilibria as edge states. In
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FIGURE 1. Vortex–wave interaction in plane Couette flow. (a) Roll flow (V, W)(y, z) drives
(b) streak flow U(y, z). Linearizing the Navier–Stokes equations about U(y, z), we seek a
neutral and stationary wave eigenfunction (c) that concentrates near the streak’s critical layer.
(d) Streamwise-average Reynolds stresses of the wave system at finite amplitude balance
dissipation in the roll–streak flow to couple the whole problem at equilibrium.

the high-� limit we find that VWI becomes localized at the centre of the channel
with the walls playing no role, and the equilibria then become self-similar in structure.
This leads to a new canonical state relevant to arbitrary shear flows. Finally, we show
that, for this canonical state, kinetic energy per unit wavenumber scales with the
�5/3 power of wavenumber. Suggestively, though perhaps coincidentally, this is the
same scaling derived by Kolmogorov (1941) for the equilibrium wavenumber range of
homogeneous isotropic turbulence.

2. The vortex–wave interaction equations and their solution

We begin by writing down the VWI equations of Hall & Sherwin (2010)
and then describe a new hybrid method for the asymptotic solution, which is
relatively straightforward to implement, and which connects with the full numerical
Navier–Stokes-based approach of Waleffe (1997). As in those works, the vehicle of
exposition is incompressible plane Couette flow (see figure 1). Equilibrium states are
solutions of a nonlinear eigenproblem, whose eigenvalue ⇢(↵, � ) is a measure of the
scaled wave amplitude required to maintain equilibrium, with streamwise and spanwise
wavenumbers as parameters. The mechanism by which the wave drives the roll is
an analogue of acoustic streaming, with the wave essentially trapped in a waveguide
of thickness R�1/3 surrounding its critical layer. Unlike typical acoustic streaming
problems, the fact that the edge of the ‘waveguide’ is a fluid region means that, rather
than introducing a jump in mean flow velocity, the streaming induces a jump in stress.
This stress jump, corresponding to the integral across the critical layer of divergence
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of wave Reynolds stress obtained via a streamwise average along the wave, drives
the roll field. Thus the underlying mechanism in VWI is the same as was described
later by Waleffe (1997), though asymptotic scaling is made explicit in the formulation,
with the role played by the critical layer brought to the fore. The introduction of
asymptotics also produces partial decoupling of the streak, roll and wave components
of the solution, as outlined below.

The momentum and continuity equations are

Du/Dt = �rp + R�1r2u with r ·u = 0. (2.1)

Adopting Cartesian coordinates (x, y, z), considering u = (u, v, w) as periodic in x and
z, with corresponding wavelengths (Lx = 2⇡/↵, Lz = 2⇡/� ), and, following Hall &
Sherwin (2010), we note that (2.1) admits equilibrium high-R solutions of the form

u = [U(y, z), V(y, z)R�1, W(y, z)R�1] + · · ·
+ ⇢R�7/6u0(x, y, z, t) + c.c. + · · · , (2.2a)

p = P(y, z)R�2 + ⇢R�7/6p0(x, y, z, t) + c.c. + · · · , (2.2b)

where U(y, z) is a two-dimensional streak flow, V = (V, W)(y, z) is a two-
dimensional roll flow, and u0 = bu(y, z) exp[i↵(x � ct)], p0 = bp(y, z) exp[i↵(x � ct)] is
a three-dimensional wave system with amplitude ⇢. The R�7/6 scaling of the wave is
fixed by the condition that the wave generates Reynolds stresses in the critical layer of
the streak which induce a stress jump of O(1) in the roll flow.

Inserting (2.2) into (2.1) and neglecting higher harmonics of the wave, the
set of momentum equations can be decomposed into those for the O(1) two-
dimensional streak,

V@yU + W@zU = r2U, (2.3)

the O(R�1) two-dimensional roll,

V@yV + W@zV = �@yP + r2V + Fy, (2.4a)

V@yW + W@zW = �@zP + r2W + Fz, (2.4b)

@yV + @zW = 0, (2.4c)

and a three-dimensional wave. In (2.4), F = (Fy, Fz) has a delta-function-like
behaviour around the critical layer, induced by the interaction of the wave with itself
inside the critical layer. Within the critical layer, the wave components are O(R�5/6).
However, away from the critical layer, the three-dimensional wave is O(R�7/6) and
governed by

@tu
0 + U@xu

0 + v0@yU + w0@zU = �@xp
0 + R�1r2u0, (2.5a)

@tv
0 + U@xv

0 = �@yp
0 + R�1r2v0, (2.5b)

@tw
0 + U@xw

0 = �@zp
0 + R�1r2w0, (2.5c)

@xu
0 + @yv

0 + @zw
0 = 0. (2.5d)

In Hall & Sherwin (2010), the viscous form of the wave equations was used in order
to take care of the singularity at the critical layer. However, here, since we do not
explicitly determine the asymptotic structure in the critical layer, the Reynolds number
is retained in order to obtain the correct asymptotic structure, which then feeds into
the generation of F. Thus in the present formulation the retention of the viscous terms
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can be viewed as an alternative regularization of the inviscid wave equations and a
means to automatically generate the correct structure in the critical layer and for jumps
across it. These points are revisited in §§ 2.1 and 2.2. The solution to (2.5) requires
normalization to close the set of equations, for which we choose

Z
p0p0 dy dz = LyLz, (2.6)

where p0 is the complex conjugate of wave pressure p0.
For equilibrium solutions, one seeks neutral wave modes where Im(c) = 0. We note

that the steady roll flow (2.4) is not directly coupled to the streak flow (2.3), that the
streak flow is the solution to a steady advection–diffusion equation driven by the roll,
and that after the above decomposition both are solved at unit Reynolds number. Since
the streak flow is O(R) larger than the roll flow, only linear advection terms derived
from the streak flow are included in the wave system (2.5).

It remains for us to close the problem by writing down the coupling of the wave to
the roll flow, formally via stress jumps derived asymptotically from the wave pressure
field – the approach taken by Hall & Sherwin (2010), outlined in § 2.1 – or computed
directly from the velocity field of the wave – the hybrid approach of § 2.2.

2.1. Asymptotic closure of the vortex–wave equations
When the viscous terms in (2.5) are neglected, as required by the asymptotic analysis,
the inviscid equations for the wave pressure p0 = bp(y, z) exp[i↵(x � ct)] of the neutrally
stable wave eigenmode satisfy (Hall & Horseman 1991)

r · (rp0/(U � c)) = 0. (2.7)

This equation breaks down at the critical layer at y = f (z) where U = c. The roll and
wave equations then need to be solved in this layer in the manner described by Hall
& Smith (1991) and Hall & Sherwin (2010). The roll equation is driven in the critical
layer by the Reynolds stresses associated with the wave. Analysis presented by Hall
& Smith (1991) showed that (2.4) must be solved with the following jumps in roll
stresses across the critical layer:

[@nVs(n, s)]+� = n0⇢
2↵�5/3@s(µ

�5/3|@sbp|2), (2.8a)

[P]+� = �n0⇢
2(↵µ)�5/3⇤0|@sbp|2. (2.8b)

Here Vs(n, s) is the roll velocity tangential to the critical layer in the y–z plane, (n, s)
are normal and tangential coordinates along the critical layer, ⇤0 is the layer curvature,
µ = @nU and n0 = 2⇡(2/3)2/3� (1/3). Note that these jump conditions are determined
in terms of the wave pressure. The wave pressure is finite at the critical layer and
can be found by solving the inviscid pressure equation, and directly accounting for
discontinuities in the derivatives of the pressure at higher order, or by regularizing the
equations and solving (2.5).

In Hall & Sherwin (2010) the jump conditions were enforced through a delta-
function-type regularization of forcing terms (Fy, Fz) in (2.4). That regularization
involved the introduction of a parameter ⇠ that relates to the thickness of the
approximation to the delta-function. As the wave pressure field is relatively smooth,
solutions to the coupled system become independent of the regularization parameter
⇠ and the regularized Reynolds number, used in finding neutral solutions to (2.5),
provided that adequate resolution is retained near the critical layer. In this approach,
however, one does need to track and resolve solutions near to the critical layer, not
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only so that the jumps in (2.8) may be computed from the wave pressure field but also
so that the jumps may be adequately approximated with delta-function-like shapes.

2.2. Closure via a hybrid computational approach
In the hybrid approach, the roll forcing (Fy, Fz) is directly computed from the
Reynolds stresses of the wave velocity field, with scaling appropriate for the wave
amplitude required in the critical layer as deduced from the asymptotic VWI theory
(Hall & Sherwin 2010):

F = ⇢2R�1/3[r · (u0u0 + u0u0)], (2.9)

where u0 is the complex conjugate of u0, which again is obtained from the neutrally
stable wave eigenmode. As shown in the right-hand panel of figure 1(d), F becomes
localized around the critical layer where U = c. We demonstrate below that the
eigenvalue ⇢ in (2.9) becomes independent of the regularization Reynolds number
R, as required.

In the limit R ! 1 in (2.5) the forcing will recover the asymptotic value and
therefore, in the critical layer region where the advection terms in (2.4) become
negligible by comparison, the divergence of the wave Reynolds stress is balanced by
the roll stress, i.e.

F = rP � r2V . (2.10)

A potential advantage of this hybrid closure arises from the fact that the roll forcing
can be computed directly from the wave eigenmode velocity field without recourse to
(2.8) and subsequent reconstruction of forcing with delta-function-like regularization.
Although formally this means that no special treatment is required near the critical
layer, it also implies that the critical layer velocity structure has to be adequately
resolved, which we have observed can become computationally demanding for large �
values. The hybrid method is therefore computationally convenient to implement since
it uses the immediately available wave velocity from (2.5), but has the limitation that,
to achieve the asymptotic high-R limit, one must resolve the critical layer velocity
structure rather than being able to use the properties of the smoother wave pressure.
We have used the hybrid method to compute the VWI solutions presented herein.

2.3. Iterative solution of the coupled problem
One method for obtaining a solution to the system (2.3)–(2.6) and (2.9) is iteration of
the loop illustrated in figure 1 while adjusting one parameter (↵, � or ⇢) to achieve
stationary equilibrium (c = 0) for the leading linear wave eigenmode. The restriction
to both neutral and stationary waves facilitates comparison to previous works dealing
with lower branch equilibria (e.g. Wang et al. 2007; Hall & Sherwin 2010), though
perhaps only neutrality is required; we have yet to examine this point in depth. We
have found that it is typically helpful in seeking neutral, stationary solutions to also
impose the symmetry condition F(y, z) = �F(�y, �z + ⇡/� ).

When applied to plane Couette flow, this solution methodology produces an R-
independent problem that describes lower branch equilibrium states, which was also
a central result of Hall & Sherwin (2010). As highlighted in § 4, at higher � values
one requires an increasingly large regularization Reynolds number to obtain the correct
critical layer structure, which leads to numerical challenges in resolving the layer
structure and consequently also in obtaining iterative solutions that agree with the
asymptotic structure.
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FIGURE 2. (a) Nonlinear eigenvalues ⇢ = ⇢(↵, � ) for plane Couette flow. (b) Flow
visualizations in each panel A–F show (left) contours of perturbation streak speed U from
background plane Couette flow with roll streamlines superimposed, and (right) contours of |F|.

R 1000 2000 5000 10 000 20 000
⇢ 1.219 1.187 1.173 1.170 1.172

TABLE 1. Convergence of wave amplitude ⇢ with regularization Reynolds number used
in solving the system (2.5a–d) with the hybrid closure appproach of § 2.2, at � = 2,
↵ = 1.235.

3. Numerical method results

Figure 1(d) illustrates the idea that, when R is sufficiently high, F will be negligible
except near the critical layer, where it produces the required stress jumps. In our
hybrid approach, R may best be thought of as a regularization parameter used in
solving (2.5), with the appropriate Reynolds number scaling otherwise implicit in
the decomposition of the solution into streak, roll and wave components. Table 1
shows that, at fixed (↵, � ), the value of wave amplitude ⇢ becomes independent
of regularization Reynolds number at moderate computational R, confirming that
the hybrid method generates asymptotic (R-independent) solutions for the nonlinear
eigenvalue ⇢.

Neutral wave solutions may be characterized by the relationship between parameters
⇢ = ⇢(↵, � ), which we illustrate in figure 2. With increasing � , the critical layer
and wave energy become more localized near the centre of the domain (a point we
will return to below) and it consequently becomes necessary to use larger values of
computational R in (2.5) in order to obtain R-independent values of ⇢. The outcomes
for ⇢ versus ↵ are, to within graphical accuracy, those computed (using the closure
outlined in § 2.1 above) by Hall & Sherwin (2010) at � = 2, the only value dealt
with there. As found by Hall & Sherwin, the curves could not be continued for
sufficiently high ↵, where the iterations failed to converge. Investigation of the results
towards the end of the curves did not suggest the development of a singularity in the
solution, and the failure to converge is probably associated with the wave’s critical
layer becoming multi-valued in y at a fixed z. The upper limits for ↵ are consistent
with computationally determined minimum box sizes required for sustained turbulence
in plane Couette flow (Hamilton, Kim & Waleffe 1995). At lower values of ↵ the
curves all approach the origin and, though convergence for small ↵ was not attained,
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FIGURE 3. (a) Temporal evolution of kinetic energies Ek in the leading (k = 0, roll–streak) and
the fundamental (k = 1, wave) streamwise Fourier modes for DNS at � = 2, ↵ = 1.235 and
R = 5000. (b) A snapshot of the flow illustrated with a translucent streak critical layer and solid
isosurfaces showing equal ± values of spanwise velocity component. See also supplementary
movie 1 available at http://dx.doi.org/10.1017/jfm.2013.254.

the curves are expected to enter following the ⇢ ⇠ ↵5/6 law established in Hall &
Sherwin (2010).

Figure 3 illustrates outcomes for DNS at R = 5000. Initial conditions for these
calculations were composed from streak, roll and wave components obtained using
the hybrid approach outlined above, then recombined using expansion (2.2a). The
simulations included only a single streamwise wave harmonic. With initial wave
amplitude ⇢ predicted via the hybrid method, the system decays to the one-
dimensional Couette state, but tuning ⇢ to slightly larger values, we observe that
the system reaches a near-equilibrium three-dimensional state at large times. For still
larger initial wave amplitudes, the system diverges to a chaotic state. We note the
similarity of behaviour to that observed elsewhere in the computation of ‘edge states’
(Schneider & Eckhardt 2009). When in self-sustaining state, the relative amount of
wave energy is almost exactly the same as required by the neutral solution of (2.5),
and the form of the DNS solution is difficult to visibly distinguish from the initial
conditions.

4. The large-� limit

4.1. The emergence of a new class of canonical shear flow equilibria
Figure 4 demonstrates that, as � becomes large, not only does the roll forcing F
concentrate around the critical layer, but also the vertical extent of that region becomes
proportional to the domain width Lz. As a result, the solution effectively becomes
independent of the constraint provided by the walls as � increases. This trend can also
be asymptotically observed in the VWI formulation by rescaling the problem based
on Lz (/ � �1) rather than the semi-height of the channel. Based on the assumption
that, as the spanwise wavenumber becomes large, the interaction concentrates into a
rectangular box with sides of length O(� �1), we now deduce the behaviour of the
wave amplitude ⇢ in that limit and check that it is consistent with our calculations.

In a rectangular box of length O(� �1) we first observe that underlying Couette flow
speed is of order Lz ' � �1, and so the roll equations will then remain similar to the
nonlinear equations (2.4) if we take V and W to be of O(� ). The roll and streak
rescale in opposite ways because the streak scales on a typical streamwise velocity of
the unperturbed flow whereas the roll scales on the viscous length scale defined in
terms of the viscosity divided by the box size. Since the roll pressure scales on the
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FIGURE 4. For spanwise wavenumber � � 1, VWI theory predicts that the vertical extent
of the critical layer should fall inversely with � , as shown here for fixed ↵/� = 0.5. Flow
visualization features as for figure 2(b), with critical layer location superimposed over |F|.

square of the roll velocity, it must now become O(� 2). Therefore if we take account of
these rescalings in (2.4) by making the transformations

(@x, @y, @z) ! � (@x, @y, @z) and (U, V, W, P) ! (� �1U, � V, � W, � 2P), (4.1)

then the roll equations (2.4) remain invariant.
In evaluating the (⇢, ↵, � ) data of § 3, we have effectively enforced the jump

conditions (2.8) through the hybrid computational method. If we now apply the above
transformations on these jump conditions, we can explicitly identify their dependence
on � . First we note that the effect of these rescalings is to make the left-hand side
terms of (2.8) of O(� 2). We next observe that the normal shear, µ, of the streak
at the critical layer remains O(1) under the rescaling, but the partial derivatives
along the critical layer are of O(� ), and so @s ! � @s, while under the rescaling
↵ ! �↵. Therefore, both sides of (2.8) will remain in balance if � 2 ⇠ � 4/3⇢2p2, which
necessarily implies ⇢2p2 ⇠ � 2/3.

Finally we note that the pressure normalization (2.6) we have adopted in § 2
depends on the channel height Ly, but in the large-� limit the pressure is observed
to localize in a box of length O(� �1). In view of our normalization (2.6), this
requires that the pressure for large � scales as p ⇠ O(� 1/2). This implies that the
jump condition equations remain in balance if ⇢2 ⇠ � �1/3, so that in the large-� limit
we anticipate ⇢� 1/6 to be O(1). More precisely, the above argument suggests that for
large � the wave amplitude (⇢) to wavenumber (↵, � ) nonlinear eigenrelation takes on
the functional form

⇢� 1/6 =
✓

↵

�

◆5/6

S

✓
↵

�

◆
, (4.2)

where (↵/� )5/6 is the behaviour required for (↵/� ) ! 0 (cf. figure 5 of Hall &
Sherwin 2010) and function S represents deviation from this scaling, further from the
origin.

Our rescaled results for the data shown in figure 2 for (⇢, ↵) and � = 5, 6, 7 are
replotted in figure 5 as functions of ↵/� versus ⇢� 1/6. We observe that for these
higher values of � there is a good collapse of the data. We have also explored even
higher values of � where there is reasonable agreement with this collapse but we
are unable to stabilize our hybrid algorithm for sufficiently high regularized Reynolds
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FIGURE 5. Collapse of the large-� nonlinear eigenrelation data from figure 2, in agreement
with the relationship (4.2).

numbers to achieve the asymptotic solution implied by the inviscid wave equation. As
discussed earlier, it is likely that, to extend our results to higher � , an algorithm based
on the smoother wave pressure is required in which it will be necessary to directly
impose the stress jump conditions.

Now let us re-examine the consequences of these rescalings. If we make the above
transformations and ⇢p ! � �1/3⇢p, then the full interaction equations remain identical
to (2.4), (2.7) and (2.8); the only difference is that, rather than imposing no slip at the
rigid walls, the roll and streak must satisfy (U, V, W) ! (±y, 0, 0) as y ! ±1. Our
results then suggest the emergence of a new canonical class of lower branch equilibria
for arbitrary shear flows. In terms of the original VWI equations, the rescaling in
terms of � leads to exactly the same interaction equations. An examination of the
form for the solution reveals that d, the height of the channel, now only appears in
the form d/� , i.e. a typical vortex wavelength. If we then define the Reynolds number
based on a characteristic velocity near the centre, which becomes the speed of the
plates multiplied by d/� , and use d/� as a typical length scale, then d is effectively
scaled out of the problem. Rather than give the complete details for the rescaling of
the Couette flow problem, it is more convenient to simply write down the canonical
problem for quite arbitrary shear flows, as follows.

4.2. Canonical vortex wave interactions in arbitrary shear flows
Suppose that we have a shear flow U⇤ = (U⇤(y⇤), 0, 0), where ⇤ denotes a dimensional
quantity, and that we are interested in VWI with dimensional spanwise wavelength
�⇤ = 2⇡/� ⇤. Without loss of generality we seek a VWI solution near y⇤ = 0 and define
a Reynolds number by

R = @y⇤(U
⇤
0)�

⇤2/⌫, (4.3)

i.e. we use @y⇤(U⇤
0)�

⇤ = @y⇤(U⇤)|y⇤=0�
⇤ as a typical flow speed. We then make the

Navier–Stokes equations dimensionless using this typical flow speed and �⇤ as a
typical length in (2.1). Equations (2.2) apply once again and we are led to the
streak–roll equations (2.3), (2.4) and the wave equation (2.5). As discussed in § 4.1,
the main difference is that now in (2.3) the condition on U must be applied at
y = ±1 where the wave must also vanish. Moreover, the streak–roll–wave is now
periodic in the spanwise direction with wavelength 2⇡. We conclude that the VWI
described in Hall & Sherwin (2010) applies to arbitrary one-dimensional shear flows
and describes states localized about some level.
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The fact that the streak–roll–wave is now confined to a layer small compared
to the length scale over which the original flow changes has further important
consequences. For example, if we next consider a more general initial shear flow
U⇤ = (U⇤(y⇤, z⇤), 0, 0), then for a given real wave speed c⇤ we can look for a VWI
structure localized in a thin layer around the position where U⇤ = c⇤. VWI states
with wavenumber slowly varying along the critical layer can be constructed locally
from the canonical state discussed above. If the critical layer is spatially closed, then
periodicity will fix discrete nonlinear eigenvalues. Such a structure could be used to
describe large-azimuthal-wavenumber VWI states for Hagen–Poiseuille flow, although
this possibility is not investigated further here.

Now consider the energy density function of a wave travelling with the local speed
of the flow at position y⇤ for this localized problem. The energy per unit mass per unit
wavenumber of the wave

E ⇠ �⇤u0 ·u0/(4⇡), (4.4)

where �⇤ is a characteristic wavelength in the x–z plane, inversely proportional to
wavenumber. The viscous dissipation

� ⇠ ⌫U2
y⇤/�

⇤2, (4.5)

where Uy⇤ = @y⇤U(y⇤)�⇤ is a typical flow speed and ⌫ is kinematic viscosity. Adopting
R̃ = Uy⇤�

⇤/⌫ as the Reynolds number, we know that, away from the critical layer, the
wave is of magnitude Uy⇤ R̃�7/6, so that

E ⇠ U2
y⇤ R̃�7/3�⇤ = (U2

y⇤⌫
2/3⌫5/3�⇤)/(U7/3

y⇤ �⇤7/3). (4.6)

Substituting ⌫2/3 = �⇤4/3�2/3/U4/3
y⇤ above, we obtain

E ⇠ R̃�5/3�⇤5/3�2/3. (4.7)

This is the Kolmogorov 5/3 rule with the important caveat that the result is multiplied
by a dimensionless quantity involving the wavelength. It is interesting to note the
appearance of the Kolmogorov cascade scale, though the full significance of this is yet
to be determined.

5. Conclusion

Building on evidence obtained from lower branch equilibrium VWI structures in
plane Couette flow and using scaling arguments, we have two new outcomes for
large-wavenumber and large-Reynolds-number applications of VWI theory: first, that
it leads to self-similar equilibrium structures relevant to arbitrary shear flows, far
from any bounding wall; and second, that the relationship between wave energy and
dissipation rate of these structures reproduces a scaling similar to Kolmogorov’s �5/3
law for turbulent flows (Kolmogorov 1941). Kolmogorov derived his result based on
dimensional arguments concerning energy transfer at high wavenumbers, whereas our
analysis examines a specific physical mechanism in a critical layer. Though we have
considered a single wave, the theory can be extended over a sum of waves, with
each wave driving shear stress discontinuities across its associated critical layer. In that
case the E ⇠ �⇤5/3 scaling describes the energy density necessary to maintain the local
streak flow supporting the wave. As such, the vertical structure of the streak adjusts to
make all the waves neutral, so different waves communicate through their local effect
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on the streak. This suggests that a relationship may exist between the �5/3 law and
the critical layer structure of waves predicted by VWI theory.
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