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Abstract

A novel energy-based reduced-order model with the ability of
isolating specific dynamics in turbulent pipe flow is investi-
gated. The methodology to construct the model is discussed
in detail, highlighting the limitations of the approach and future
directions. Present results open up a new possibility for repre-
senting turbulent flows and performing flow control studies.

Introduction

Reduced-order models able to represent turbulent flows are a
necessity in the context of flow control/manipulation towards
energy efficiency associated with turbulent skin friction. A clear
justification is given by the unaffordable computational require-
ments for the direct numerical simulation of turbulent flows
of industrial relevance, or even canonical flows at very high
Reynolds numbers. This means that computationally-cheaper
low-dimensional models able to represent the main features of
turbulent flows must be employed in flow control investigations.

In this context, the recent success of the resolvent model devel-
oped by McKeon & Sharma [6] showing that the interaction of
a small subset of resolvent modes driven by linear response-
forcing mechanisms can represent the behavior of coherent
structures [8], potentially provides a novel low-dimensional
manner of describing turbulent flows. This model consists of
a gain analysis in Fourier space of the resolvent operator that
linearly relates the fluctuating velocity and the nonlinear terms
that sustain the turbulence. Also, it differs from other models in
its non-empirical construction; it is solely based on the Navier–
Stokes equations and the mean flow, which needs to be provided
and restricts the allowable resolvent modes. However, the main
drawback of the model is that it only provides information on
what flow structures are most amplified; it ignores the quan-
tity of nonlinear forcing being amplified. In other words, the
resolvent modes needs to be weighted in order to quantitative
represent the flow field.

Moarref et al. [7] were the first to construct a low-order de-
composition based on resolvent modes able to represent the
turbulent velocity spectra of a high Reynolds number chan-
nel flow. The weightings of the resolvent modes were ob-
tained as the solution of a convex optimization problem, formu-
lated to fit a given direct numerical simulation (DNS) spectra.
They showed that although 2 resolvent modes per wavenumber-
frequency combination are enough to capture the main features
of the turbulent spectra, reconstructions consisting of 12 op-
timally weighted resolvent modes per wavenumber-frequency
combination still present deviation errors of order 20%. In this
aspect, the work of Bourguignon [2] reproducing the stream-
wise energy of a DNS dataset using a modification of the resol-

vent modes and the proper orthogonal decomposition (POD) of
turbulent pipe flow carried out by Duggleby et al. [4] are also
worth of consideration.

Another important property of this model is that the clear link
between resolvent modes and the flow dynamics allows the iso-
lation of specific coherent structures. In this same context,
Gómez et al. [5] provided further evidence of the feasibility of a
low-order decomposition based on the resolvent analysis by ex-
plaining the sparsity characteristics of the model, intimately re-
lated to low-dimensionality. They showed that the sparse ener-
getically dominant frequencies in turbulent pipe flow observed
by Bourguignon et al. [3] are caused by a critical layer mech-
anism [6] as consequence of the discrete treatment of turbu-
lent flows. The link between amplification and energy shown
in their numerical experiments suggests that the most amplified
resolvent modes may have the largest energy content.

The present work provides the first steps towards a full recon-
struction of turbulent flows by means of coupling a DNS solver
with the resolvent model. For this purpose, a novel numeri-
cal methodology involving Fourier analysis and the projection
of response modes onto DNS data has been developed in order
to estimate the weights of the resolvent modes and hence, to
provide a low-order representation of turbulent flows using the
resolvent model.

Numerical Method

A spectral element–Fourier numerical discretization in cylin-
drical coordinates [1] with a second-order velocity-correction
scheme for time integration has been employed to solve the
incompressible Navier–Stokes equations in non-dimensional
form,

∇ · û = 0 (1)
∂û
∂t

+ û ·∇û = −∇p+Re−1
∇

2û+ fx (2)

where Re is the Reynolds number based on the bulk velocity and
pipe diameter D = 2R, û = (u,v,w) is the velocity vector ex-
pressed in cylindrical coordinates (x,r,θ) and p is the modified
pressure. A constant streamwise body force fx acts as a con-
stant streamwise pressure gradient to ensure that the velocity
and pressure are streamwise periodic. A (x,r)-domain of length
L = 2πD is employed and a Fourier discretization is applied in
the periodic azimuthal direction. This permits writing the ve-
locity obtained from the DNS as a sum of azimuthal Fourier
modes v̂n(x,r, t)

û(x,r,θ, t) = ∑
±n

v̂n(x,r, t)einθ . (3)



A DNS dataset of pipe flow at Re = 10000 consisting on 1200
snapshots equispaced in T ∼ O(50) wash-out times has been
generated for the present work. Given that the present pipe
mean flow obtained from this DNS dataset is one-dimensional,
u0 = (u0(r),0,0), it may appear inefficient to introduce a two-
dimensional formulation for a smooth straight pipe flow. How-
ever, this is done for two reasons: to make extensive use of
equation (3), avoiding significant post-processing of DNS data,
and to facilitate the selection of most amplified modes by not ex-
ploiting the homogeneity in the axial direction. This means that,
as opposed to the original one-dimensional resolvent formula-
tion [6], the axial coordinate x is not Fourier-transformed into
an axial wavenumber k, thus the fluctuating velocity and non-
linear terms are functions of both radial and axial coordinates.
This two-dimensional treatment is explained in detail next.

A Fourier decomposition of the fluctuating velocity u = û−u0
reads

u(x,r,θ, t) = ∑
±n

∫
ω

un,ω(x,r)ei(nθ−ωt)dω + c.c. , (4)

where n is the non-dimensional azimuthal wavenumber, ω/2π is
the temporal linear frequency and c.c. denotes complex conju-
gate. The complex conjugate is added because the right hand–
side of equation (4) needs to be real. As a consequence, the
following symmetries apply in the (n,ω) Fourier modes

un,ω = (un,ω,vn,ω,wn,ω) (5)
u−n,ω = (un,ω,vn,ω,−wn,ω) (6)
un,−ω = (u∗n,ω,v

∗
n,ω,−w∗n,ω) (7)

u−n,−ω = (u∗n,ω,v
∗
n,ω,w

∗
n,ω) . (8)

In a similar way, the nonlinear convective terms are Fourier-
transformed as fn,ω = (u · ∇u)n,ω. A manipulation of the
Navier–Stokes equation (2) with the Fourier decompositions in
equation (4) yields the linear relation

un,ω(x,r) = Hn,ωfn,ω(x,r) , (9)

for each (n,ω) combination. The operator Hn,ω is known as the
resolvent and only depends on the mean flow. The resolvent acts
as a transfer function between the fluctuating velocity and the
nonlinear terms, in which the nonlinear terms are considered
as the forcing that drive the turbulent fluctuations. A singular
value decomposition (SVD) of the resolvent operator

Hn,ω = ∑
m

ψψψn,ω,mσn,ω,mφφφ
∗
n,ω,m (10)

provides an amplification relationship between a set of or-
thonormal singular response modes ψψψn,ω,m and singular forcing
modes φφφn,ω,m via the magnitude of the corresponding singular
value σn,ω,m. Here, the subscript m denotes the order of resol-
vent mode. To relate this gain analysis to the velocity fields,
each Fourier projection of the nonlinear terms is decomposed
as a sum of singular forcing modes

fn,ω = ∑
m

χn,ω,mφφφn,ω,m (11)

where the unknown forcing coefficients χn,ω,n represent the
nonlinear interactions sustaining the turbulence. The fluctuat-
ing velocity field is then reconstructed as a weighted sum of
singular response modes

u(x,r,θ, t) = ∑
ω

∑
n

∑
m

an,ω,mψψψn,ω,m(x,r)e
i(nθ−ωt) , (12)

where the modes complex amplitudes

an,ω,me−iωt =
∫

ω+∆ω/2

ω−∆ω/2
χn,ω′,mσn,ω′,me−iω′tdω

′ (13)

are defined as the product of the nonlinear forcing and the resol-
vent amplifications integrated in frequency over a frequency bin
∆ω with the purpose of discretizing the integral in frequency.
Further details on the two-dimensional resolvent formulation
are given by Gómez et al. [5].

As previously discussed, the missing information from the
model are the complex amplitudes an,ω,m which here are ob-
tained from the DNS dataset. By coupling the DNS solution in
equation (3) and the resolvent model in equation (12), we obtain
the relation

v̂n(x,r, t) = ∑
±ω

∑
m

an,ω,mψψψn,ω,m(x,r)e
−iωt , (14)

for each azimuthal wavenumber n. Equation (14) is premulti-
plied by the complex conjugate of the mode corresponding to
frequency η and SVD index q and integrated over the (x,r)-
domain Ω ∫

Ω

ψψψ
∗
n,η,q(x,r) · v̂n(x,r, t)dΩ =∫

Ω
∑
ω

∑
m

an,ω,mψψψ
∗
n,η,q(x,r) ·ψψψn,ω,m(x,r)e

−iωtdΩ , (15)

where dΩ = rdrdx. Making use of the orthonormality of the
resolvent modes in Ω, the following scalar equation is obtained

Pn,η,q(t) = an,η,qe−iηt +∫
Ω

∑
ω6=η

∑
m6=q

an,ω,mψψψ
∗
n,η,q(x,r) ·ψψψn,ω,m(x,r)e

−iωtdΩ , (16)

where Pn,ω,m(t) is denoted as the temporal projection coeffi-
cients and correspond to the evolution in time of the projection
of response modes onto DNS snapshots. The amplitude coeffi-
cients an,ω,m are obtained by estimating the power spectral den-
sity (PSD) of the temporal projection coefficients Pn,ω,w(t) at
the corresponding frequency bin ∆ω. Welch’s method is em-
ployed for this purpose, which in a simplified manner reads

a∗n,ω,man,ω,m ≈
∫

ω+∆ω/2

ω−∆ω/2
PSD(Pn,ω,w(t))dω . (17)

Note that as a consequence of the symmetries in equation (5)-
(8), it follows that

an,ω,m = a∗−n,−ω,m (18)

an,−ω,m = a∗−n,ω,m (19)

thus only modes (n,ω) and (n,−ω) need to be projected.

This energy-based approach do not recover the phase of the am-
plitude coefficients an,ω,m. To obtain a representative phase
of the amplitudes, the DNS azimuthal modes are Fourier–
transformed in time as

v̂n,ω = lim
T→∞

1
T

∫ T

0
v̂n(x,r, t)eiωtdt ≈

∑
m

χn,ω,mσn,ω,mψψψn,ω,m(x,r) (20)



in which orthonormality in time is assumed for a value of T ∼
O(50) wash-out times. Equation (20) contains 3N scalar equa-
tions (degrees of freedom in DNS) and m unknowns, thus the
problem is solved using a least-squares approach. The pseudo-
inverse of a 3N×m matrix ΨΨΨn,ω whose m rows are the response
modes ψψψn,ω,m is computed to obtain

X = ΨΨΨ
+
n,ωv̂n,ω (21)

in which the m× 1 vector X contains a least-squares approxi-
mation of χn,ω,mσn,ω,m. We highlight the subtle distinction be-
tween coefficients an,ω,m obtained by projections and the coef-
ficients χn,ω,mσn,ω,m computed via least-squares. The energy
contained in each frequency bin ∆ω is taken into account for
the obtention of the an,ω,m coefficients while the χn,ω,mσn,ω,m
are only useful for providing a representative phase for the
amplitudes. And thus, the validity of the relation an,ω,m '
χn,ω,mσn,ω,m∆ω depends on the quality of the least-square ap-
proximation.

Results

Figure 1(a) present a comparison between the principal resol-
vent amplification σn,w,1 obtained via the SVD of the resolvent
in equation (10) and Figure 1(b) shows the amplitude coeffi-
cients an,w,1 recovered by the projection of the corresponding
principal resolvent modes onto the DNS dataset.
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Figure 1. Distribution of (a) resolvent amplification σn,w,1 (b) ampli-
tude an,w,1 in the energetically active subset of azimuthal wavenum-
bers n and frequencies ω/2π for the first singular vector m = 1 at
Re = 10000.

A clear correspondence between amplification and energy is ob-
served. The sparsity of amplification in frequency is transferred
to the energy, although the nonlinear terms play a major role in
smoothing the sparsity, consistently with the findings of Gómez
et al. [5]. In order to assess the importance of the most am-
plified modes, a comparison between the azimuthal modal en-
ergies obtained from this model and the ones provided by the

DNS dataset has been carried out. The energy of each azimuthal
mode from the DNS is defined as

En = lim
T→∞

1
T

∫ T

0

1
2A

∫
Ω

v̂∗n(x,r, t) · v̂n(x,r, t)dΩdt (22)

where A is the area of the (x,r)-domain Ω. Following the resol-
vent decomposition in equation (12), the modal energies can be
written is term of the recovered amplitudes as

En =
1

2A ∑
±ω

∑
m

a∗n,ω,man,ω,m +a∗−n,ω,ma−n,ω,m . (23)

Figure 2 shows the comparison between DNS modal energies
and the energy obtained by means of the projection method-
ology using m = 1 to m = 10 of the most amplified response
modes ψψψn,ω,m(x,r) per frequency, employing 98 equispaced fre-
quency bins. We observe that the trend of the energy cascade is
recovered and that 55.5% of the energy is recovered by the sum
of the 10 most amplified response modes per frequency, among
which the principal response mode m = 1 is the most energetic
and recovers 22.3% of the total energy. Compared to the results
of Duggleby et al. [4] at Re = 4300 in which the most ener-
getic POD mode for each (k,n) combination contains O(1%) of
the total energy, the sum of principal response mode m = 1 for
each (k,n) and all frequencies is of order O(3%). Moreover,
the sparsity in Figure 1(b) plays a major role in the energy dis-
tribution, e.g., the mode (n,ω,m) = (4,0.87,1) alone contains
0.4% of the total energy, which would be similar to the energy
contained in the corresponding POD mode at the present value
of Reynolds number Re = 10000.
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Figure 2. Modal energies En in the energetically active subset of az-
imuthal wavenumbers n for m = 1 to m = 10 most amplified singular
vectors at Re = 10000.

Note that the phase information of the amplitudes coefficients
is not required for the modal energy calculation. An example
of phase recovery by least-squares approximation of a mode
v̂n,ω(x,r) is shown in Figure 3, in which the first 100 resol-
vent modes are employed to reconstruct a Fourier mode from
the DNS. We observe that the absence of modes presenting high
axial wavenumber prevents an exact reconstruction. Neverthe-
less, increasing m or using a reconstruction based on (k,n,ω,m)



rather than (n,ω,m) could overcome this constraint at the cost
of higher DNS post-processing.
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(a) DNS: ℜ(v̂n,ω(x,r))
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(b) Reconstruction: ℜ
(
∑

100
m=1 an,ω,mψψψn,ω,m(x,r)

)
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(c) DNS: ℑ(v̂n,ω(x,r))
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(d) Reconstruction: ℑ
(
∑

100
m=1 an,ω,mψψψn,ω,m(x,r)

)
Figure 3. Contours of the (a) real and (c) imaginary streamwise veloc-
ity of v̂n,ω(x,r) modes with n = 2 and ω/2π = 0.182 and (b) real and
(d) imaginary streamwise velocity of the reconstruction using resolvent
modes

The error of this least-squares approximation en,ω is shown in
Figure 4. Despite only 3 modes are required to represent the
Fourier-transformed DNS mode with a 10% error, employing
100 modes reduces the error to only 3%. This is consistent with
the diminishing return by employing more resolvent modes ob-
served by Moarref et al. [7].
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Figure 4. Least-squares approximation error against the number of
resolvent modes m employed in the reconstruction.

Conclusions

The present results provide further evidence that the most am-
plified modes in the resolvent analysis carry the largest energy
content and that a small subset of the weighted modes using
the present approach can represent general trends of turbulent
flows. It is suggested that, if the sparsity in energy is exploited,
the present resolvent model could be competitive in a energy-
based context against POD analysis with the additional advan-
tage of isolating specific dynamics, which is highly desirable
for flow control. Future steps include the reconstruction of the
turbulent velocity spectra.
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