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Abstract

The ability to analyze and classify three-dimensional (3D) biological morphology has lagged behind the analysis of other
biological data types such as gene sequences. Here, we introduce the techniques of data mining to the study of 3D
biological shapes to bring the analyses of phenomes closer to the efficiency of studying genomes. We compiled five training
sets of highly variable morphologies of mammalian teeth from the MorphoBrowser database. Samples were labeled either
by dietary class or by conventional dental types (e.g. carnassial, selenodont). We automatically extracted a multitude of
topological attributes using Geographic Information Systems (GIS)-like procedures that were then used in several
combinations of feature selection schemes and probabilistic classification models to build and optimize classifiers for
predicting the labels of the training sets. In terms of classification accuracy, computational time and size of the feature sets
used, non-repeated best-first search combined with 1-nearest neighbor classifier was the best approach. However, several
other classification models combined with the same searching scheme proved practical. The current study represents a first
step in the automatic analysis of 3D phenotypes, which will be increasingly valuable with the future increase in 3D
morphology and phenomics databases.
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Introduction

Statistical analysis of shape is a fundamental problem that is

frequently encountered in biology. In paleontology, the bulk of

information about the prehistoric world is deduced from the shape

of fossils, whereas in developmental genetics the phenotypic

significance of genes and pathways is often inferred from shape

abnormalities. Automatic detection of phenotypic features is

hindered by the facts that 3D morphology is difficult to measure

and that the theory behind the analysis of complex structures such

as 3D surfaces or density maps is more or less in its infancy [1].

This makes shape an unfavorable source of information when

compared to other variables that can be assessed through linear or

sequential measurements (e.g. gene sequences). However, progress

in 3D data acquisition technologies suggests that in the near future

highly accurate and relatively inexpensive scanners will be widely

available, which will inevitably lead to the accumulation of large

amounts of 3D morphological data. To make effective use of these

data there will be a need for fast automated methods for

conducting searches and building descriptive and predictive

models on selected data sets.

Unlike morphological data, other types of 3D data have been

deposited in databases for some time, with examples ranging from

3D statue scans [2] to 3D CAD models [3] and biomolecular

structures [4]. 3D data repositories have facilitated interest in

analysis and retrieval by content of 3D shapes eventually leading

to experimental implementations of several search engines [5].

However, these studies have not addressed the domain of

biological 3D phenotypes, which presents a distinct case with its

own problems and objectives. In this paper we propose a method

for automated analysis and searching of 3D morphologies. In our

method we combine data mining with the latest advances in dental

shape research.

We selected mammalian teeth as the morphological system to

focus on because these structures have several attractive properties:

in any given species tooth shape is generally very consistent and

tightly regulated by genes, tooth shape is adaptive and correlates

with the physical properties of key dietary sources [6–8], tooth

shape displays great variation across taxa [9–11], and dentitions

are a classic example of the study of phenotypes with a long

tradition of often experience-based visual classification schemes.

Statistical analysis of dental shape carried out until now can be

coarsely grouped into three different approaches with the main

difference being the type of model used to represent the shape of

analyzed samples. In the most traditional approach, samples are

compared by taking sets of linear measurements of defined local

structures present on the surface of a tooth crown (e.g. shearing

quotient [12,13]). Another approach, termed geometric morpho-

metric analysis, employs a shape model that consists of a finite set

of surface points defined by local geometrical patterns [14]. These

points are called landmarks and must be detected and measured

from all objects that are compared. After detection, landmark sets

are analyzed in a sequence of well-developed procedures. To

eliminate non-shape variation, landmarks are superimposed by

recursively minimizing a given scoring function such as the mean

square distance between the corresponding points. After this,

shape differences can be described directly by the distances

between corresponding points or by partial warp scores measured

by non-linearly transforming (warping) all landmark sets to a

reference set. Both of these approaches place strict limitations on
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shape variability, since a given set of local structures or landmarks

must be detected on all samples. Partly in response to these

limitations, some researchers have recently adopted a set of tools,

termed Geographic Information Systems (GIS), originally de-

signed for landscape analysis. From a 2.5 dimensional surface

model, termed a Digital Elevation Model (DEM), GIS can

measure relief, surface orientation, drainage areas and other

topological attributes. If one switches landscape data with dental

shape data, the obtained parameters can be grouped into shape

vectors which represent morphologies in subsequent analyses [15–

20].

Our objective was to design an automated method for building

descriptive and/or predictive models given a set of 3D

morphologies, and to use these models for searching 3D databases

(Fig. 1). Since this immediately implied the use of a shape model

that can be automatically constructed from any 3D object, we used

the GIS approach for extracting topological attributes. Next, we

applied feature selection algorithms from machine learning [21] to

pick feature combinations that performed best at different tasks.

We applied this approach to two different problems: the dietary

prediction problem where the objective was to find combinations

of dental features that worked best for distinguishing the teeth of

animals in different dietary classes, and the morphotype prediction

problem where the features were selected to discriminate between

conventional dental types (carnassial, dilambdodont/tribosphenic,

selenodont, lophodont and bunodont; Fig. 2). Both problems were

evaluated on a data set of single teeth and a data set of tooth rows,

and the dietary prediction problem was additionally evaluated on

the mixed set of single teeth and tooth rows. Altogether this yielded

five different cases.

We compiled five training sets of DEMs interpolated from 3D

surface scans of upper cheek teeth of different mammalian species:

tooth-diet, a set of 42 single teeth labeled by four dietary categories;

tooth-morph, a set of 52 single teeth labeled by five dental types;

toothrow-diet, a set of 36 tooth rows labeled by four dietary

categories; toothrow-morph, a set of 36 tooth rows labeled by five

dental types, and mixed-diet, the union of the tooth-diet and toothrow-

diet sets. Compositions of the training sets are given in Table S1.

Each DEM was mapped to a set of 100 topological features using

MatLab procedures. We then coupled three different feature

selection schemes (rank search, bidirectional best-first search and

repeated bidirectional best-first search) with seven different

classification models (three basic types: naive Bayes, decision tree

and k-nearest neighbor) to perform a variety of data mining

searches (Fig. 1). Under a 10-fold cross validation scheme, each

search yielded a feature combination that is a local minimum for

predicting dietary or dental type category under the classifier used

for guiding the search. This combination of 21 data mining

searches was performed on all training sets, with the exception of

mixed-diet set for which we did not perform the repeated searches.

Using the classifiers obtained by the data mining, we

constructed ‘ToothKit’, a stand-alone Java application for working

with unannotated data sets of 3D morphologies. The application

calculates the topological attributes for a new morphology and

then classifies it according to one of the classifiers or finds other

morphologies in a data set that are most ‘similar’ to the given

morphology according to the selected classifier (see Discussion).

This can be seen as a proof of concept to automatic phenotype

analyzers for large 3D data sets.

Results

Our results showed that for all five training sets the same basic

set of features combined with an appropriate feature selection

schemes yielded accurate classifiers in a very short time. In

practice, this demonstrates that relationships between shape and

categorical factors of interest can be extrapolated from a given

training set to new data in an automated fashion. Search results

(Table S2) were used to compare efficiency and accuracy of the

examined searching options.

Comparing feature selection schemes
Feature selection schemes were compared by averaging cross

validation error rates (CVER), sizes of feature sets found and

searching times across the classification models (Table S2). The

search based on feature ranking had consistently lower perfor-

mance than the best-first searches. When averaged across

classifiers it was 8%, 7%, 11%, 6% and 6% less accurate than

the best-first search, for the tooth-diet, toothrow-diet, mixed-diet, tooth-

morph and toothrow-morph training sets respectively.

Repeating the best-first search from 50 random subsets

improved performance only slightly: by 4%, 7%, 1% and 3%

for the tooth-diet, toothrow-diet, tooth-morph and toothrow-morph training

sets respectively. As expected, a best-first search initiated from an

empty subset found on average the smallest subsets. Subsets found

by repeatedly initiating a best-first search from random starting

points were about two to three times larger and those found by

rank search from two to four times larger.

The linear rank search was the fastest, with average searching

times 14, 10, 34, 18 and 9 sec for the tooth-diet, toothrow-diet, mixed-

diet, tooth-morph and toothrow-morph training sets respectively. Best-

first search was at most twice as slow, with corresponding times

being 23, 18, 72, 29 and 16 sec. Repeated best-first search was

from 700 to 2500 times slower with average searching times

ranging from two to six hours.

Comparing classification models
1-NN (1-nearest neighbor) was consistently the best classifier for

all five problems indicating the mosaic-like partition of the

underlying feature space. Performances of other NN models

varied across different problems from as good as 1-NN to several

times less accurate. Differences between the best generative (naive

Bays with multivariate kernel (NB-N) and normal (NB-K)) and the

best non generative (C4.5 decision tree and NN) models were 5%,

8%, 12%, 5% and 4% for tooth-diet, toothrow-diet, mixed-diet, tooth-

morph and toothrow-morph training sets respectively.

Accuracy (accuracy = 1–CVER) of the best classifiers was at

least 85% for all five training sets. Best classifier for toothrow-morph

training set was 97% accurate, for tooth-morph training set 94%

accurate and for tooth-diet, toothrow-diet and mixed-diet training sets

93%, 91% and 85% accurate respectively. Performance on

samples outside the training sets can be evaluated using the

ToothKit software that is supplied with the best generative and

non generative classifiers that are asterisked in Table S2 (see

ToothKit).

Comparing features
We were also interested in which features were used by different

classification tasks. We assumed that this is best revealed by the

probability distribution of features in the selected subsets averaged

across all subsets selected for a given classification task. The

probability distribution of a feature in a set is its frequency in that

set (0 or 1) normalized by the length of the set. The top ten features

ranked by their mean probability are given in Tables 1–5 and the

number of matches between top ten features of different training

sets are given in Table 6.

The top ten feature sets were distinct for each of the five

classification problems with only partial overlaps. There were no
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common features between tooth-diet and toothrow-diet top tens, but,

quite expectedly, 4 and 3 common features between top tens of

these sets and the mixed set respectively. This appears to be good

evidence of the repeatability of feature selection. Top ten features

for dietary prediction and dental type prediction had several

matches. This is particularly the case for the mixed-diet problem

(Table 3) where half of the top ten features matched those of the

tooth-morph problem (Table 4). Of the 50 features in the top ten sets

31 were unique, indicating a wide exploitation of the underlying

feature pool.

Figure 1. Outline of procedures for data mining of morphology. (a) Seven main steps from 3D data acquisition and processing, feature
extraction, data mining procedures (classifiers and feature selection) to possible applications of the method. (b–d) illustrations of feature extraction
methods. (b) Section areas and section convolutions. (i) Tooth (upper molar of Rhinolophus blasii) is divided into 10 equal sections perpendicular to
the z-axis. Upper and lower bounds (relative to the zApex) for every second section are given along the z-axis. (ii) Occlusal view with every second
section highlighted in red, with areas and convolutions for each section. (c) Orientation patch count (OPC). (i) Surface of the tooth (upper molar of
Felis silvestris) is grouped into surface vertices according to their orientation in the xy-plane (ii). (iii) Vertices are further grouped according to their 4-
cell connectivity followed by (iv) exclusion of small patches. (v) The resulting OPC value is the final number of patches. (d) The effect of surface folding
and elongation on surface relief. Relief is calculated by dividing the 3D surface area by its 2D projected area. A flat, unspecialized surface (i) has a relief
of 1. If the surface is folded (ii), such as in Otomys irroratus, or elongated (iii), such as in Felis silvestris, its relief increases.
doi:10.1371/journal.pone.0001742.g001
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Discussion

Here, we have demonstrated how the analysis of 3D phenotypes

can be automated: the researcher selects phenotypes for the

training set, converts them to DEMs, labels samples by the

categorical variable of interest, extracts features, runs feature

selection and applies the obtained classifiers to new samples.

Notably, most of these steps are automated, where only the

selection and labeling of the training set need to be carried out by

the investigator. The selection of samples can be further facilitated

by gathering 3D phenotypes into databases, which has already

started to happen [22–24] (also see http://www.digimorph.org/).

A couple of the features show distinctly higher occurrences in

the training sets. D2dist mean (mean distance between two

randomly selected points; see Methods) is by far the most frequent

for the tooth-diet problem (and most frequent for the mixed-diet

problem), which appears to indicate some differentiation in this

feature with diet. For the toothrow-diet, a measure of MROPC

(orientation patch count; see Methods) is the highest, which follows

earlier findings of a correlation between OPC and diet [19]. The

most frequent features for the other problems are a mixture of

MROPC, section areas and section convolutions. The surface

relief feature has the lowest frequency of the four basic types of

feature extraction. Overall, it seems that no single feature is

Figure 2. Dental types illustrated by samples from tooth-morph and toothrow-morph sets. Dental types: Car, carnassials; Dil-Trib,
dilambdodont and tribosphenic; Sel, selenodont; Loph, lophodont; Bun, bunodont; CarTr, carnassial tooth row; SelTr, selenodont tooth row; LophTr,
lophodont tooth row; BunTr, bunodont tooth row. Sample morphologies: Car, Canis lupus u-p4; Dil-Trib, Rhinolophus blasii u-m2; Sel, Alcelaphus
buselaphus u-m2; Loph, Berylmys bowersi u-m1; Bun, Pongo pygmaeus u-m2; CarTr, Canis lupus u-p2m12; SelTr, Alcelaphus buselaphus u-tr; LophTr,
Berylmys bowersi u-m1-3; BunTr, Pongo pygmaeus u-tr. u, upper; m, molar; p, premolar. Upper right teeth and tooth rows; anterior to the right.
doi:10.1371/journal.pone.0001742.g002

Table 1. Features used in the tooth-diet training set.

ID Feature P

99 D2dist-100000-mean 0.2

15 sectionConv 210 25 25 0.04

42 MROPC 25 20.1 29 0.04

22 MROPC 24 20.002 29 0.03

25 MROPC 24 20.008 29 0.03

57 MROPC 27 20.006 29 0.03

16 sectionConv 210 25 26 0.03

1 sectionAreas 210 25 21 0.03

73 MROPC 28 20.06 29 0.03

98 relief 0.02

Top ten features for the tooth-diet training set ranked by their mean probability
distribution. ID, feature ID; Feature, procedure name including parameters; P,
mean value for probability density function rounded to the nearest percent.
doi:10.1371/journal.pone.0001742.t001

Table 2. Features used in the toothrow-diet training set.

ID Feature P

50 MROPC 26 20.04 29 0.1

6 sectionAreas 210 25 26 0.06

9 sectionAreas 210 25 29 0.06

4 sectionAreas 210 25 24 0.05

93 MROPC 210 20.02 29 0.04

5 sectionAreas 210 25 25 0.04

61 MROPC 27 20.04 29 0.04

3 sectionAreas 210 25 23 0.04

13 sectionConv 210 25 23 0.03

7 sectionAreas 210 25 27 0.03

Top ten features for the toothrow-diet training set ranked by their mean
probability distribution. See Table 1 for definitions.
doi:10.1371/journal.pone.0001742.t002
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outstandingly useful in the classification problems, and it is the

combination of features that is the most important in categorizing

the morphologies.

Comparisons of feature selection schemes, classification models

and features revealed several important aspects. Compared to

feature ranking, direct evaluation of feature subsets produced

clearly better classifiers at a moderate cost of approximately

doubling the searching time. Repeating the best-first search, on the

other hand, does not appear beneficial as a thousand-fold increase

in computation time is traded for only a moderate improvement in

accuracy. NN models were consistently the best for all five

problems, and were on average two times better than the

generative NB models. However, in terms of absolute accuracies

both NB and Tree/NN models performed well for all but the

mixed set, with CVER ranging from 7% to 15% and from 3% to

9% respectively. Presumably due to its large size, mixed-diet was a

difficult set for both NB and tree/NN models, with the best

classifiers scoring 27% and 15% respectively. A comparison of

features used by different classification tasks showed that the

designed feature pool was exploited to large extent (31 of the 50

top ten features were unique) and that, in spite of partial overlaps,

different problems favored different features.

There are at least two straight-forward applications for the

classifiers we obtained. First, the classification model can be used

to extrapolate relationships between shape and the variable of

interest from the training set to new instances. This has immediate

applications in paleontology where classifiers built on extant

species can be used to reconstruct diet and other variables for

extinct species. Moreover, such reconstructions will be objective as

they will not include subjective assessments beyond the selection of

the training sets. Another application is developmental biology

where one central aim is to link abnormal shapes to underlying

developmental mechanisms, and our approach can be used

together with forward genetics to screen new phenotypes for

which the underlying development is not yet known.

Second, using these classifiers we can implement retrieval by

content for unannotated databases of 3D phenotypes, i.e. finding

the k morphologies in the database that are most similar to either a

specific query or specific query morphology [21]. Examples of

such queries include: searching for extant dental morphologies

that are most likely to be specialized in the same diet as a given

extinct sample; finding mutant phenotypes that are most likely to

be linked to a particular mutation; or simply finding the

morphologies that are most similar in shape to a given query

morphology. These types of queries are based on the measure of

similarity, and classification can be used to define that measure

[21]. We can return all objects that are predicted to be in the same

Table 3. Features used in the mixed-diet training set.

ID Feature P

99 D2dist-100000-mean 0.11

7 sectionAreas 210 25 27 0.1

2 sectionAreas 210 25 22 0.07

42 MROPC 25 20.1 29 0.04

1 sectionAreas 210 25 21 0.03

6 sectionAreas 210 25 26 0.03

9 sectionAreas 210 25 29 0.03

54 MROPC 27 20.001 29 0.03

11 sectionConv 210 25 21 0.03

15 sectionConv 210 25 25 0.03

Top ten features for the mixed-diet training set ranked by their mean
probability distribution. See Table 1 for definitions.
doi:10.1371/journal.pone.0001742.t003

Table 4. Features used in the tooth-morph training set.

ID Feature P

24 MROPC 24 20.006 29 0.07

6 sectionAreas 210 25 26 0.07

11 sectionConv 210 25 21 0.06

2 sectionAreas 210 25 22 0.06

100 D2dist-100000-std 0.05

25 MROPC 24 20.008 29 0.05

4 sectionAreas 210 25 24 0.05

7 sectionAreas 210 25 27 0.04

99 D2dist-100000-mean 0.04

73 MROPC 28 20.06 29 0.04

Top ten features for the tooth-morph training set ranked by their mean
probability distribution. See Table 1 for definitions.
doi:10.1371/journal.pone.0001742.t004

Table 6. Overlap of features in the five training sets.

tooth-diet
toothrow-diet

mixed-diet
tooth-morph

toothrow-morph

tooth-diet x 0 4 3 1

toothrow-diet x 3 3 2

mixed-diet x 5 2

tooth-morph x 1

toothrow-morph x

The number of exact matches between top ten features of different training
sets.
doi:10.1371/journal.pone.0001742.t006

Table 5. Features used in the toothrow-morph training set.

ID Feature P

15 sectionConv 210 25 25 0.06

3 sectionAreas 210 25 23 0.06

54 MROPC 27 20.001 29 0.05

65 MROPC 28 20.001 29 0.05

4 sectionAreas 210 25 24 0.05

95 MROPC 210 20.06 29 0.05

39 MROPC 25 20.04 29 0.05

62 MROPC 27 20.06 29 0.04

43 MROPC 26 20.001 29 0.04

80 MROPC 29 20.008 29 0.03

Top ten features for the toothrow-morph training set ranked by their mean
probability distribution. See Table 1 for definitions.
doi:10.1371/journal.pone.0001742.t005
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category as the query morphology, or we can extend this approach

by defining similarity as a function of posterior probabilities. For

example

sim dm,qmð Þ~1{
EuclideanDist dist dmð Þ,dist qmð Þð Þffiffiffi

2
p ð1Þ

where dm is the database morphology, qm the query morphology,

and dist the posterior distribution assigned by the employed

classifier. To illustrate this idea, ToothKit implements a search

function that allows the user to search a disk using any of the

classifiers supplied with the program and the similarity measure as

defined in the above equation. Preliminary tests using tooth-morph

and toothrow-morph classifiers suggest that these searching schemes

return morphologies that are considered relevant in terms of

general shape similarity. In future studies, performance can be

assessed more formally by precision-recall and other measure-

ments.

Whereas our study brings automated approaches into the

domain of biological shape analysis, it obviously does not provide a

foolproof technique for all morphologies or classification tasks.

Biological 3D objects, which vary greatly among species and from

individual to individual, are especially challenging for statistical

comparison and major advances in theory of this field are needed

before any two 3D surfaces or solids can be compared within a

universal framework. However, this study does demonstrate that

for a limited domain of 3D shapes it is possible, and actually quite

straightforward, to define a set of features that will provide a basis

for automated statistical analysis. In addition to teeth, GIS-like

feature extraction is applicable to many other objects that

approximate 2.5D surfaces, both biological [turtle shells, beetle

carapaces, mollusk shells, faces, bird beaks, insect eyes, skin

wrinkling, joint surfaces, fish body shapes and footprints] and non-

biological (land forms). Whereas many of the features used on

teeth to build classifiers may be applicable to other shapes, it

remains to be seen how successful these features would be at

classifying diverse biological shapes. Interestingly the D2 shape

function (the mean distance between two random surface points),

which was successfully incorporated into several classifiers, was

adapted from a general purpose comparison approach designed to

discriminate between 3D objects that have nothing to do with

teeth (such as CAD models for cars). This suggests that features do

not have to be system-specific. On the other hand, the frequently

used features in classifications may be helpful in identifying

functionally significant aspect of morphology. For example, the

OPC was previously suspected to be informative in distinguishing

diet [19], which is now supported by our analysis.

Yet another consideration is the efficiency of automated 3D

analysis in comparison to trained persons. Our informal tests

suggest that expert opinion (with over 20 years’ experience) is at

least as accurate as our automated routines. However, expert

opinions do not provide implicit probabilities and are limited to a

small set of (traditional) classification problems. Additionally, with

an increasing number of teeth, the automated routines becomes

more efficient, especially if we consider that each new classification

problem would require manual reinspection of each specimen by a

person. Therefore, we envision that these new types of

morphological analyses promise not only informative ways for

classifying morphologies, but may also be useful in exploring

classic questions of morphospace occupation, and tempo and

mode in morphological evolution (e.g. [9,31,32]).

When implemented in conjunction with a 3D morphological

database, this approach has the potential to boost the application

of 3D shape analysis, since even non-experts will gain the ability to

build ‘‘on the fly’’ descriptive/predictive models from arbitrary sets

of 3D scans. Advances along these lines will push the development

of 3D morphology analysis towards the ease of the current

sequence analysis.

Methods

Classifying samples
For tooth-diet and toothrow-diet sets, morphologies were

labeled according to the dietary preferences of the corresponding

species (estimated from the literature [25]): vertebrates (V),

invertebrates (I), grass/foliage (G–F), and seeds/fruits/succulent

plant tissue (S-F-SPT). In tooth-morph samples were labeled by

conventional dental types [10,11]: carnassials (Car), dilambdodont

and tribosphenic (Dil-Trib), selenodont (Sel), lophodont (Loph),

and bunodont (Bun). For toothrow-morph, samples were labeled by

the dominant dental type: carnassial tooth row (CarTr), selen-

odont tooth row (SelTr), lophodont tooth row (LophTr), and

bunodont tooth row (BunTr). The test sets were comprised of teeth

from members of the Orders Artiodactyla, Carnivora, Chiroptera,

Perissodactyla, Primates and Rodentia (see Table S1 for full

species list).

Digitizing morphologies
In the following text we use a Cartesian coordinate system, with

x standing for buccal to lingual, y for posterior to anterior and z for

cervical to occlusal vectors. Aproj refers to the xy-projection area of

the morphology.

Samples were scanned using Nextec Hawk 3D laser scanner and

Roland Dr Picza needle scanner at between 10 and 50 mm

resolution, depending on the size of the sample. Scans were added

for interactive viewing in our online database MorphoBrowser (see

http://morphobrowser.biocenter.helsinki.fi/). Before scanning,

teeth were oriented manually to maximize crown-base projection

in the xy-plane. Scanning produced unordered point cloud files

that were further processed to digital elevation models (DEMs). A

2D outline of the single tooth/tooth row was selected to separate

the analyzed surface from the background of the maxilla bone and

the fixative material. This was done by picking a sequence of

boundary points using Surfer Version 8 software. Boundary points

were then used to delete the background part of the point cloud in

Matlab Version 7. The remaining surface points were interpolated

to DEM using triangle-based cubic interpolation implemented in

Matlab griddata function. Artifacts in concave regions of the surface

boundary produced during surface interpolations based on convex

hulls were deleted using boundary points. The total resolution of

DEMs (number of rows6number of columns) was set to be

approximately 10 000 points for single teeth and 50 000 points for

tooth rows by setting digital grid resolution as a function of the

dimensions of the point cloud’s bounding box:

res~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx|dy

N

r
ð2Þ

where delta x and delta y are the point cloud’s bounding box

dimensions in the xy-plane, N is 10 000 or 50 000 depending on

the sample, and res is the resolution of the digital grid.

Pilot studies using various resolutions were undertaken to find a

middle resolution that was not so low as few of the major features

were not present (such as cusps and crests), but not so high as to

either give greater emphasis to very small features or to slow down

scan processing. For other data types (e.g. skin wrinkling or joint

surface shape), other resolutions may be more applicable.

Data Mining of 3D Phenotypes
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Feature extraction
To extract features we implemented five Matlab procedures

with each procedure designated to a particular feature type. The

exact definition of a feature could be modified by varying values of

input parameters. Using these, we extracted 100 features (for the

full list of feature names and IDs see Table S3). Procedures were

designed to yield features invariant to translation, scale, reflection,

and rotation in the xy-plane.

The initial set for this study was chosen after experimentation

with a larger number of different features. In these pilot studies,

several of the features were not found to be informative for the

classification tasks and so were excluded from the current study,

with the most informative ones being retained. For different types

of data or classification tasks, these rejected features could be

tested; however, we believe that much of the variation in 2.5D

shapes will be captured by the features used here.

Section area and convolution (features 1–10 and 11–20
respectively)

Section areas were calculated by slicing the tooth in the xy-

plane along the z axis. Starting from the maximum z value zApex

and ending at the point

zApex{0:8|
ffiffiffiffiffiffiffiffiffiffi
Aproj

p
ð3Þ

morphologies were divided into 10 main sections, and the area of

each main section was calculated as the mean of 5 subsections

(Fig. 1B). Returned values were normalized by the xy-projection

area.

For each section we also calculated convolution as defined by

conv Sð Þ~ PSectionffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Asection

p ð4Þ

where PSection is the summed perimeter, and ASection the summed

area, of all 2D objects in a given section. Convolutions of the main

sections were averaged in the same fashion as the area.

These features are referred using ‘‘sectionAreas -p1 -p2 -p3’’ or

‘‘sectionConv -p1 -p2 -p3’’ syntax, where the name of the procedure

is followed by the number of main sections (p1), the number of

subsections (p2) and the index of the section examined (p3).

Maximum of Rotated Orientation Patch Count (MROPC,
features 21–97)

OPC is a measure of surface discontinuity that is quantified as

the number of surface patches with different orientations in the xy-

plane (Fig. 1C). This measure has been shown to correlate with the

amount of mechanical processing of food required in both

carnivorans and rodents [19]. OPC was calculated in four steps.

First, surface normals were calculated for all surface vertices.

Second, surface vertices were divided into a given number of

orientation classes (noc) based on the angle between the xy-

component of the corresponding normal and the reference vector.

Third, vertices belonging to the same orientation class were

clustered into patches according to 4-cell connectivity. Finally,

patches smaller then a threshold value of minps*Aproj were

discarded, where minps is the minimum patch size, and the

number of the remaining patches was returned as the OPC.

To improve invariance against rotation in the xy-plane several

OPC values were calculated by iteratively shifting the reference

vector counterclockwise. The reference vector, which initially

points along the x-axis, was iteratively shifted by 9 degrees (the da

parameter) counterclockwise until it was shifted to the next

orientation class as defined by the reference vector’s initial

direction. Examinations of the variance for mixed-diet showed that

the maximum value from this rotation series is less affected by

rotation (data not shown), hence we used the Maximum of

Rotated Orientation Patch Count (MROPC).

We covered a wide range of MROPC definitions by iterating noc

from 4 to 10 and minps through values 0.001, 0.002, 0.004, 0.006,

0.008, 0.01, 0.02, 0.04, 0.06, 0.08 and 0.1, producing 7611 = 77

variations. These features are referred using ‘‘MROPC-noc-mips-da’’

syntax.

In this study, the da variable is constant and is merely shown to

make feature definition transparent. The parameters minps and noc

have a crucial effect on the type of patches that are counted. For a

surface with large spatial variance, patch count will grow as a

function of noc since noc defines the angular resolution at which

neighboring patches can be discriminated. The rate of change for

the patch count relative to noc is thus dependent on the spatial

variance of the surface at different scales. This can explain why

several MRPOC measures are selected: they capture the rate of

change or the boundary resolution beyond which no change

occurs. minps values, on the other hand, affect the type of patches

that the patch count represents: for small values, any patches are

counted, whereas for larger values, only large and probably flat

ones are. However, we have not investigated in detail the behavior

of MROPC as a function of its parameters.

Note that even though MROPC are more numerous than other

descriptors, this does not produce bias towards selecting this

feature type. Best first search feature selection algorithm examines

all features during each selection step, and thus is not biased by the

share number of any particular type. On the other hand,

numerous combinations are more likely to produce informative

features than less numerous, so one can expect that the selected

MROPC are better ‘‘tuned’’ than the other types.

Surface relief (feature 98)
Surface relief is defined as the 3D surface area divided by the

xy-projection area (Fig. 1D). This measure is assumed to have

functional significance, since it describes the amount of deviation

from an unspecialized flat surface. Relief has been shown to vary

with dietary adaptation in hominid apes [20]. This feature is

referred as relief.

D2dist (features 99 and 100)
These features comprise the mean and standard deviation of the

distribution of D2 shape function. D2 measures the distance

between two surface points chosen randomly with respect to the

xy-plane. This measure was adapted from the work of Osada and

coworkers, who proposed this method for comparing arbitrary 3D

polygonal models [26]. They found that the dissimilarities between

distributions of shape functions (particularly D2) provide a robust

measure for discriminating between classes of objects (e.g., cars

versus airplanes) in a moderately-sized database, despite the

presence of arbitrary translations, rotations, scales, mirrors and

model degeneracies.

In order to apply this method to dental DEMs we made several

adjustments. First, points were sampled randomly with respect to

the xy-plane instead of the object surface. Second, instead of

representing D2 distributions with a piecewise linear function,

distributions were represented only by their mean and standard

deviation values. Third, linear distances were normalized by the

square root of Aproj.

These features are referred using ‘‘D2dist-n-s’’ syntax, where n is

the size of the sample taken to estimate the distribution and s is the

type of statistic calculated (mean or s.d.).
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Data mining tools
To perform data mining we used algorithms for probabilistic

classification, model validation and feature selection, implemented

in an open source WEKA library [27]. All data mining was

performed using WEKA classes running on Java Platform

(Standard Edition, Version 6), Microsoft Windows XP, on a PC

with a 1.70 GHz CPU.

Classification models
We used three types of probabilistic classification models: naive

Bayes [28], decision tree and k-nearest neighbor [29]. Naive Bayes

classifiers were built using weka.classifiers.bayes.NaiveBayes, with both

normal and kernel density functions. Decision trees were built

using C4.5 algorithm [30] implemented in weka.classifiers.trees.J48.

To construct k-nearest neighbor models we used weka.classifiers.la-

zy.Ibk. Number of neighbors was set to 1, 3, 5 and 7, with

neighborhood defined by Euclidean distance.

Validating classifiers
Cross validation is a measure of model accuracy and its

robustness against random changes in the relative composition of

the training data and the data for which an inference is made [21].

In this work we coupled 10-fold cross validation, implemented in

weka.attributeSelection.WrapperSubsetEval, with the seven classification

models described above.

Feature selection
In machine learning it is well recognized that the exact feature

combination used for a particular classification task is generally the

single most influential factor affecting classification accuracy [21].

In this work we compared the performance of three feature

selection schemes: (1) rank search, (2) bidirectional best-first search

and (3) repeated bidirectional best-first search. The first scheme

ranks attributes according to their information gain, and then

examines the cross validation error rate of incrementally

increasing sets of attributes starting from the most informative

(i.e. the best attribute, the best attribute and the second best, etc.).

The second scheme was a conventional bidirectional best-first

search initiated from an empty subset. The third option was a

bidirectional best-first search repeatedly initiated from 50 subsets

of random size and composition.

For the evaluation of feature subsets all searches used 10-fold

cross validation combined with one of the seven classifiers. We

used rank search weka.attributeSelection.RankSearch coupled to infor-

mation gain measure weak.attribureSelection.InfoGainAttributeEval and

the best-first search weka.attributeSelection.BestFirst.

ToothKit
In this freeware Java program we implemented some of the

major functionalities discussed above: converting *.stl, *.obj, *.dxf

and *.wrl polygon meshes into DEMs, feature extraction,

classification and retrieval by content. ToothKit is supplied with

trained classifiers asterisked in Table S2. ToothKit is available

from http://www.biocenter.helsinki.fi/bi/evodevo/toothkit/index.

html.

Supporting Information
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Found at: doi:10.1371/journal.pone.0001742.s001 (0.24 MB

DOC)

Table S2 Comparing feature selection schemes and classifica-

tion models.

Found at: doi:10.1371/journal.pone.0001742.s002 (0.11 MB

DOC)

Table S3 Feature names and IDs.

Found at: doi:10.1371/journal.pone.0001742.s003 (0.09 MB

DOC)
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