
Fitness Landscape Characterisation for Constrained
Software Architecture Optimisation Problems

Aldeida Aleti
Faculty of Information Technology

Monash University, Australia
Email: aldeida.aleti@monash.edu

Irene Moser
Faculty of Science, Engineering and Technology

Swinburne University of Technology
Email: imoser@swin.edu.au

Abstract—The automation of software architecture design
is an important goal in software engineering. A plethora of
automated design exploration techniques have been devised in the
last decades to handle the complexity of making design decision
in large scale, complex software systems. The common aim of
these methods is the optimisation of quality attributes, such as
reliability and safety. The majority of approaches use heuristic
methods, such as local search or genetic algorithms, which use
gradients in the fitness space to guide the search to the local
optimum. When problems are constrained, search gradients are
disrupted by infeasible regions, which may have a great impact
on the difficulty of solving optimisation problems.

Discovering the conditions under which a search heuristic
will succeed or fail is critical for understanding the strengths
and weaknesses of different software architecture optimisation
methods. This paper investigates how to adequately characterize
the features of constrained problem instances that have impact
on difficulty in terms of algorithmic performance, and how
such features can be defined and measured for the component
deployment optimisation problem. We employ fitness landscape
characterisation metrics that measure uniformity of the gradients
in the search space, and investigate how two different constraints
shape the search space, and as a result affect the performance of
software architecture optimisation approaches.

Keywords—Software architecture optimisation; fitness land-
scape characterisation; reliability; constraints

I. INTRODUCTION

Software systems are present in many areas of our lives,
such as medical, automotive, railway and telecommunication
systems [30]. They usually perform complex functions that
require high levels of reliability and safety. The design and
development of today’s software systems is a difficult task,
especially when a great number of design options have to be
considered. Different designs can be explored at the architec-
tural level, where the embedded system is expressed formally
using an architectural description language [13]. Software
architecture has been defined as ‘the fundamental concepts
or properties of a system in its environment embodied in
elements, relationships, and in the principles of its design
and evolution’ [18]. This view allows for the formulation
of software architecture design as a search problem, defined
as finding optimal design decisions for the given quality
requirements.

Component deployment is a crucial design aspect, which
deals with the allocation of software components to hardware
hosts, and the assignment of interactions between components

to the communication links. Deployment decisions have sig-
nificant implications on the quality of the final system [15].
For instance, deploying frequently interacting components to
different hosts entails a more frequent use of the network
links, which affects the reliability of the system, defined as
the continuity of correct service [7].

For many decades, sophisticated architecture optimisation
techniques have been developed to deal with the complexity
of software systems, the enormous design space and the effect
of design decisions on quality attributes [3]. These efforts
include methods like linear programming [31], [10], genetic
algorithms [24], [1], [22], and local search [17]. The majority
of these approaches consider experimental studies to determine
the success of the optimisation strategy based on a set of
selected problem instances. The no-free-lunch theorems tell
us that ‘for any algorithm, any elevated performance over one
class of problems is exactly paid for in performance over
another class’ [35]. An investigation of the performance of
optimisation algorithms on different problem instances, and
how it generalises across different dimensions of the instance
space shows that algorithms which perform best overall on
a broadly defined collection of instances, are rarely the best
on well-defined and more specific subsets of the instance
space [11]. Hence, any elevated performance over one class
of problems is exactly paid for in performance over another
class. Studies that only focus on demonstrating the superiority
of an architecture optimisation method over a set of other
approaches are not sufficient for generalising the results to
untested problem instances. Instead, more insightful conclu-
sions can be drawn from the description of conditions under
which an approach is expected to fail or succeed, which
highlights the need in exploring the relationship between key
characteristics of optimisation problem instances and algorithm
behaviour [32].

The primary challenge in quantifying the relationship be-
tween algorithm performance and problem instance character-
istics effectively is the explanatory power of the information
considered. One successful approach to characterise the degree
of difficulty a problem poses to a search algorithm has been to
consider the search space and its properties, known as fitness
landscape analysis [16]. Fitness landscape analysis aims at
quantifying the relationship between the structure of the search
space and the behaviour of search algorithms [33]. The analysis
of this relationship is usually based on identifying challenging
features of the fitness landscape, such as deception, multi-
modality and isolation [32].

Using the concept of fitness landscape, it is possible to
study the structure of a search space, and analyse features
that make problems hard to solve. This allows the study of
the dynamics of the evolution of solutions, the comparative
effectiveness of search methods, and the ability of the algo-
rithms to find good solutions to a given problem. For instance,
a fitness landscape with many local optima and an isolated
global optimum can be deceptive and hard to search, since
there is a high chance that the search algorithm gets stuck
in a local optimum. Various fitness landscape characterisation
metrics have been introduced to analyse the difficulty of
optimisation problems. Predictive diagnostic optimisation [16]
was devised to collect information about the difficulty of the
search space while the search progresses. It has been applied to
unconstrained problems and detects rugged search landscapes
which make it difficult for the solver to follow gradients to
optima.

In this paper, we investigate the features of the component
deployment problem, with a specific focus on reliability op-
timisation and two constraints (memory and communication),
and aim at finding out what makes this problem challenging
to optimise. To this end, we identify and construct suitable
hardness-revealing features for constrained problems. The
problems we investigate are both complex and constrained.
Problem instances of different degree of interactions among
software components were generated (e.g. in some problem
instances only 10% of components interact, whereas in the
most constrained instance all components interact); the greater
the interactions, the more constrained a problem would be.
The goal is to detect problem difficulty that arises from the
constraints the problem imposes, the fitness function and the
search space. One of the most important questions that we seek
to answer is whether the degree of interaction between com-
ponents affect the performance of different optimisation tech-
niques. The results from the experimental evaluation provide
insights to inform algorithm selection for software architecture
optimisation.

II. RELATED WORK

Architecture specifications and models are used to structure
complex software systems and provide a blueprint that is the
foundation for later software engineering activities, such as
software design [18], and support software engineers in coping
with designing and developing complex software systems [3].
Thus, software architecture design is considered as one of the
most important phases in the software development cycle [8],
especially because design decisions affect the quality attributes
of the final system [15]. Component deployment is one of the
decisions that has to be made at an architectural level.

The component deployment problem has been formulated
as a single-objective [14], [12], [15] or multiobjective opti-
misation problem [5], [4], [28], [29]. Some methods search
for deployment architectures that satisfy constraints or user
requirements [9], [23], other methods for optimal deployment
architectures or at least candidates being close to it [15], often
in combination with given constraints [15].

Aleti et al. [4] combined the optimisation of data transmis-
sion reliability with communication overhead, and compared
the performance of a population based Ant Colony Optimi-
sation with a multiobjective genetic algorithm. The approach

considered three constraints: memory capacity, location and
colocation constraints. Memory constraint was modelled as the
restriction in the allocation of software components in the same
hardware host if their total memory exceeds the memory of the
host. In this paper we use a similar constraint. The location
constraint restricts the allocation of certain software compo-
nent to hardware hosts which are equipped with appropriate
sensors. The colocation constraint does not allow the allocation
of redundant software components to the same hardware
host. Many other approaches have investigated localisation
constraint [29], [12], [15] and memory constraint [14]. Other
possible constraints are cost [28], [12] and timing [14], [15].

A nondominated-sorting genetic algorithm II (NSGA-II)
was applied to the component deployment problem to in-
vestigate the performance of various constraint handling ap-
proaches [27], including penalty function, discarding infeasible
solutions and using a repair function. The constraints consid-
ered are memory and location. The experimental evaluation
showed that repairing infeasible solutions was by far the most
successful method.

In later work, P-ACO and NSGA-II were applied to a
triobjective variation of the component deployment problem
under memory, location and colocation constraints [26]. The
objectives considered were data transmission rate, communi-
cation overhead, and scheduling time, defined as a measure
of system responsiveness. Unlike in the biobjective case [4],
P-ACO outperformed NSGA-II when combined with a local
search, which changed the allocation of a single component
if this shift improved the hypervolume contribution of the
solution. A problem specific heuristic which uses a Bayesian
method to learns successful component-host allocations, and
increases the probability of using them in the subsequent itera-
tions of the algorithm [5]. Compared to NSGA-II and P-ACO,
the Bayesian heuristic was found to produce approximation
sets with higher hypervolume values.

The wide range of applications of search methods to the
different problems in embedded system design has proven
that no algorithm has optimal performance in all problems
or problem instances. The successful application of a search
method to a particular problem depends on the search space of
that problem. The structure of the search space is shaped by the
fitness function, constraints and the interaction between solu-
tion components. Ideally, we would select a search algorithm
which explores the search space effectively, which requires
means of measuring the search space. In this work, we make
a first step in the direction of characterising the search space of
problems encountered in embedded system design optimisation
by investigating the component deployment problem.

III. COMPONENT DEPLOYMENT

Formally, the set of software components is denoted as
C = {c0, c1, ..., cn}, where n ∈ N. The software components
are considered as not modifiable and with unknown internal
structure, but with a description of externally visible parame-
ters. Each software component is annotated with the following
properties: i) szi: the size of the memory in kilobytes (KB)
that component ci requires when deployed to a hardware host,
ii) wli: the computational load in million instructions (MI) of
component ci, iii) qi: the probability that the execution of the
system starts at component ci.

The software system starts executing in one software com-
ponent (with a certain probability qi), and during its life-time
uses many other components through communication links.
The transfer of execution from one component to another is
known as interaction. Interacting components that are deployed
to different hosts must use the communication links (buses) for
successful execution. Interactions have a certain probability of
happening, and are associated with a transition probability.
This view follows the Kubat model [19], who expresses
the software architecture as a Discrete-Time Markov Chain
(DTMC), where vertices represent the execution of software
components, and arcs enumerate the probability of transferring
the execution flow to the next component. Software interac-
tions are specified for each link from component ci to cj ,
which are annotated with the probability that component cj is
executed after component ci, denoted as pij .

The software architecture is deployed to the hardware ar-
chitecture, which is composed of a distributed set of hardware
hosts, denoted as H = {h0, h1, ..., hm}, where m ∈ N. Hard-
ware hosts have different capacities of memory, processing
power, and failure rates, which can be summarised as follows:
i) fri: failure rate characterises the probability that hardware
host hi fails [6], ii) cpi: memory capacity in kilobytes (KB)
of the hardware host ci, iii) psi: the instruction-processing
capacity of hardware host hi, expressed in MIPS (million
instructions per second). This is used to calculate the execution
time, which is a function of the processing speed of the
hardware unit and the computation workload of the service.

The communication between components deployed to dif-
ferent hardware hosts is possible through the network links
that connect them. The properties of network links are defined
as follows: i) drij : the data transmission rate in kilobytes per
second (KBPS) of the network link that connects hosts hi and
hj . Data rate is part of the calculation of the data transmission,
ii) frij : failure rate characterises the data communication
failure of network link that connects hosts hi and hj .

The way the components are deployed into the hardware
hosts affects many aspects of the final system, such reliabil-
ity [25], [4], [28], [15]. Formally, the component deployment
problem is defined as D = {d | d : C → H}, where D
is the set of all functions assigning components to hardware
resources.

One may argue that real distributed embedded systems do
not have the luxury of permitting an optimisation algorithm to
decide where software components go. For instance, latency
requirements often force certain components to be near the
hardware they service, and software components cannot just be
moved to a different CPU, since there are often architecture
dependencies, operating system dependencies, etc. woven in
the structure of the software. In addition, components vary
widely in terms of their resource requirements, meaning that
there will often be little freedom in where to run the larger
components. All these aspects can be considered during the
optimisation process, either by including constraints regarding
the allocation of software components on specific hardware,
or by introducing heuristics which guide the optimisation
algorithm to make feasible choices.

A. Reliability Estimation

The reliability of a deployment architecture is calculated
using a Markov model [34], which is a technique used for
analysing complex probabilistic systems by abstracting the
system behaviour to a set of mutually exclusive states and tran-
sitions between the states [21]. A Markov model is uniquely
determined by a set of equations that describe the probabilistic
transitions among the states and initialisation probability dis-
tributions of the starting states. The state transitions in Markov
models are independent of the history, i.e. transition from state
i to state j only depends on the state i, independently from how
the state i was reached. This means that the complete history
of reaching a system state is summarised in every state.

More specifically, we use a Discrete Time Markov Chain
(DTMC) represented by finite state machines annotated with
probabilities attached to transitions. A DTMC is used to repre-
sent possible states of a software execution and the probability
to move from one state to another, starting from an initial state
and ending either with a successful completion of execution
or failure.

Formally, a DTMC can be expressed as a tuple (S, s0, P)
where, S is a finite set of states, s0 ∈ S is the initial state, and
P : S × S → [0, 1] is the transition probability matrix, where
P (s, s′) denotes the probability of making a transition from
state s to the state s′. In a DTMC,

∑
s′∈S P (s, s

′) = 1 for all
states s ∈ S, which implies that even terminating states should
have an outgoing transition to themselves with a probability
of 1. When a system is modelled as a DTMC, the execution
is represented by a path through the DTMC.

The DTMCs is constructed from the behavioural specifi-
cation of the system such that a node represents the execution
of one software component and arcs denote the transfer of
execution from one component to another. Super-initial nodes
are added to represent the start of the execution, and arcs
are added from those nodes annotated with relevant execu-
tion initialisation probabilities (q). The model assumes that
the components fail independently and the reliability of the
component i is characterised by the probability ri that the
component performs its function correctly, computed as

ri = e
−frd(ci)·

wlci
psd(ci) (1)

where d(ci) denotes the hardware host where component ci
is deployed. The reliability of a communication element is
characterised by the failure rates of the network links and the
time taken for the communication, defined as a function of the
bus data rates dr and data sizes ds required for components
ci and cj to communicate, defined as

rij = e
−fr(d(ci),d(cj))·

ds(ci,cj)
dr(d(ci),d(cj)) . (2)

Next, the expected number of visits of each component
v : C → R≥0 is calculated as

vi = qi +
∑
j∈I

vj · pji. (3)

The expected number of visits of a DTMC node quantifies
the expectation of a component being used during a single
system execution. The transfer probabilities pi,j can be written
in a matrix form Pn×n. Similarly, the execution initiation
probabilities q0i can be expressed with matrix Qn×1. The

matrix of expected number of visits for all components Vn×1
can be calculated as:

V = Q+ PT · V (4)

Using matrix operations, eq. 4 can be transformed to:

V = (I − PT)−1 ×Q (5)

where I denotes the identity matrix. For absorbing DTMCs,
the inverse matrix (I−PT)−1 always exists [34], which makes
it possible to compute matrix V .

Next, the expected number of visits of network links
vl : C × C → R≥0 is calculated, where vl(ci, cj) denotes
the expected number of occurrences of the transition (ci, cj).
To compute this value, each probabilistic transition ci

pij−−→cj in
the model is considered as a tuple of transitions ci

pij−−→ lij
1−→cj ,

the first adopting the original probability and the second having
probability =1. Since the execution is never initiated in a link
lij and the only predecessor of link lij is component ci, the
expected number of visits of a communication link is equal to

vij = vi · pij (6)

Using expected number of visits and reliabilities of execution
and communication elements, the reliability of a deployment
architecture d ∈ D is calculated as

R ≈
∏
i∈I

Rvi
i ·

∏
i,j∈I

R
vij
ij (7)

where I denotes the index set of all nodes in the DTMC.

B. Constraints

The component deployment problem is inherently con-
strained. Not all components can be deployed into the same
hardware unit due to memory restrictions. At the same time,
if interacting components are deployed into different hardware
units, one has to make sure that there is a communication chan-
nel between them. In this paper we consider two constraints,
memory and communication. First, we shall define a binary
variable xij∀i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, such that

xij =

{
1 if component i is deployed into host j
0 otherwise (8)

1) Hardware memory capacity: This constraint deals with
the memory requirements of software components and makes
sure that there is available memory in the hardware units. Pro-
cessing units have limited memory, which enforces a constraint
on the possible components that can be deployed into each
hardware host. Formally, the memory constraint is defined as

n∑
i=1

szixij ≤ cpj , ∀j ∈ {1, . . . ,m}. (9)

2) Communication constraint: The interaction between
software components restricts their allocation, since a com-
munication network is required if they are in different hosts.
Hence, if the transition probability between two software
components i and j is positive, pij > 0, these two components
will communicate with a certain probability. Therefore, either
they should be deployed on the same hardware unit, or on
different units that are connected with a communication link
(bus) with a positive data rate, drij > 0. This is modelled as
follows:

xik + xjl ≤ 1, if pij > 0 and drkl = 0. (10)

IV. PROBLEM HARDNESS

The suitability of a search method in solving an optimisa-
tion problem instance depends on the structure of the fitness
landscape of that instance. A fitness landscape in the context
of combinatorial optimisation problems refers to the (i) search
space S, composed of all possible solutions that are connected
through (ii) the distance operator, which assigns each solution
s∈S to a set of neighbours N(s)⊂S, and the fitness function
F : S→<. As the neighbourhood of a solution depends on
the distance operator, a given problem can have any number
of fitness landscapes. The neighbourhoods can be very large,
such as the ones arising from the crossover operator of a
genetic algorithm. On the other hand, a 2-opt operator creates
a very small neighbourhood. The choice of the neighbourhood
operator affects the structure of the fitness landscape, and as
a results the performance of the optimisation algorithm.

-3
-2

-1
 0

 1
 2

 3-3
-2

-1
 0

 1
 2

 3

-10
-8
-6
-4
-2
 0
 2
 4
 6
 8

 10

f(x,y)

20*exp(-x**2-y**2)-10

x

y

f(x,y)

(a) A smooth fitness landscape.

 1 2 3 4 5 6 7 8 9 10
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10

-2
-1.5

-1
-0.5

 0
 0.5

 1
 1.5

 2

f(x,y)

-sin(10*log(x))-sin(10*log(y))

x

y

f(x,y)

(b) A rugged fitness landscape.

Fig. 1: Hypothetical fitness landscapes with different features.

Features of the fitness landscape of an optimisation prob-
lem can be characterised using characterisation metrics. Ex-
amples of features are the distribution of local optima, the
topology of the global optimum, and the length of plateaus. A
fitness landscape with one local optimum that is also the global
optimum (e.g. fig. 1a) would be easy to search with a hill
climbing method. On the other hand, when many local optima
and an isolated global optimum are present (e.g. fig. 1b), the
fitness landscape is rugged and hard to explore. A plateau
indicates the presence of neutrality in the landscape, where the
progress of a search algorithm potentially stagnates, because
of the search iterating between equally fit solutions. Plateaus
can be detrimental to search algorithms such as local search
and hill climbing approaches, which depend on gradients in
the fitness landscape they can follow. The presence of ridges,
the shapes and sizes of valleys and the distance between
local optima are features that decide the effectiveness of one
algorithm over another.

In situations where the search algorithm is stuck in a
plateau, escape mechanisms could be implemented, such as
temporarily accepting non-improving moves, or restarting
the search in a different position. Intuitively, characterising
plateaus, such as their size or the average distance between
points may help in designing better strategies for accepting
non-improving moves. This information could also be used
to guide the search algorithm to the global optimum, which
may be isolated and surrounded by other structures, such as
plateaus, valleys, hills or ridges. Usually, these structures are
hard to characterise.

The choice of neighbourhood structure determines whether
the fitness landscape is easy to search. For example, if the
fitness difference between any two neighbouring solutions is
on average small then the landscape is more likely to be suited
for a wide range of local search operators. In contrast, if signif-
icant fitness difference is encountered in the neighbourhood,
different operators will produce different quality results and
the choice of the operator becomes important. In general, the
concept of fitness landscape allows the study of the dynamics
of the evolution of solutions, the comparative effectiveness
of search methods and the ability of the algorithms to find
good solutions to a given problem. Fitness landscape charac-
terisation aims at understanding the relationship between the
structure of the fitness landscape and the behaviour of search
algorithms [33], which helps in choosing suitable methods.

Measuring the ruggedness of a fitness landscape has been
one of the main areas of research in characterisation metrics.
High ruggedness refers to a fitness landscape with many local
optima that are distributed unevenly, and a global optimum
that is hard to reach. To understand whether a neighbourhood
operator creates a fitness landscape that is hard to search,
fitness landscape characterisation metrics were devised. Due to
computational cost of characterising the whole search space,
the majority of characterisation metrics rely on samples used
to infer statistical properties of the fitness landscape.

V. COMPONENT DEPLOYMENT CHARACTERISATION

Predictive diagnostic optimisation (PDO) [16] has been
proven useful in estimating the difficulty of the fitness space of
unconstrained optimisation problems. In this paper, we adapt
PDO to constrained fitness landscapes. PDO applies a local
search technique to optimise solutions while attempting to
predict the quality to expect at the end of the local optimisation
process. To this end, predictors are created which match the
profile of a certain solution. When new similar solutions are
found, the closest matching predictor projects the quality to
expect after locally optimising the solution. This allows for
metrics such as predictor count and prediction error.

When the local optima of a problem instance’s search space
are very diverse, the algorithm creates a greater number of
predictors, as the existing predictors often do not match the
solutions within the specified margin of tolerance. It has also
been observed that a higher error in the predictions made
coincides with the discovery of solutions of lower quality [16].
In this work, we explore how PDO can reflect the difficulty of
a search space when it arises from the constrained properties
of the problem rather than the combinatorial complexity.

A. Search Space

The search space of the component deployment problem
is defined as the set of candidate deployment architectures.
Formally, each component deployment architecture alternative
is defined as si = [d(c1), d(c2), ..., d(cn)], where d(ci) is the
function d ∈ D = {d | d : C → H} that returns the hardware
host where component ci is allocated.

We investigate the 2-opt operator, which swaps the al-
location of two components that are next to each other
in the solution representation. For examples, given solution

c1

h1

c2

h3

c3 c4 c5 c6 c7 c8

h3 h2 h4 h1 h2 h4

c1

h1

c2

h3

c3 c4 c5 c6 c7 c8

h2 h3 h4 h1 h2 h4

Fig. 2: The 2-opt search operator.

[d(c1), d(c2), d(c3)..., d(cn)], the 2-opt operator would swap
the allocation of component c2 with c3, as in fig. 2.

To illustrate the fitness landscape of the component de-
ployment problem, and the effect constraints have on the
progress of the search, we consider the problem of allocating
three software components into two hardware hosts (h2 c3).
For simplicity, only the memory constraint is considered at
this stage. The settings for the parameters of the software
and hardware architecture are presented in tables I and II
respectively. The notations have been described in section III.

TABLE I: Parameters of the software architecture.

Components
szi wli qi

c0 256 0.4 0.8
c1 64 2.4 0.0
c2 256 0.4 0.2

Interactions
pij c0 c1 c2
c0 0.0 0.99 0.01
c1 0.0 0.0 0.0
c2 0.49 0.51 0.0

TABLE II: Properties of the hardware architecture.

Hosts
fri cpi psi

h0 0.004 128 100
h1 2.0E-5 512 40

Network
drij frij
128 0.006

The search space (all candidate solution) of h2 c3, their
fitness, and feasibility are depicted in table III. The first column
shows the possible allocations of the three components, where
0,0,1 means that the first and the second components (c0, c1)
have been allocated in host 0, whereas the third component
(c2) has been allocated in host 1.

TABLE III: Search space of h2 c3.

Solution Fitness Feasibility
0,0,0 0.99973 false
0,0,1 0.99977 false
0,1,0 0.99996 false
0,1,1 0.99997 false
1,0,0 0.99985 false
1,0,1 0.99990 true
1,1,0 0.99998 false
1,1,1 0.99999 false

The visualisation of the fitness landscape is not possible
since the problem has four dimensions (three components and
the fitness), however, it is possible to see how this kind of
fitness landscape would be hard to explore with a local search
method. The example we consider is small enough to search
exhaustively, but consider a large search space where feasible
solutions are surrounded by infeasible areas. Local search
methods follow gradients that lead to local optima.

If the memory constraint is not considered, the local search
method initialised with solution 0,0,0, and using the 1-flip
operator which changes the value of one solution component
would follow a gradient through the following solutions: 1,0,0
(0.99985), 1,1,0 (0.99998), 1,1,1 (0.99999). The local optimum
(1,1,1) is the solution with all components allocated to host

1. This produces the highest reliability, since it avoids the
network, which contributes to the overall probability of system
failure with its own failure rate. In addition, the failure rate
of host 1 is much lower, which makes the deployment of
components in this host more desirable.

However, all solutions but 1,0,1 with reliability 0.99990
are infeasible. In this example, the local search method would
have to pick 1,0,1 as a starting point to be able to find it, since
there are no feasible gradients in the fitness landscape that lead
to it. In this example, the optimisation algorithm would in fact
be outperformed by a random picking, since it wastes function
evaluations in exploring the neighbourhood.

B. Predictive Diagnostic Optimisation

Predictive Diagnostic Optimisation (PDO) is an Iterated
Local Search (ILS) method that records the predictability of
the local search process while finding optima using a sampling-
based ascent descent method. A detailed description has been
published earlier by Gheorghita et al. [16]. We reiterate the
crucial elements for the reader’s convenience. The main steps
of the method are shown in algorithm 1 and described in detail
in the following subsections.

PDO applies a steepest-ascent-based local search process to
a solution si that is randomly initialised (line 6 in algorithm 1).
The 2-opt operator has a linear time complexity, hence at each
step, all neighbours can be checked to select the best one.
In the general case, the k−opt operator is linear for k ≤ 3,
and becomes NP-complete for k greater than 3. In complex
neighbourhood relations, the neighbourhood of the current
solution is explored until a representative sample has been
reached. The change that entails the largest fitness gain is then
applied to the solution and the ratio of fitness improvement to
initial solution fitness f(si) is calculated according to eq. 11.

p′i =
f(si)− f(s′i)

f(si)
(11)

This fitness ratio is later used to match the predictor to
a future solution. For a comparison, the best possible fitness
improvement that can be made to a newly found solution by
applying a single change is established. The predictor with the
closest matching ratio of p′i is used to predict the final fitness of
the new solution. A second ratio p′′i is recorded between the
total fitness improvement and the fitness improvement made
by the first change. Eq. 12 illustrates this with f(s′′i) denoting
the fitness of the local optimum, which is achieved when the
sampling cannot detect any further improvement.

p′′i =
f(si)− f(s′′i)
f(si)− f(s′i)

(12)

Every new initial solution sj is matched to a predictor after
the first improvement has been made and the ratio p′j has been
established. The closest matching predictor is used to project
the expected final fitness fe(s′′j) using eq. 13.

fe(s
′′
j) = p′′i ∗ (f(sj)− f(s′j)) + f(sj) (13)

Although the number of changes made to a solution varies
depending on the depth of the local optimum’s basin, the
projection of the expected fitness fe(s′′j) only uses the fitness at
a distinct point in the solution’s descent towards the optimum

Algorithm 1 Predictive Diagnostic Optimisation
procedure PREDICTORDISCOVERY(N , ε)

2: PREDICTORCOUNT ← 0
previousCount← −1

4: while PREDICTORCOUNT 6= previousCount do
for i← 1, N do

6: si ← RANDOMSOLUTION
s′i = FIRSTLOCALSEARCHSTEP(si)

8: p′i =
f(si)−f(s′i)

f(si)

s′′i = SECONDLOCALSEARCHSTEP(s′i)
10: p′′i =

f(si)−f(s′′i)

f(si)−f(s′i)

different← TRUE
12: for j ← 1, PREDICTORCOUNT do

C(pi, pj) =
|p′i−p′j |
|p′i|+|p

′
j |

+
|p′′i −p′′j |
|p′′i |+|p

′′
j |

14: if C(pi, pj) > ε then
different← FALSE

16: end if
end for

18: if different then
SAVEPREDICTOR(pi)

20: end if
end for

22: previousCount← PREDICTORCOUNT
PREDICTORCOUNT ← PREDICTORCOUNT + 1

24: end while
end procedure

26: procedure PREDICTORAPPLICATION(p)
for i← 1, N do

28: si ← RANDOMSOLUTION
s′i ← FIRSTLOCALSEARCHSTEP(si)

30: p′i ←
f(si)−f(s′i)

f(si)

different← LARGEDOUBLE
32: for p ∈ p do

C(pi, p) =
|p′i−p′|
|p′i|+|p

′| +
|p′′i −p′′|
|p′′i |+|p

′′|
34: if C(pi, p) < different then

p∗ ← p
36: end if

end for
38: s′′i = SECONDLOCALSEARCHSTEP(s′i)

RECORDPREDICTIONERROR(s′′i , p
∗)

40: end for
end procedure

to predict the final fitness. PDO has two main stages, as shown
in algorithm 1: predictor discovery and predictor application.

1) Predictor discovery: During predictor discovery, solu-
tions to the problem instance are repeatedly created by uniform
random sampling. The goal is to create the necessary predictors
which represent the complete fitness landscape as accurately
as possible. Therefore, whenever a new solution gives rise
to creating a predictor which is significantly different from
the existing ones, the new predictor is retained. This process
continues until no new predictors have been created in a
predefined number of attempts.

When a new solution si has been created and subsequently
changed by a single improvement to s′i, the ratios p′i and p′′i
are calculated according to Equation 11 and 12. PDO then
calculates the Canberra distance [20] between the candidate
predictor and all existing predictors to determine whether the
predictor should be added to the archive of predictors.

C(pi, pj) =
|p′i − p′j |
|p′i|+ |p′j |

+
|p′′i − p′′j |
|p′′i |+ |p′′j |

(14)

where pi = (p′i, p
′′
i) and pj = (p′j , p

′′
j) are the predictors

with their respective ratios of fitness gain. C(pi, pj) is defined
in the range [0,2), with greater values representing greater
difference between predictors.

Each time a new candidate predictor is created, its Canberra
distance (eq. 14) to all existing predictors is calculated. If
the distance is above a predefined threshold of ε = 0.1, the
predictor is added to the existing predictors. The predictor
creation phase stops if no new predictors are accepted. The
predictor count acts as an additional indicator to assess the
information provided by the prediction error and the best
fitnesses. If the predictor number is low, the quality of new
predicted solutions is proportional to the level of the error
rate. The higher the error rate, the less we can guarantee the
quality of the predictions. If the predictor number is higher,
we can have more confidence in the predicted locally optimal
fitnesses despite the prediction error rates.

2) Predictor application: In the predictor application
phase, only existing predictors are applied to solutions by
closest match and the resulting prediction errors are recorded
(line 39 in algorithm 1). The prediction error is calculated as
a percentage error between the predicted and the actual fitness
for each of the solutions that were optimised during this phase.

As in previous work, a predictor is selected for making
predictions based on the minimum difference between its first
fitness improvement and the candidate solution’s first step’s
fitness improvement. This is the Canberra distance given in
eq. 14 and line 33 of algorithm 1. The solution is then opti-
mised to the local optimum and the real fitness is compared to
the predicted fitness to obtain the difference, which comprises
the prediction error.

VI. EXPERIMENTS

Constraints reduce the number of feasible solutions. The
effect of constraints on the performance of the algorithm,
however, is not completely understood. Some constraints may
create isolated feasible regions, which are unreachable from
other feasible regions. In such constrained search spaces,
a local search method would normally fail to explore the
candidate solutions effectively.

A set of experiments were designed to investigate the
constrained search space of the component deployment prob-
lem, with a particular focus on the degree of interactions
between software components. The aim is to analyse the
topology of the fitness landscape in the component deployment
problem, and how it is shaped by the amount of interactions
between software component. In essence, we seek to answer
the following research questions:

RQ1: Does increasing interactions between software compo-
nents create a fitness landscape where solutions with high
reliability are hard to find?

RQ2: If so, why are high quality solutions hard to find?

A. Experimental Design

The problem instances used for the experiments were
generated using ArcheOpterix [2], which is platform for
modelling, evaluating and optimising embedded system ar-
chitectures. The latest version of ArcheOpterix used in the
experiments can be downloaded from http://users.monash.edu.
au/∼aldeidaa/ArcheOpterix.html. Problems with varying com-
plexity and constrainedness were considered. The communi-
cation constraint is affected by the percentages of components
that interact with each other. The degree of interactions was
varied between 0% (no interaction), 10%, 25%, 50%, 75% and
100%. The problem instances with varying size are: h10 c23
(10 hosts, 23 components), h20 c45 (20 hosts, 45 components),
h30 c65 (30 hosts, 65 components), h45 c87 (45 host, 87
components), and h60 c130 (60 hosts, 130 components). In
total, 30 problem instances were created.

The training phase of PDO creates the predictors and
stops when all new solutions match the existing predictors
within a margin of tolerance; in our experiments, the training
phase ends when no new predictors are created for 1000
function evaluations. In the testing phase, the closest-matching
predictor was applied to each solution before and after the
local optimisation to determine the prediction error, calculated
as sum of squared error. The LS terminates after 20 000
function evaluations. Due to the stochastic nature of this
process, 30 runs were performed for each problem instance
and optimisation scheme. During both stages of diagnostic
optimisation, the initial solutions for the LS were created
uniformly randomly and infeasible solution were discarded.

The component deployment problem, the local search,
and the fitness characterisation metrics are implemented
in ArcheOpterix [2]. The problem instances used in the
experiments and the complete experimental results can
be downloaded from http://users.monash.edu.au/∼aldeidaa/
ArcheOpterix.html. The optimal solutions of the instances
generated for the purpose of this experiment are not known,
hence we are only able to report the reliabilities of the best
solutions found as absolute values.

B. Problem Features

We cannot expect a single metric to identify the type of
landscape and accurately estimate the quality to expect from
a search. Therefore, in this work, we consider a number of
metrics that can easily be recorded during a PDO trial.

i) predictor count is the number of predictors created during
the training phase,

ii) prediction error is calculated as a percentage error be-
tween the predicted and the actual fitness for each of the
solutions that were optimised during the

iii) predictor diversity is measured using the Canberra dis-
tance described in eq. 14,

iv) solution diversity is measured as the hamming distance
of local optima over 30 trials,

v) solution fitness is the reliability of software architectures
measured as described in eq. 7,

vi) feasibility ratio is the ratio of feasible solutions over all
solutions explored during the optimisation process,

vii) optima count is the total number of local optima found
during the optimisation phase.

C. Results

Measuring hardness of an instance is typically done by
comparing the fitness of the solution reached after a certain
number of iterations, or by comparing the number of iterations
taken to reach the best solution compared to other algorithms.
Since the problem instances considered in this paper are too
large to solve exhaustively, it is not possible to find the best
solutions, hence we use the best fitness reached after a fixed
number of iterations.

0% 10% 25% 50% 75% 100%
0.994

0.995

0.996

0.997

0.998

0.999

1.000

S
o
lu

ti
o
n
 f

it
n
e
ss

Fig. 3: Reliability values of the 30 trials and 30 different
component deployment instances.

To check whether a higher degree of interactions between
software components creates a fitness landscape where solu-
tions with high reliability are hard to find, we investigate the
qualities achieved by the 30 trials of the optimisation algorithm
on 30 component deployment instances. The results of the
optimisation process are shown as boxplots in fig 3. The means
and standard deviations for the different interaction levels are
shown in table IV.
TABLE IV: Means and standard deviations of the 30 trials and
30 problem instances for each interaction level.

Interactions Mean fitness Mean prediction error
0% 0.999968 2.1e-05

10% 0.999891 8.4e-05
25% 0.999883 4.9e-05
50% 0.999704 1.2e-04
75% 0.999773 7.8e-05

100% 0.996707 2.1e-03

The quality of the optima found is high until there are too
many constraints to leave enough basins and the quality of the
solutions found deteriorates remarkably. This can be clearly
seen in fig. 3, and table IV, where the problem instances with
the highest degree of interactions have the lowest fitness.

It appears that the tightness of constraints affects the
difficulty in solving the component deployment problem. In-
deed, a strong negative correlation can be observed between
fitness and interaction level, as shown in fig. 4. This may
mean that problem instances with higher degree of interactions
create a fitness landscape that is hard to search, with good
quality local optima that are isolated and difficult to reach.
However, it may be possible that in very constrained search
spaces better solutions no longer exist or that the LS with its
feasibility preservation mechanism cannot reach them behind
infeasible space. This relates to the second research question,
where we are seeking to understand why in more constrained
search spaces harder solutions are hard to find. To answer
this question, we investigate the correlation strengths between
component interactions, solution fitness, and fitness landscape

100 50 0 50 100 150 200

Interactions

0.985

0.990

0.995

1.000

1.005

1.010

S
o
lu

ti
o
n
 f

it
n
e
ss

pearsonr = -0.63; p = 0.00091

Fig. 4: Correlation between interactions and solution fitness.

characterisation metrics, namely predictor count, prediction
error, predictor diversity, feasibility ratio, optima count, and
solution diversity. Results are shown in fig. 5.

Fig. 5: The correlation strengths between problem features and
fitness landscape characterisation metrics.

The feasibility ration measures the proportion of solutions
encountered during the search that satisfy the constraints. Nat-
urally, it is harder to find feasible solutions when constraints
become tighter, as evidenced by the negative correlation co-
efficient between feasibility ratio, measured as the number
of feasible solutions over all solutions explored during the
optimisation phase, and tightness of interaction constraint.
However, the correlation strength is weak, which indicates that
feasible areas are not completely isolated.

The number of local optima increases with higher levels of
interactions, as shown by the positive correlation, although not
very strongly. The optima count is a measure of ruggedness,
and it can be derived that the interaction constraints create
more rugged fitness landscapes. However, in the more con-
strained fitness landscapes, the local optima are closer to each-
other, as indicated by the negative correlation between solution
diversity (measured using hamming distance) and interactions.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Feasibility ratio

2

3

4

5

6

7

8

P
re

d
ic

to
r

co
u
n
t

pearsonr = -0.56; p = 0.0046

Fig. 6: Correlation between feasibility ratio & predictor count.

0.0004 0.0002 0.0000 0.0002 0.0004 0.0006 0.0008

Predictor error

0.980

0.985

0.990

0.995

1.000

1.005

1.010

1.015

S
o
lu

ti
o
n
 f

it
n
e
ss

pearsonr = -0.99; p = 4.9e-21

Fig. 7: Correlation between prediction error and solution
quality.

As the feasible search space becomes smaller with the
rising numbers of interactions between software components,
the number of predictors increases, as shown in fig. 6. The
predictor count depends on the similarity of the gradients that
are encountered in the search space, which is an indication of
the homogeneity of the basins of attraction. If the slopes to
these basins with a local optimum at the top have the same
shape, a single predictor will suffice to predict the outcome
of a full local search. Combinatorially complex problems
with rugged landscapes typically have predictors of limited
accuracy, as the slopes all differ.

From all investigated metrics, prediction error correlates
consistently with solution quality for all problem instances;
the correlation strength is -0.99 (see fig. 7). Prediction error is
a measure of the presence of patterns in the fitness landscape.
The prediction error is low if the fitness landscape is composed
of structures (gradients) that can be modelled during the
training phase. Rugged fitness landscapes, on the other hand,
would contain information that can not be compressed, or
modelled with predictors. This would result in high prediction
errors. It can be concluded that interaction constraints in the
component deployment problem increase the ruggedness of the
fitness landscape, by increasing the number of local optima,
and creating more diverse gradients that are harder to predict.
Hence, high quality solutions are hard to find due to high
ruggedness, and not isolation of feasibility regions.

VII. CONCLUSION

In this work, the effect of constraints on reliability opti-
misation in the component deployment problem was investi-
gated. The degree of interaction between software components
changes the structure of the fitness landscape, which impacts
the ability of the search algorithm to find high quality so-
lutions. Fitness landscape characterisation was performed to
estimate the ruggedness of the search space, characterise the
problem instances that reflect practical deployment problems,
and judge the suitability of the search operator applied.

Unlike previous applications of fitness landscape charac-
terisation, the problem instances examined here are highly
constrained. It was observed that the degree of interaction be-
tween software components affects the structure of the fitness
landscape. The interaction constraint creates feasible regions
with many local optima and diverse basins of attractions
that prohibit the search method to explore them effectively.
Higher prediction errors were observed for tighter interaction
constraints, which is attributed to a rugged fitness landscape
that arises from the difficult structure of the combinatorial
component deployment problem.

As the levels of interaction restrictions were varied, we
were able to observe that highly constrained problems have
more predictors and high prediction errors in combination with
more local optima. When the problem is highly constrained
in terms of interacting components, the basins of attraction
are diverse and the predictors created in the training phase,
although in high numbers, are not representative of the entire
search space, which leads to a high prediction error. When the
problem is less constrained, the search becomes less complex,
the fitness landscape is smoother, and the number of predictors
is smaller. The number of local optima, however, was not
affected greatly by the tightness of constraints.

In essence, this study shows that interaction constraints
affect the structure of the fitness landscape, as evidenced by the
strong correlation between interaction level and solution qual-
ity. The characterisation metrics can be used to understand the
challenging features or properties of other problem instances,
and investigate the behaviour of other optimisation methods
in search-based software engineering. A key challenge with
fitness landscape characterisation is to adequately characterize
the problem instance search space by devising suitable mea-
sures, hence in the future, the investigation of other character-
isation metrics for constrained fitness landscapes is a priority.

Threats to validity: Predictors are created based on a sam-
pling process, which may lead to different results in different
trials of the same problem instance. This threat was reduced
by using 30 trials for each problem instance. Furthermore,
the results presented in the paper may be affected by the
implementation of the approach, which may contain errors
or bias towards favourable results. To avoid this, we have
followed regular code-review sessions in several occasions, and
cross-checked the implementation and the conceptual design.

Acknowledgements: This research was supported under
Australian Research Council’s Discovery Projects funding
scheme, project number DE 140100017.

REFERENCES

[1] A. Aleti. Designing automotive embedded systems with adaptive genetic
algorithms. Automated Software Engineering, pages 1–42, 2014.

[2] A. Aleti, S. Björnander, L. Grunske, and I. Meedeniya. ArcheOpterix:
An extendable tool for architecture optimization of AADL models.
In Model-based Methodologies for Pervasive and Embedded Software,
pages 61–71. ACM and IEEE Digital Libraries, 2009.

[3] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya.
Software architecture optimization methods: A systematic literature
review. IEEE Transactions on Software Engineering, 39(5):658–683,
2013.

[4] A. Aleti, L. Grunske, I. Meedeniya, and I. Moser. Let the ants
deploy your software - an ACO based deployment optimisation strategy.
In Automated Software Engineering, pages 505–509. IEEE Computer
Society, 2009.

[5] A. Aleti and I. Meedeniya. Component deployment optimisation with
bayesian learning. In ACM Sigsoft Symposium on Component Based
Software Engineering, pages 11–20. ACM, 2011.

[6] I. Assayad, A. Girault, and H. Kalla. A bi-criteria scheduling heuristic
for distributed embedded systems under reliability and real-time con-
straints. In Dependable Systems and Networks, pages 347–356. IEEE
Computer Society, 2004.

[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. E. Landwehr. Basic
concepts and taxonomy of dependable and secure computing. IEEE
Transaction on Dependable Secure Computing, 1(1):11–33, 2004.

[8] L. Bass, P. Clements, and R. Kazman. Software architecture in practice,
volume 54. Addison-Wesley Longman Publishing Co., Inc., 2003.

[9] R. Calinescu, L. Grunske, M. Z. Kwiatkowska, R. Mirandola, and
G. Tamburrelli. Dynamic qoS management and optimization in service-
based systems. IEEE Transaction on Software Engineering, 37(3):387–
409, 2011.

[10] D. W. Coit and A. Konak. Multiple weighted objectives heuristic for
the redundancy allocation problem. IEEE Transactions on Reliability,
55(3):551–558, 2006.

[11] D. W. Corne and A. P. Reynolds. Optimisation and generalisation:
Footprints in instance space. In Parallel Problem Solving from Nature,
volume 6238 of LNCS, pages 22–31. Springer, 2010.

[12] M. J. Csorba, P. E. Heegaard, and P. Herrmann. Cost-efficient deploy-
ment of collaborating components. In Distributed Applications and
Interoperable Systems, volume 5053 of LNCS, pages 253–268, 2008.

[13] E. M. Dashofy, A. v. d. Hoek, and R. N. Taylor. A comprehensive
approach for the development of modular software architecture de-
scription languages. ACM Transactions on Software Engineering and
Methodology, 14(2):199–245, Apr. 2005.

[14] M. Eisenring, L. Thiele, and E. Zitzler. Conflicting Criteria in Embed-
ded System Design. IEEE Design and Testing, 17(2):51–59, 2000.

[15] J. Fredriksson, K. Sandström, and MikaelÅkerholm. Optimizing re-
source usage in component-based real-time systems. In Component-
Based Software Engineering, volume 3489 of LNCS, pages 49–65.
Springer, 2005.

[16] M. Gheorghita, I. Moser, and A. Aleti. Designing and characterising
fitness landscapes with various operators. In IEEE Congress on
Evolutionary Computation, pages 2766–2772. IEEE, 2013.

[17] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based software
engineering: Trends, techniques and applications. ACM Computing
Surveys, 45(1):11:1–11:61, Dec. 2012.

[18] ISO/IEC. IEEE International Standard 1471 2000 - Systems and soft-
ware engineering - Recommended practice for architectural description
of software-intensive systems, 2000.

[19] P. Kubat. Assessing reliability of modular software. Operations
Research Letters, 8(1):35–41, 1989.

[20] G. Lance and T. Williams. Computer programs for hierarchical
polythetic classification (‘similarity analyses’). The Computer Journal,
9(1):60–64, 1966.

[21] M. R. Lyu. Handbook of software reliability engineering. IEEE
Computer Society Press and McGraw-Hill Book Company, 1996.

[22] S. Malek, N. Medvidovic, and M. Mikic-Rakic. An extensible
framework for improving a distributed software system’s deployment
architecture. IEEE Transactions on Software Engineering, 38(1):73–
100, 2012.

[23] A. Martens and H. Koziolek. Automatic, model-based software perfor-
mance improvement for component-based software designs. Electronic
Notes in Theoretical Computer Science, 253(1):77–93, 2009.

[24] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Architecture-
Driven Reliability and Energy Optimization for Complex Embedded
Systems. In Research into Practice - Reality and Gaps, Quality of
Software Architectures, pages 52–67. Springer, 2010.

[25] I. Meedeniya, B. Buhnova, A. Aleti, and L. Grunske. Reliability-Driven
Deployment Optimization for Embedded Systems. Journal of Systems
and Software, 84(5):835–846, 2011.

[26] I. Moser and J. Montgomery. Population-ACO for the automotive
deployment problem. In Genetic and Evolutionary Computation, pages
777–784. ACM, 2011.

[27] I. Moser and S. Mostaghim. The automotive deployment problem:
A practical application for constrained multiobjective evolutionary
optimisation. In Evolutionary Computation, IEEE Congress on, pages
1–8, 2010.

[28] Y. Papadopoulos and C. Grante. Evolving car designs using model-
based automated safety analysis and optimisation techniques. The
Journal of Systems and Software, 76(1):77–89, 2005.

[29] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to
exploring embedded system architectures at multiple abstraction levels.
IEEE Transaction Computers, 55(2):99–112, 2006.

[30] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner. Software
engineering for automotive systems: A roadmap. In Future of Software
Engineering, pages 55–71. IEEE Computer Society, 2007.

[31] S. Shan and G. G. Wang. Reliable design space and complete single-
loop reliability-based design optimization. Reliability Engineering and
System Safety, 93(8):1218 – 1230, 2008.

[32] K. Smith-Miles and L. Lopes. Measuring instance difficulty for combi-
natorial optimization problems. Computers and Operations Research,
39(5):875 – 889, 2012.

[33] P. Stadler. Fitness landscapes. Applied Mathematics and Computation,
117:187–207, 2002.

[34] K. Trivedi. Probability & Statistics with Reliability, Queuing and
Computer Science Applications. Wiley-India, 2009.

[35] D. H. Wolpert and W. G. Macready. No free lunch theorems for opti-
mization. IEEE Transactions on Evolutionary Computation, 1(1):67–82,
1997.

