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ABSTRACT
Evolutionary Algorithms are equipped with a range of ad-
justable parameters, such as crossover and mutation rates
which significantly influence the performance of the algo-
rithm. Practitioners usually do not have the knowledge and
time to investigate the ideal parameter values before the
optimisation process. Furthermore, different parameter val-
ues may be optimal for different problems, and even prob-
lem instances. In this work, we present a parameter control
method which adjusts parameter values during the optimisa-
tion process using the algorithm’s performance as feedback.
The approach is particularly effective with continuous pa-
rameter intervals, which are adapted dynamically. Success-
ful parameter ranges are identified using an entropy-based
clusterer, a method which outperforms state-of-the-art pa-
rameter control algorithms.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Evolutionary Algorithms, optimisation, adaptive parameter
control

1. INTRODUCTION
Evolutionary Algorithms (EAs) have successfully been em-

ployed to solve a range of hard optimisation problems [1, 2,
30, 17, 23, 28]. In recent years, it has been acknowledged
that the success of these algorithms depends on the numer-
ous parameters that these algorithms have [19, 14, 32, 6],
which make the optimisation procedure flexible and efficient
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for any kind of problem, regardless of the search space diffi-
culty.

Unfortunately, the settings of the parameter values are
known to be problem-specific [31], often even specific to the
problem instance at hand [5, 39, 38], and greatly affect the
performance of the algorithm [32, 6, 25, 15]. In cases where
the number of parameters and their plausible value ranges
are high, investigating all possible combinations of parame-
ter values can itself be an attempt to solve a combinatorially
complex problem [8, 44, 7, 33]. It has also been empirically
and theoretically demonstrated that different parameter set-
tings may be required for different optimisation stages of a
problem instance [6, 5, 39, 38, 10, 40], and therefore should
vary during the search process for best algorithm perfor-
mance [5, 39, 38].

To address the problem of parameterising Evolutionary
Algorithms, adaptive parameter control [41, 16, 11, 12, 20,
21, 22, 26] emerged as a new line of thought. Instead of
exploring parameter settings before using an EA, in adap-
tive parameter control parameters are adjusted during the
optimisation process. More specifically, properties of an EA
run (such as the quality of the solutions produced) are mon-
itored and the change in the properties is used as a signal
to change parameter values.

One of the difficult issues faced in adaptive parameter
control methods is the choice for real-valued parameter as-
signments, such as the mutation rate and the crossover rate.
Usually, adaptive parameter control methods [43, 10, 21, 16,
42, 41, 3] discretise the choices for parameter assignments
and sample parameter values from the preselected ranges.
Insight from existing research [5] shows that initial discreti-
sation can be problematic. As the ranges are fixed, they
remain sub-optimal throughout the optimisation process.

Confirming this view, Adaptive Range Parameter Selec-
tion (ARPS) [4] was introduced, which uses adaptive value
ranges that change dynamically during the optimisation pro-
cess. ARPS outperforms state-of-the-art adaptive parame-
ter control methods, such as Probability Matching (PM) [41],
Adaptive Pursuit (AP) [41], Dynamic Multi-Armed Bandit
(DMAB) [16] and Predictive Parameter Control (PPC) [3].
However, it was observed that high-performing ranges were
sometimes absorbed into very large intervals, making it diffi-
cult for the algorithm to re-establish small, promising areas
within the range.

With the goal of handling real-valued parameter assign-
ments effectively, we introduce a new adaptive parameter
control approach which uses an entropy-based measure to
discretise parameter value ranges. At every iteration, feed-



back from the search is used to cluster parameter values into
successful and unsuccessful groups. The outcome from the
clustering process is employed to cut the parameter range
into two sub-ranges such that the class information entropy
is minimised. Results from the experimental validation of
the approach show that the Entropy-based Adaptive Range
Parameter Control (EARPC) outperforms state-of-the-art
methods.

2. BACKGROUND

2.1 Evolutionary Algorithms
Generally speaking, Evolutionary Algorithms maintain a

population of solutions that evolves by means of the muta-
tion operator, the crossover operator, the selection proce-
dure, and the replacement procedure. The objective is to
search the solution space in order to optimise some qual-
ity function(s). The optimisation process starts with a set
of solutions as initial population, which can be randomly
generated, created by applying heuristic rules (e.g. greedy
algorithm), or provided by an expert. After the initialisa-
tion, EA evolves the population using the crossover, mu-
tation and selection operators. The crossover and muta-
tion operators are applied according to predefined crossover
and mutation rates. These operators are applied to spe-
cific solutions, which are selected according to the selection
procedures. The new individuals (offspring) created by the
genetic operators are added to the population. The replace-
ment procedure selects the solutions that will survive in the
next generation and removes as many individuals as required
to maintain the prescribed population size.

Before using an EA for optimisation, a number of algo-
rithm parameters have to be adjusted, such as the popula-
tion size, offspring number, selection procedure, mutation
rate and crossover rate. A comprehensive overview of the
research in various parameters of Evolutionary Algorithms
is presented by Eiben and Schut [14].

2.2 Adaptive Parameter Control
Formally, given a set {υ1, ..., υn} of n algorithm parame-

ters, where each parameter υi has {υi1, ..., υim} values that
can be discrete numbers or intervals of continuous numbers,
parameter control has the task of deriving the optimal next
value υij to optimise the influence of υi on the performance
of the algorithm. As an example, when the mutation rate υ1
is dynamically adjusted by considering 4 intervals (m = 4),
υ12 stands for a mutation rate sampled from the second in-
terval. In the discrete case of optimising the type of muta-
tion operator υ2, υ22 stands for the second operator.

The majority of the adaptive parameter control methods
found in the literature [11, 12, 20, 21, 22, 26] belong to
the class of probability matching techniques, in which the
probability of applying a parameter value is proportional to
the quality of that parameter value.

The earliest approaches [21, 20] tended to ‘lose’ value
ranges if the feedback from the algorithm was not in their
favour in the initial phases of the process. In later work,
a minimum selection probability pmin is introduced [21], to
ensure that under-performing parameter values did not dis-
appear during the optimisation, in case they were beneficial
in the later stages of the search.

These probability matching techniques [11, 12, 20, 21, 22,
26, 18] were based on the notion of selecting parameter val-

ues in proportion to their previous performances. One of the
more recent and mature examples of probability matching is
the work by Igel and Kreutz [21]. Their Equation 1 for cal-
culating the selection probability for each parameter value
incorporates the maintenance of a minimum probability of
selection.

p′t(υij) = pmin + (1−mpmin)
pt(υij)∑m
r=1 pt(υir)

(1)

where m is the number of possible values for parameter
υi. Probability matching has been criticised for the loose
correlation between the reward allocations and the differ-
ences in performance with vastly superior values receiving a
marginal increase in selection probability.

Adaptive Pursuit (AP) [41] was conceived as an attempt
to address this issue, ensuring that clearly superior values
are rewarded with a maximum probability of choice. Even
though every parameter value is selected from time to time,
in practice the Adaptive Pursuit algorithm spends a number
of iterations before responding to a change of best parameter
value.

Dynamic Multi-Armed Bandit (DMAB) [16] addresses the
problem by completely recalculating the probabilities when
a change in the effects distribution is detected by using
a change detection test, in this case the statistical Page-
Hinkley (PH) test. The PH test checks whether the quality
of the parameter values has changed. When a change is de-
tected, the algorithm is restarted. As a result, DMAB can
quickly identify the new best parameter value without being
slowed down by old information.

Adaptive Range Parameter Selection (ARPS) [4] is the
first attempt at adapting real-valued parameter ranges. The
ARPS algorithm discretises continuous-valued parameters
by partitioning its ranges into two equal intervals. At ev-
ery iteration, the best-performing interval is subdivided by
splitting it in the middle. At the same time, the worst-
performing interval is merged with the worse-performing of
its neighbours. The selection probabilities of the split in-
tervals are initially the same, the merged interval maintains
the neighbour’s probability of selection.

Refining the most successful parameter areas into nar-
rower intervals, the probability of choosing particular val-
ues increases. Merging badly performing parameters de-
creases their probability of selection. An analysis of the mu-
tation/crossover ranges [4] revealed that ARPS sometimes
absorbs high-performing intervals into very large ranges as a
result of short-term underperformance. The merged ranges
are usually very large and it takes many iterations for an
absorbed sub-range to re-establish itself. This behaviour al-
most certainly affects the performance of the search. There-
fore, an improved approach to maintaining parameter value
intervals is the subject of this investigation.

3. ENTROPY-BASED ADAPTIVE
RANGE PARAMETER CONTROL

At every iteration of an EA run, the chosen parameter
values are employed to create different solutions, which are
evaluated using the fitness function(s). The output from
the evaluation process provides valuable information for the
adaptive parameter control, since it can be used to assess
the effect of the parameter values on the performance of the
optimisation algorithm. The feedback from the search is



used to approximate the cause of the change in the quality
of the solutions and assign a quality to parameter values,
denoted as q(υij). The quality of the parameter values is
used to select the next parameter assignments, which are
employed to create the next generation of solution(s).

In this framework, the feedback from the algorithm tends
to fluctuate, and very good parameter ranges occasionally
receive poor feedback, leading to the problem of the loss of a
range as a result of merging when ARPS is used. Entropy-
based Adaptive Range Parameter Control (EARPC) clus-
ters the values of a parameter by performance and subdi-
vides the intervals according to the clustering. Since the
process is repeated at every iteration, disadvantaging a well-
performing interval has no effect beyond the subsequent it-
eration.

The EARPC algorithm consists of two major steps; in the
first step, it uses K-means clustering to determine how best
to subdivide the values into two groups. K-means clustering
starts with an initial random centre point for each group.
All other points are allocated to the group whose centre is
closer to them.

As we are clustering the parameter values based on their
performance in the algorithm q(υij), the performance feed-
back used for controlling the parameters is used. Once all
points have been allocated to one of the clusters, the mean
of the values of each group is calculated. The point which
is closest to this group mean becomes the new centre, and
all other points are reallocated according to their distances
to the new means. The algorithm stops when the centres no
longer change.

The second step uses these clusters as a basis to define
the range boundaries for the groups. The k-means method
expects the k to be determined from the outset. Therefore,
in this work, we assume k = 2 intervals. At the end of the
k-means clustering algorithm, we obtain 2 clusters.

3.1 Adaptation of Parameter Interval
Boundaries

From k-means clustering, we obtain two clusters of pa-
rameter values, grouped according to their distances to the
clusters’ centre points. When we align the parameter values
along the axis of the actual parameter values, the mem-
bers of the groups are likely interspersed. If c1 denotes a
member of cluster 1 and c2 a member of cluster 2, an order-
ing according to the parameter values may present itself as
‘c1, c1, c2, c1, c2, c1, c1, c2, c2, c1, c2’. The algorithm uses this
sequence to determine the interval boundaries. The ideal
boundary is located where the class entropy, calculated by
Eq. 2, is minimal.

Let parameter value k partition range of parameter υi
representing values between [min,max) into two intervals:
υi1 representing values in the range [min, k] and υi2 denot-
ing values in the range [k,max). To obtain the minimal
entropy, we calculate all entropy values arising from plac-
ing k between each of the adjacent pairs in the sequence
c1, c1, c2, c1, c2, ...

e(υi1) = −|c1(υi1)|
|cx(υi1)| log2

|c1(υi1)|
|cx(υi1)| −

|c2(υi1)|
|cx(υi1)| log2

|c2(υi1)|
|cx(υi1)|

The calculation of the class entropy has to be repeated for
each interval υij . In each case, it calculates the number of
‘matching’ cluster members (c1 for interval υi1) in one in-

Algorithm 1 Entropy-based Adaptive Range Parameter
Control.

procedure EARPC(υi, clusters)
Cluster(υi, clusters)
minEntropy = Max(Integer)
for all parameters υi, i ∈ n do

for all parameter values υij , j ∈ m do
E(j|υi) =InfoEntropy(υi1, υi2, j)
if E(j|υi) < minEntropy then

minEntropy = E(j|υi)
cutPoint = j

end if
end for
AdjustRange(cutPoint, υi)

end for
end procedure

procedure Cluster(υi, clusters)
while True do

oldC = newC
for all parameter values υij , j ∈ m do

for all cluster center newC[k] do
if ED(υij , newC[k]) < mD) then

cl[j] = k
end if

end for
end for
for s = 0; s < clusters; s+ + do

for r = 0; r < m; r + + do
if cl[r] = s then vec[s] = υir
end if

end for
newC[j]= CalculateCenter(vec)

end for
if newC = oldC then return
end if

end while
end procedure

procedure InfoEntropy(υi1, υi2, k)

e(υi1) = − |c1(υi1)|
|cx(υi1)|

log2
|c1(υi1)|
|cx(υi1)|

− |c2(υi1)|
|cx(υi1)|

log2
|c2(υi1)|
|cx(υi1)|

e(υi2) = − |c1(υi2)|
|cx(υi2)|

log2
|c1(υi2)|
|cx(υi2)|

− |c2(υi2)|
|cx(υi2)|

log2
|c2(υi2)|
|cx(υi2)|

E(k|υi) = |cx(υi1)|
|cx(υi)|

e(υi1) + |cx(υi2)|
|cx(υi)|

e(υi2)

return E(k|υi)
end procedure

procedure AdjustRange(cutPoint, υi)
υi1(min) = υi(min)
υi1(max) = cutPoint
υi2(min) = cutPoint+ MinFloat( )
υi2(max) = υi(max)

end procedure

terval as a proportion of all samples located in that interval
(cx(υi1)) and subsequently the proportion of non-matching
cluster members (c2 for interval υi1) of all samples in that
cluster. The overall class information entropy when a range
υij is partitioned at the cut-point k into two new ranges υi1
and υi2 is calculated as the weighted average of the class
entropies of the sub-ranges. This constitutes the class in-
formation entropy and is computed as follows:



E(k|υi) =
|cx(υi1)|
|cx(υi)|

e(υi1) +
|cx(υi2)|
|cx(υi)|

e(υi2) (2)

The best cut-point k is the one that minimises the class
information entropy E(k|υi). The method employs the cut-
point k to partition the parameter range into two sub-ranges.
These two intervals are employed to select the parameter
values for the next iteration. The selection of parameter
values is proportional to the average quality of the param-
eter values in each range. Let p(υij) denote the selection
probability of parameter range υij and q(υij) the combined
quality of the members of the interval. The mean quality of
the intervals is calculated according to Eq. 3, regardless of
cluster membership.

q(υij) =
1

|cx(υij)|
∑

cx∈υij

q(cx) (3)

The probability of sampling from a range p(υij) is derived
from the combined quality of its members q(υij), normalised
by the summed qualities of all intervals. The main steps of
EARPC are given in Algorithm 1.

4. EXPERIMENTS
Evolutionary Algorithms are not expected to deliver ex-

act and repeatable results, but to provide good approxi-
mate solutions where exact approaches cannot be devised.
Hence, results concerning the performance of approximate
algorithms such as EAs, are usually reported as mean values
over repeated trials.

To obtain a fair comparison, the generally accepted ap-
proach is to allow the same number of function evaluations
for each trial [36]. Therefore, for the current comparison,
all algorithms trials were repeated 30 times for each op-
timisation scheme, for 30 000 function evaluations. These
values were decided after running the algorithm once for ev-
ery problem and choosing the value where the quality of the
solutions seemed to not improve any further. Nevertheless
there are indications that all algorithms still make small but
steady improvements after these numbers of evaluations.

4.1 Benchmark Problems
According to Lin et al. [37], differences in performance

among approximate algorithms are more likely to be de-
tected statistically if all algorithmic approaches solve the
same problem instances. Along this line, different instances
of two problems were chosen: the generally accepted Quadratic
Assessment Problem (QAP), which was especially designed
for testing EAs, and the component deployment problem,
which is a real world problem in the Software Engineering
domain.

The problems were chosen due to their dissimilarity, which
enables a more informed judgement as to the portability of
the approach when applied to an EA. Both problems are NP-
hard, which makes them difficult to be solved by an exact
algorithm and justifies the use of Evolutionary Algorithms
to optimise them.

4.1.1 Quadratic Assignment Problem
The Quadratic Assignment Problem (QAP) was first in-

troduced by Koopmans and Beckmann [24], who used this

mathematical model to solve the problem of assigning eco-
nomical activities to resources. In QAP, n facilities have to
be allocated to n locations, such that the total cost is min-
imised and every resource has only one economical activity.

The total cost is calculated as the flow between the fa-
cilities multiplied by the costs for placing the facilities at
their respective locations. QAP is considered to be a very
challenging combinatorial optimisation problem. More for-
mally, the problem is modelled with two n×n, representing
the cost and the flow. The aim is to assign n utilities to n
locations with minimal cost. The candidate assignments are
evaluated according to equation 4.

C =

n∑
ij

Bij · uij +
∑
ij,k,l

Cij,k,l · uik · ujl (4)

where
• n is the number of facilities and locations.
• Bik is the cost of assigning utility i to location k
• Cij,k,l is the cost of the flow between neighbouring util-

ities (given utility i is assigned to location k and utility
j is assigned to location l
• uik is 1 if utility i is assigned to location k, 0 otherwise

QAP does not allow for multiple assignments to the same
location, hence solutions are subject to the following con-
straints:

n∑
j=1

uij = 1,

n∑
i=1

uij = 1, uij ∈ {0, 1}, i, j = {1, 2, ..., n}

QAP is a well-known problem and instances of consider-
able difficulty have been made available as benchmarks. It is
a single-objective problem with one objective function that
lends itself as quality feedback for the performance assess-
ment of the parameter values.

4.1.2 Component Deployment Problem
One of the practical applications of Evolutionary Algo-

rithms is the component deployment problem in embedded
systems [1], relevant e.g. for the automotive industry. An
existing hardware topology is used to run software compo-
nents which form the basis of the increasingly sophisticated
functionality of contemporary cars. The quality of the over-
all system depends on the choice of hardware unit to host a
particular software component [34].

The quality of the system is commonly measured in terms
of non-functional attributes such as safety, reliability and
performance. We model the embedded system as a set of
software components and a set of hardware hosts. Formally,
let C = {c1, c2, ..., cn}, where n ∈ N , denote the set of
software components. The parameters for the software ar-
chitecture are as follows:
• Communication frequency f : C × C → R.
• Data size ds : C × C → N.
• Estimated time for a single execution ext : C → N.

Let H = {h1, h2, ..., hm}, where m ∈ M , denote the set
of hardware resources. The parameters for the hardware
architecture are as follows:
• Data rate dr : H ×H → N.
• Network reliability r : H ×H → R.
• Network delay nd : H ×H → N.
• Processing speed ps : H → R.



The deployment problem is then defined as D = {d |
d : H → Csub}, where Csub = {c0, c1, ..., cj} ⊂ C, and D
is the set of all functions assigning hardware resources to
components. Note that, since C and H are finite, D is also
finite, and represents the set of all deployment candidates.

The deployment problem has many quality-related aspects
and is therefore always modelled as a multi-objective prob-
lem. Data Transmission Reliability (DTR) follows the def-
inition of Malek [27]. Reliability of the data transmission
is a crucial quality attribute in a real-time embedded sys-
tem, where important decisions are taken based on the data
transmitted through the communication links.

fDTR(d) =

n∑
i=1

n∑
j=1

f(ci, cj) · r(d(ci), d(cj)) (5)

In embedded systems with their constrained hardware re-
sources, repeated transmissions between software compo-
nents are discouraged. The Communication Overhead (CO) [29]
objective attempts to enforce minimal data communication
for a given set of components and system parameters, cal-
culated as follows:

fCO(d) =

n∑
i=1

n∑
j=1

f(ci, cj) · nd(d(ci), d(cj))+

+

n∑
i=1

n∑
j=1

f(ci, cj) · ds(ci, cj)
dr(d(ci), d(cj)) · r(d(ci), d(cj))

(6)

The scheduling length (SL) describes the average time for
a hardware unit (i.e. ECU) to complete the round-robin
processing of all its assigned components. ST is given by

fSL(d) =
1

m
·
m∑
j=1

(∑
c∈Chj

ext(c)

ps(hj)

)
. (7)

where m is the number of components deployed in hj and
Chj is the set of components deployed to host hj .

4.2 Experimental Settings
QAP as an assignment problem with constraints maps n

tasks to n resources. Hence the solution representation is a
simple array which describes the numbered locations and the
values of the array represent the items. Multipoint crossover
swaps the assignments between solutions. The mutation op-
erator changes the assigned item of a single location. As
we are solving the QAP, singularity of item occurrence is
mandatory the genetic operators are specialised to create
valid solutions.

A variety of instances with descriptions of properties are
available in QAPLIB collection [9]. The instances Taixxxc,
like Tai256c, occur in the generation of grey patterns. The
distances of Skoxxxf problems are rectangular and the en-
tries in flow matrices are pseudorandom numbers. Similarly,
the distance matrices of Wilxxx and Thoxxx problems, such
as Wil100 and Tho150 are rectangular.

The industrial problem of software deployment uses an
EA with a specialised solution encoding which maps each
hardware unit to one or more software components. The
crossover operator combines the allocation lists of two solu-
tions’ locations (hardware units) and subsequently divides
them again into two child solutions avoiding duplication.

The mutation operator exchanges the host allocations of two
randomly chosen components. The problem definition does
not allow for duplication, and a repair operation follows the
crossover/mutation move. Also, the component deployment
problem is multiobjective in nature and requires a more spe-
cialised approach. One of the state-of-the-art multiobjective
EA implementations is NSGA-II, devised by Deb et al. [13].
The component deployment problem (CDP) instance used
for the benefit of these experiments is the H36C51, composed
of 36 hardware units and 51 software components.

The crossover and mutation rates, used for the benefit of
these experiments, are probably the most conspicuous con-
trol parameters to optimise in stochastic optimisation [14].
Based on preliminary exploration, a range of 0.01− 0.5 was
adopted for the mutation rate and the interval 0.6− 1.0 was
used for the crossover operator.

In the case of QAP, the quality feedback for the parameter
values is based on the fitness values returned by the objec-
tive function. The multiobjective nature of the deployment
problem necessitates the combination of the fitness values
from all three objective functions into a single unary mea-
sure of solution quality. The most conspicuous choice for
this feedback is the hypervolume indicator, which has been
described as the most reliable unary measure of solution
quality in multiobjective space [45].

5. RESULTS
The means and standard deviations of the 30 trials from

the different optimisation schemes listed in Table 1 clearly
indicate a significant difference between the result groups
of EARPC and the benchmarks. The mean performance of
EARPC is consistently above the averages of the benchmark
approaches. The standard deviation of EARPC is relatively
high in the Quadratic Assignment Problem, but lower than
the respective values of the other parameter control strate-
gies in the component deployment problem.

As EARPC consistently outperforms the four other pa-
rameter control schemes, we employ the Kolmogorov-Smirnov
(KS) non-parametric test [35] to check for a statistical dif-
ference. The 30 results of the repeated trials for each of
the problem instances were submitted to the KS analysis.
EARPC was compared to the other four adaptive parame-
ter control schemes, with a null hypothesis of an insignificant
difference between the performances (EARPC vs. ARPS,
EARPC vs. DMAB, EARPC vs. AP and EARPC vs. PM).
The results of the tests are shown in Table 2.

All KS tests, used for establishing that there is no dif-
ference between independent datasets under the assumption
that they are not normally distributed, result in a rejection
of the null hypothesis with a minimum d-value of 0.36 at a
97% confidence level. Hence we conclude that the superior
performance of EARPC is statistically significant.

The gap between result qualities widens in favour of the
EARPC as the problem size increases. The biggest Quadratic
Assignment Problem of dimension n=256 (TAI256c) is clearly
solved to better quality using EARPC, as it is more complex
than the smaller QAP instances.

In EARPC, the intervals of crossover and mutation rates
over 230 iterations are depicted in Figures 1 and 2. The
problem optimised for the benefit of this experiment is the
QAP problem instance TAI256c. At the beginning of the
optimisation process, all intervals are equal. The selection of
the parameter values is based on the assigned probabilities



Table 1: The means and standard deviations of fitness functions for the 30 runs of each problem instance
using different parameter control schemes.

Mean

Problem Instance PM AP DMAB ARPS EARPC

QAP

Tho150 9154000 9157000 9197000 9141000 9053000

Wil100 287100 286800 287600 286100 285500

Sko100 164716 164875 164990 164681 164139

Tai256c 47450000 47490000 47750000 47410000 46820000

CDP H36C51 12239 12147 12405 12128 11854

Standard Deviation

Problem Instance PM AP DMAB ARPS EARPC

QAP

Tho150 36173.41 33358.02 41541.24 29024.92 47453.43

Wil100 784.2973 634.0923 745.9012 523.1157 686.7064

Sko100f 619.2552 613.1455 686.2719 872.4846 573.6736

Tai256c 261879.1 314044 293074.2 269008.5 166171.3

CDP H36C51 447.5069 344.8195 432.7907 423.8407 289.714

Table 2: The Kolmogorov-Smirnov test values of fitness functions for the 30 runs of each problem instance
using different parameter control schemes.

Kolmogorov-Smirnov test

Problem Instance EARPC vs. PM EARPC vs. AP EARPC vs. DMAB EARPC vs. ARPS

d p d p d p d p

QAP

Tho150 0.8065 < 0.01 0.8387 < 0.01 0.9032 < 0.01 0.7742 < 0.01

Wil100 0.8065 < 0.01 0.8065 < 0.01 0.9032 < 0.01 0.9355 < 0.01

Sko100f 0.4667 < 0.01 0.5333 < 0.01 0.6 < 0.01 0.3667 0.03

Tai256c 0.871 < 0.01 0.9355 < 0.01 0.9677 < 0.01 0.9677 < 0.01

CDP H36C51 0.4 0.01 0.4333 < 0.01 0.5 < 0.01 0.3667 0.03
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Figure 1: Adaptation of the range of crossover rate.

calculated using Equation 3. The probability of sampling
from a range p(υij) is derived from the combined quality
of its members q(υij), normalised by the summed qualities
of all intervals. The higher the quality of the values in an
interval, the more samples are taken from that interval.

In Figures 1 and 2, the most successful intervals are de-
picted with darker shade. We can clearly see that the be-
haviour of the entropy-based adaptive range parameter value
selection is different for different parameters. The intervals
of crossover rate develop quite differently compared to muta-
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Figure 2: Adaptation of the range of mutation rate.

tion rate. Higher crossover rates are more successful towards
the end which runs somewhat contrary to popular opinion
that crossover rates should decrease with iterations so as not
to disturb solutions with high quality. On the other hand,
the algorithm favours high mutation rates only in the middle
of the optimisation process, and low rates at the beginning
and at the end.

It can further be observed that high quality parameter
values, both in mutation and crossover rates, are usually re-
fined into narrower intervals compared to badly performing



parameter values. This indicates that well performing val-
ues are usually diffuse into small regions of the parameter
range and will be selected more frequently.

One might argue that although parameter configuration
seems to be a very important factor of any algorithm, the pa-
rameter space is considerably smaller than the search space
of all relevant NP-hard problems and the number of parame-
ters is relatively small. So contrary to NP-hard optimisation
problems, where ‘solving by hand’ is entirely inappropriate,
‘choosing parameters by hand’ is possible.

However, the use of parameter values that remain constant
over the optimisation process has been observed in previous
studies to achieve suboptimal results. This was also demon-
strated by the analysis of parameter ranges during the op-
timisation process. Parameters of an EA can have different
optimal values at different stages of the search. Thus, when
an optimisation algorithm is tuned prior to the optimisation
process, the selected parameters at the end of this process
are not necessarily optimal.

This suggests that controlling parameters dynamically dur-
ing the optimisation process is likely to lead to better out-
comes. Hence, the proposed method of adapting parameters
during the optimisation process is a more suitable option
for the parameter configuration process. Furthermore, by
reducing the number of parameters that need to be set in
Evolutionary Algorithms, the transfer of these algorithms
into industrial settings, where practitioners do not have any
knowledge about EA parameters is facilitated.

6. CONCLUSION
The adaptive parameter control method introduced in this

paper configures Evolutionary Algorithms during the op-
timisation process for optimal performance. According to
our knowledge, the best-performing approaches with the
same functionality are AP, PM, DMAB and ARPS. The
new approach clearly outperforms the other parameter con-
trol methods.

The adaptation of parameter value ranges increases the
sampling accuracy, which can explain the superior perfor-
mance of EARPC compared to other approaches. Through
using EARPC, we observed that different parameter inter-
vals were optimal for different stages of the optimisation
process. Furthermore, the ranges of the crossover rate de-
veloped quite differently compared to the mutation rate.
Higher crossover rates were more successful towards the end
of the optimisation process, whereas the opposite was ob-
served for mutation rates.

To conclude the adaptive parameter control strategy pre-
sented in this paper, within its acknowledged limitations,
is an effective method for adjusting parameters of Evolu-
tionary Algorithms. In the future we intend to investigate
algorithms for multi-interval partitioning, which we believe
may improve the accuracy of interval boundaries and pro-
duce better algorithm performance.
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