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Abstract—All existing stochastic optimisers such as Evolution-
ary Algorithms require parameterisation which has a signifi-
cant influence on the algorithm’s performance. In most cases,
practitioners assign static values to variables after an initial
tuning phase. This parameter tuning method requires experience
the practitioner may not have and, when done conscientiously,
is rather time-consuming. Also, the use of parameter values
that remain constant over the optimisation process has been
observed to achieve suboptimal results. This work presents a
parameter control method which redefines variables repeatedly
based on a separate optimisation process which receives its
feedback from the primary optimisation algorithm. The feedback
is used for a projection of the value performing well in the
future. The parameter values are sampled from intervals which
are adapted dynamically, a method which has proved particularly
effective and outperforms all existing adaptive parameter controls
significantly.

I. INTRODUCTION

All known stochastic optimisation methods such as Sim-
ulated Annealing (SA), Evolutionary Algorithms (EA) and
Estimation of Distribution Algorithms (EDA) have a range of
adjustable parameters like learning rates, crossover probabil-
ities and weighting factors. Poor algorithm parameterisation
hinders the discovery of good solutions. Yet inexperienced
practitioners often apply stochastic methods with parameter
values chosen on the basis of few tuning iterations. The inter-
actions between the different parameters used by an algorithm
have been investigated for a considerable number of years [6],
[13], [30], but these studies are largely ignored by practitioners
outside of the AI field.

The parameter values needed for optimal algorithm per-
formance are known to be problem-specific [22], often even
specific to the problem instance at hand [2], [28], [27], [17].
Moreover, the interactions between parameters have been
found to be problem-specific [16]. Practitioners tend to choose
parameter values based on a small number of preliminary
experiments, a practice known as parameter tuning. Depending
on the number of parameters and their plausible value ranges,
investigative trials for parameter optimisations can themselves
be attempts to solve a combinatorially complex problem [5],
[31], [4], [24]. Moreover, it has also been established that
some of the parameter values ought to vary during the search
process for best algorithm performance [2], [28], [27], [17].

Acknowledging these facts, many researchers have shifted
their focus to parameter control methods, where parameter
values are optimised based on algorithm performance. De-
terministic parameter control can be regarded as a variation

of parameter tuning, in which several parameter settings are
chosen based on preliminary experiments [21], to alleviate
the performance problems of parameters that are invariate
throughout the optimisation process. Self-adaptive parameter
control integrates the search for optimal parameters into the
optimisation process itself - usually by encoding parameter
settings into the genotype of the solution to evolve [3], [11],
[7]. Extending the solution size to include the parameter space
obviously increases the search space and makes the search
process more time-consuming [9].

Adaptive parameter control describes the application of
separate meta-optimisation methods which use feedback from
the optimisation process itself to evaluate the effect of param-
eter value choices and adjust the parameter values over the
iterations. The approaches within this category (e.g. [29], [12])
optimise parameter values by choosing from predefined values
or ranges.

II. ADAPTIVE PARAMETER CONTROL STRATEGIES

The area of adaptive parameter control has been researched
more actively in recent times [14], [12], [29], [15]. Param-
eter values are assessed based on recent performance and
subsequently adapted for the next iteration of the algorithm.
The most successful methods representative of adaptive strate-
gies are Probability Matching (PM) [29], Adaptive Pursuit
(AP) [29], Dynamic Multi-Armed Bandit (DMAB) [12] and
Predictive Parameter Control (PPC) [1].

A. Probability Matching

Probability Matching (PM) [29] uses reinforcement learning
to project the probability of good performance of a parameter
value based on the previous performance of an algorithm
using this value. The probability of a value providing good
quality results at the next time step is based on a running
average of past rewards. Rewards are allocated on the basis of
the outcome of the optimisation process the parameter value
was used in. A minimum probability is enforced on values
which do not receive rewards in order to maintain a non-
zero probability. The motivation of a minimum value is the
assumption that parameter values which do not perform well
at present might be optimal in the future.

PM has been criticised for the fact that the probability
values resulting from the reward allocations poorly reflect the
relative differences in algorithm performance when using the
values. Values with vastly superior performance may only be



differentiated by a marginal increase of the probability of being
chosen in the next step.

B. Adaptive Pursuit

Adaptive Pursuit (AP) [29] was conceived with the goal
of improving the performance of PM by ensuring an appro-
priate difference in probabilities depending on experienced
performance. After an iteration of the optimisation process,
AP establishes the respective rewards for the parameter values
used, but only applies the maximum award to the value of the
best-performing algorithm instance. All other values have their
probabilities of future use diminished. A nonzero probability
is enforced as a minimum probability.

C. Dynamic Multi-Armed Bandit

Dynamic Multi-Armed Bandit (DMAB) [12] also employs a
performance-based rewards approach, but here the probability
of re-using a certain value is based on a tradeoff between
the number of times the parameter value was used and the
reward gained from its previous performance. Rather than
using a rewards-based weighted adjustment of the proba-
bilities, the DMAB completely recalculates the probabilities
when a change in the rewards distribution is detected. DMAB
uses the Page-Hinkley test to detect a change in the rewards
distribution.

D. Predictive Parameter Control

PPC derives the probabilities for parameter values to choose
for the next iteration based on algorithm performance in the
previous iteration quite like PM, AP and DMAB. The reward
- or credit assignment - strategy counts the number of times
a parameter value was used and the number of times the
algorithms using this value were successful. Success is defined
as producing solutions with fitness values above a certain
threshold. In the existing implementations, success has been
defined as producing a population with above-average fitness.

The ratio of the times a parameter value’s usage has been
successful and the number of times this value was used
is recorded after each iteration. It can be regarded as the
probability of success given the use of value v at time t.
Based on these historic probabilities, PPC uses least squares
regression to derive the appropriate probabilities of success
with the use of value v at time t+ 1.

Rather than using discretised parameter value choices, PPC
uses predefined ranges to sample the continuous values from.
The ranges or bins are of equal size and remain the same
throughout the optimisation process. The probabilities derived
from the success rates of values are attributed to the range the
value was sampled from rather than the value itself.

III. ADAPTIVE RANGE PARAMETER CONTROL

Predictive Parameter Control (PPC) [1] optimises the choice
of parameter assignment using static predefined ranges. The
quality feedback and therefore the probability of use in the
next iteration is allocated to these ranges, not the actual
sampled values. As the ranges are fixed, they are not optimised

by the process. Defining narrow ranges leads to more accuracy
but increased combinatorial complexity, leaving ranges wider
entails a sampling inaccuracy as the actually sampled value
may be far from the value whose success the range’s usage
probability is attributable to. Ideally, the ranges should be
optimised by the parameter control process.

Adaptive Range Parameter Control (ARPC) remedies this
problem by adjusting the range sizes as the optimisation
process progresses. After each iteration, the best-performing
range is halved, whereas the worst-performing is merged with
the worse-performing of its neighbours.

This technique was first conceived for the context of parallel
computing [23] but has never been used to the dynamic
adjustment of parameter ranges.

The method is illustrated with the help of a single pa-
rameter Vi. Figure 1 shows how the parameter values are
initially divided into two ranges: Vi,1 defined by its minimum
and maximum values [lowerbound(Vi,1), upperbound(Vi,1)],
and Vi,2 which is the set of values that lie within
[lowerbound(Vi,2), upperbound(Vi,2)]. At the beginning of
the search, both intervals have equal success rates, denoted
as the conditional probabilities P (e = e+|Vi = Vi1) and
P (e = e+|Vi = Vi2), with e denoting the expectation and
e+ denoting a successful outcome given the usage of a value
from range Vij for the parameter Vi. This value is calculated
as the ratio of the number of times the usage of the value Vij

was successful and the number of times it was used, denoted
us
ij

uij
in the algorithmic listing 2. In the illustration, an equal

height of two ranges represents the equality of the probabilities
of both ranges to be selected for use in the next iteration.

Vi,2Vi,1 P (e = e+|Vi = Vi,2)P (e = e+|Vi = Vi,1){ }
−−−−−−−︸ ︷︷ ︸

[value range]

−−−−−−−︸ ︷︷ ︸
[value range]

Fig. 1: Parameter Vi divided into two ranges which have had
equal success rates in the previous iteration.

After applying the parameter values sampled from the
ranges for the optimisation process, the conditional probabili-
ties of each interval are recalculated based on their usage and
performance in the latest iteration. Assuming that the new con-
ditional probabilities have the proportions shown in Figure 2,
the success rate of the first interval, i.e. P (e = e+|Vi = Vi1), is
greater than that of the second interval (P (e = e+|Vi = V i2)).

Vi,2
Vi,1

−−−−−−−︸ ︷︷ ︸
[value range]

−−−−−−−︸ ︷︷ ︸
[value range]

}P (e = e+|Vi = Vi,2){P (e = e+|Vi = Vi,1)

Fig. 2: The new success rates of the levels of parameter Vi

based on their performance in the most recent iteration of the
algorithm.

The adaptive range selection strategy divides the level with
the highest success rate into two new levels, denoted as P (e =
e+|Vi = Vi11) and P (e = e+|Vi = Vi12), which are shown in
Figure 3.



Vi,2
Vi,11

−−−−︸ ︷︷ ︸
[value range]

−−−−−−−︸ ︷︷ ︸
[value range]

}P (e = e+|Vi = Vi,2){P (e = e+|Vi = Vi,11) Vi,12

[value range]︷ ︸︸ ︷
−−−−

P (e = e+|Vi = Vi,12)

Fig. 3: The level with the highest success rate is divided into
two.

The conditional probabilities of both new levels are equal
to the conditional probability of the level they were created
from. That is:

P (e = e+|Vi = Vi11) =P (e = e+|Vi = Vi1)

P (e = e+|Vi = Vi12) =P (e = e+|Vi = Vi1)

As a result, the most successful interval is refined into
smaller intervals, and the selection probability of the values
that lie within these ranges is increased. This increases the
exploitation of the intervals and the exploration of new values
within the intervals.

Vi,2
Vi,11

−−−−︸ ︷︷ ︸
[value range]

−−−−−−−︸ ︷︷ ︸
[value range]

}P (e = e+|Vi = Vi,2){P (e = e+|Vi = Vi,11) Vi,12

[value range]︷ ︸︸ ︷
−−−

P (e = e+|Vi = Vi,12)

}

Fig. 4: The new success rates adjusting the selection probabil-
ities of the values of parameter Vi after running the algorithm.

The adaptive range selection strategy merges worst perform-
ing range, interval Vi,12 in Figure 4, with the worse-performing
neighbouring interval. In this case, interval Vi,12 has been
merged with interval Vi,2 forming the new interval Vi,2 as
shown in Figure 5.

Vi,2
Vi,1

−−−−︸ ︷︷ ︸
[value range]

−−−−−−−−−−︸ ︷︷ ︸
[value range]

}P (e = e+|Vi = Vi,2){P (e = e+|Vi = Vi,1)

Fig. 5: The levels with the lowest success rates are merged.

The selection probability of the new interval is set equal to
the higher selection probability of the two ranges.

The algorithmic listings 1 and 1 demonstrate how the
adaptive parameter control applies the dynamic changes to the
bin ranges.

The algorithmic listing 2 describes the steps. Every param-
eter Vi has a number of ranges Vij . After each iteration, we
investigate the parameter’s range’s success rate

us
ij

uij
, where us

ij

denotes the number of times this range Vij has performed
above average, as a ratio of how many times this range Vij

was used in the last iteration, denoted as uij . The variable
pbesti then holds the best ratio of all ranges of parameter
Vi, and V best

i points to the best-performing range of this
parameter. Analogously, pworst

i stores the success rate of the
worst-performing range of parameter Vi. The best range V best

i

Algorithm 1 Adaptive Range Parameter Control

1: procedure ARPC(n, e, k)
2: for i← 1, n do
3: Sample n parameter values for k algorithms

according to probability Pt

4: Execute k algorithms
5: Calculate f(x) of k trial outcomes
6: for all Vi ∈ n do
7: for all a ∈ k do
8: if a used value in range j then
9: increment uij

10: if a has solutions > f(x) then
11: increment us

ij

12: end if
13: end if
14: end for
15: end for
16: end for
17: for all Vi ∈ n do
18: for all Vij ∈ m do
19: add

us
ij

uij
to history of Vij

20: end for
21: end for
22: ADJUSTBINS(Vi)
23: Calculate Pt + 1 using least squares regression
24: end procedure

Algorithm 2 Adjusting Bin Sizes

procedure ADJUSTBINS(Vi)
2: for all Vi ∈ n do

for all Vij ∈ m do
4: if us

ij

uij
> pbesti then

pbesti ← us
ij

uij

6: V best
i ← Vij

else if us
ij

uij
< pworst

i then

8: pworst
i ← us

ij

uij

V worst
i ← Vij

10: end if
end for

12: end for
range← max(V best

i )−min(V best
i )

14: upperB(V best1
i )← lowerB(V best

i ) + range/2
lowerB(V best2

i )← upperB(V best
i )− range/2

16: pbest1i ← pbesti

pbest2i ← pbesti

18: range← max(V worst
i )−min(V worst+1

i )
upperB(V worst+1

i ) = min(V worst+1
i ) + range

20: pnewi ← pworst
i

end procedure



is subsequently split into V best1
i and V best2

i , both of which are
assigned the raw probability value of pbesti . Similarly, the worst
range V worst

i is expanded to cover the worse-performing of
its neighbours V worst+1

i , and the new range is assigned the
raw probability value pworst

i of the worst-performing range.

IV. BENCHMARK PROBLEMS

A. Quadratic Assignment

The Generalised Quadratic Assignment Problem (GQAP) is
one of the most difficult combinatorial optimisation problems.
The aim is to assign M utilities to N locations with minimal
cost. The candidate assignments are evaluated according to
equation 1.

∑

i,j

Bik · uik +
∑

i,j,k,l

Ci,j,k,l · uik · ujl (1)

where
• Bik is the cost of assigning utility i to location k
• Ci,j,k,l is the cost of the flow between neighbouring

utilities (given utility i is assigned to location k and utility
j is assigned to location l

• uik is 1 if utility i is assigned to location k, 0 otherwise
GQAP allows for multiple assignments to the same location

subject to the availability of space as described by equation 2.

M∑

i=1

aik · uik ≤ Sk(k = 1...N) (2)

where
• aik is the space needed for utility i at location k
• Sk is the space available at location k

The GQAP is a well-known problem and instances of con-
siderable difficulty have been made available as benchmarks. It
is a single-objective problem with one objective function that
lends itself as quality feedback for the performance assessment
of the parameter values.

B. The Royal Road Problem

Mitchell, Forrest, and Holland [18] especially devised the
Royal Road (RR) problem to demonstrate that there exist
problems which are easier to solve using a Genetic Algorithm
than a hill climber.

The function of the form F : {0, 1}l → R is used to
define a search task in which one wants to locate strings
that produce high fitness values. The string is composed of
2k non-overlapping contiguous sections each of length b+ g,
where b is known as the block and g is known as the gap.
In the fitness calculation, only the bits in the block part are
considered, whereas the gaps make no contribution.

Higher order schemata are formed from sets of the base
level blocks, where the base level containing the initial blocks
is level 0. The fitness calculation proceeds in two steps, the
part calculation and the bonus calculation. The overall fitness
assigned to the string is the sum of these two calculations.

The RR function is being used here as a benchmark to match
the Genetic Algorithm, whose parameters are being optimised
for the experimental results presented. It has also been used by
Fialho, Schoenauer and Sebag [12], whose results are being
used for the comparison.

C. Component Deployment Optimisation

One of the practical applications of stochastic optimisers
is the component deployment problem in embedded systems,
relevant e.g. for the automotive industry. An existing hardware
topology is used to run software components which form
the basis of the increasingly sophisticated functionality of
contemporary cars. The quality of the overall system depends
on the choice of hardware unit to host a particular software
component (Papadopoulos and Grante [25]). The quality of
the system is commonly measured in terms of non-functional
attributes such as safety, reliability, performance and maintain-
ability. We model the embedded system as a set of software
components and a set of hardware hosts as listed below.

Let C = {c1, c2, ..., cn}, where n ∈ N , denote the set
of software components. The parameters for the software
architecture are as follows:
• Component communication frequency CF : C×C → R,

where CF (ci, cj) = 0 if ci = cj or there is no
communication between ci and cj .

• Component event size ES : C × C → N, where
ES(ci, cj) = 0 if ci = cj or there is no event occurring
ci and cj .

Let H = {h1, h2, ..., hm}, where m ∈ M , denote the
set of hardware resources. The parameters for the hardware
architecture are as follows:
• Network bandwidth NB : H × H → N, where

NB(hi, hj) = 0 if hi = hj or there is no network
connection between hi and hj .

• Network reliability R : H ×H → R.
• Network delay ND : H×H → N, where ND(hi, hj) =

0 if hi = hj or there is no network connection between
hi and hj .

The deployment problem is then defined as D = {d |
d : H → Csub}, where Csub = {c0, c1, ..., cj} ⊂ C, and
D is the set of all functions assigning hardware resources to
components. Note that, since C and H are finite, D is also
finite, and represents the set of all deployment candidates.

The deployment problem has many quality-related aspects
and is therefore always modelled as a multi-objective problem.
Data Transmission Reliability (DTR) follows the definition of
Malek [19]. Reliability of the data transmission is a crucial
quality attribute in a real-time embedded system, where impor-
tant decisions are taken based on the data transmitted through
the communication links. The Data Transmission Reliability
(DTR) formulation we use has first been defined by Malek
[19].

fDTR(d) =

n∑

i=1

n∑

j=1

freq(ci, cj) · rel(d(ci), d(cj)) (3)



In embedded systems with their constrained hardware re-
sources, repeated transmissions between software components
are discouraged. The Communication Overhead (CO) [20] ob-
jective attempts to enforce minimal data communication for a
given set of components and system parameters. As a network-
and deployment-dependent metric, the overall communication
overhead of the system is used to quantify this aspect. It was
first formalised by Medvidovic and Malek [20].

fCO(d) =

n∑

i=1

n∑

j=1

freq(ci, cj) · nd(d(ci), d(cj))+

+

n∑

i=1

n∑

j=1

freq(ci, cj) · ds(ci, cj)
dr(d(ci), d(cj)) · rel(d(ci), d(cj))

(4)

The Scheduling Time (ST) objective is another objective to
be minimised. It describes the average time for a hardware
unit to complete the round-robin processing of all its assigned
components. ST is given by

fST (d) =
1

m
·

m∑

j=1

(∑
i∈Cuj

mii

psj

)
. (5)

V. EXPERIMENTAL DESIGN

A. Evolutionary Algorithm

The Royal Road problem is optimised using an EA with a
representation using a binary string. The operators in use are
bit-flip mutation and multipoint crossover.

GQAP as an assignment problem with constraints maps N
tasks to N resources. Hence the solution representation is a
simple array which describes the numbered locations and the
values of the array represent the items. Multipoint crossover
swaps the assignments between solutions. The mutation op-
erator changes the assigned item of a single location. As
we are solving the GQAP, singularity of item occurrence is
not mandatory and the solutions are always valid after the
operators have been applied.

The industrial problem of software deployment uses an
EA with a specialised solution encoding which maps each
hardware unit to one or more software components. The
crossover operator combines the allocation lists of two so-
lutions’ locations (hardware units) and subsequently divides
them again into two child solutions avoiding duplication.
The mutation operator exchanges the host allocations of two
randomly chosen components. The problem definition does
not allow for duplication, and a repair operation follows the
crossover/mutation move.

Also, the component deployment problem is multiobjective
in nature and requires a more specialised approach. One of the
state-of-the-art multiobjective EA implementations is NSGA-
II, devised by Deb et al. [8].

B. Parameter Optimisation

The crossover and mutation rates are probably the most
conspicuous control parameters to optimise in stochastic op-
timisation [10]. Hence, for the benefit of these experiments,
only the crossover and mutation rates were varied. Based on
preliminary exploration, a range of 0.01−0.7 was adopted for
the mutation rate and the interval 0.01− 1.0 was used for the
crossover operator.

The parameter control method was invoked every time
the optimising EA completed an iteration comprised of 150
function evaluations. The probabilities were calculated and
new parameter values were assigned for the next iteration.
This process was repeated 20 times. Consequently, each trial
is allowed 3000 function evaluations. These settings apply to
all benchmark optimisation trials regardless of the problem at
hand.

In the case of GQAP and RR, the quality feedback for the
parameter values is based on the fitness values returned by
the objective function. The multiobjective nature of the de-
ployment problem necessitates the combination of the fitness
values from all three objective functions into a single unary
measure of solution quality. The most conspicuous choice
for this feedback is the hypervolume indicator, which has
been described as the most reliable unary measure of solution
quality in multiobjective space [32].

VI. MAIN RESULTS

In ARPC, the change in the ranges of the intervals of
crossover and mutation rates during 20 iterations is depicted
in Figure 7. At the beginning of the optimisation process,
all intervals are equal. The bigger the interval becomes, the
smaller is the chance of the values in that interval to be
selected. We can clearly see that the behaviour of adaptive
range parameter control is different for different problems and
different parameters.

The 30 results of the repeated trials are presented as
boxplots in Figure 6. The empirical results are not normally
distributed, but the mean and 25th percentile of ARPC are
consistently above the respective values of the benchmark
approaches. The means and standard deviations are listed in
Table I, which clearly show a significant difference between
the result groups of ARPC and the benchmarks. The mean
performance of ARPC is consistently above the averages of
the benchmark approaches. However, the standard deviation
of ARPC is relatively high.

The gap between result qualities widens in favour of ARPC
as the problem difficulty increases. The smaller automotive
deployment problem can be assumed to be the least challeng-
ing, and there the results are not as clearly in favour of ARPC.
The larger one of the automotive problems is clearly solved to
better quality using ARPC, as are the more complex GQAP
problems.

As our method consistently outperforms the four other
optimisation schemes, to check for a statistical difference, the
different parameter schemes of the optimisation methods are
validated using the Kolmogorov-Smirnov (KS) nonparametric
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Fig. 6: Boxplots of the 30 trials of the five different optimisation schemes.

TABLE I: The means and standard deviations of fitness functions for the 30 runs of each problem instance using different
optimisation schemes.

Mean
Royal Road CD(h15 c23) CD(h18 c31) QAP26a QAP26b QAP26e

AP 5.9757E-03 0.8711 0.7863 0.2666 0.4876 0.2670
PM 5.9950E-03 0.8706 0.7893 0.2666 0.4876 0.2669
DMAB 6.1599E-03 0.8686 0.5172 0.2658 0.4865 0.2664
PPC 6.1166E-03 0.8717 0.7918 0.2668 0.4880 0.2673
ARPC 6.2736E-03 0.8725 0.8036 0.2672 0.4882 0.2674

Standard Deviation
Royal Road CD(h15 c23) CD(h18 c31) QAP26a QAP26b QAP26e

AP 3.616E-04 3.896E-03 9.931E-03 3.998E-04 3.673E-04 2.491E-04
PM 4.983E-04 4.415E-03 1.268E-02 3.398E-04 3.401E-04 3.189E-04
DMAB 3.713E-04 4.842E-03 1.162E-02 4.410E-04 3.564E-04 4.233E-04
PPC 3.495E-04 2.538E-03 1.266E-02 4.471E-04 2.869E-04 3.268E-04
ARPC 5.511E-04 3.679E-03 1.620E-02 1.032E-03 6.286E-04 6.325E-04

test [26]. The 30 hypervolume indicators of the repeated trials
for each of the problem instances were submitted to the ks
analysis. ARPC was compared to the other four optimisation
schemes, with a null hypothesis of a significant difference
between the performances (ARPC vs. PPC, ARPC vs. DMAB,
ARPC vs. AP and ARPC vs. PM). The results of the tests are
shown in Table II.

All KS tests, used for establishing differences between
independent datasets under the assumption that they are not
normally distributed, result in a confirmation of the null
hypothesis with a minimum d-value of 0.2414 at a 70% confi-
dence level. Hence we conclude that the superior performance
of PPC is statistically significant.

The change in the ranges of the intervals of crossover and
mutation rates during 20 iterations is depicted in Figure 7.
At the beginning of the optimisation process, all intervals are
equal. The bigger an interval becomes, the smaller its chance

of being sampled for the next iteration. Accordingly, the most
successful values for each iteration are to be placed in the
smallest interval.

From the bar diagrams we can see that the - relatively
small - automotive problem instances are best optimised with
a very small mutation rate throughout the process, whereas
the RR problem seems to need slightly higher mutation rates
(approx. 0.2) at the start but toward the end of the process the
level ranges are not as focussed. A different observation can
be made regarding the optimal mutation rates for the GQAP
instances; there, the most successful mutation rates are clearly
very low at the end of the optimisation process.

The levels of crossover rate develop quite differently com-
pared to mutation rate. Higher rates are often more successful
towards the end of the optimisation process which runs some-
what contrary to popular opinion that crossover rates should
decrease towards the end of the optimisation process so as



TABLE II: The Kolmogorov-Smirnov test values of fitness functions for the 30 runs of each problem instance using different
optimisation schemes.

Royal Road CD(h15 c23) CD(h18 c31) QAP26a QAP26b QAP26e
d p d p d p d p d p d p

ARPC vs. PPC 0.2759 0.184 0.3807 0.029 0.4483 0.004 0.4828 0.001 0.5862 0.000 0.4138 0.009
ARPC vs. DMAB 0.2414 0.321 0.5172 0.000 0.5172 0.000 0.8621 0.000 0.9310 0.000 0.7586 0.000
ARPC vs. AP 0.3793 0.022 0.5172 0.000 0.6207 0.000 0.6207 0.000 0.6552 0.000 0.6552 0.000
ARPC vs. PM 0.2759 0.184 0.5517 0.000 0.5172 0.000 0.6539 0.000 0.6552 0.000 0.6552 0.000
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Fig. 7: Levels over time.

not to disturb solutions with high quality. For some problems,
both crossover rates from the upper third and from the lower

third of the overall range seem beneficial at the same time.



VII. CONCLUSIONS

In this paper we have introduced a meta-algorithm to adjust
variables needed for the parameterisation of an optimisation
algorithm. According to our knowledge, the best-performing
state-of-the-art approaches with the same functionality are AP,
PM, DMAB and PPC. The new approach clearly outperforms
the other parameter control methods. As the problem difficulty
increases, so does the difference in result quality produced by
ARPC compared to the benchmark approaches.

The adaptation of parameter value ranges increases the
sampling accuracy, since the more successful a parameter
value range is, the smaller the interval becomes, which can
explain the superior performance of ARPC compared to other
approaches. Furthermore, unlike other adaptive parameter con-
trol methods, ARPC does not have any hyperparameter that
requires tuning before the optimisation process.

The mutation/crossover range analysis shows that high-
performing ranges are sometimes absorbed (merged) into very
large intervals, making it difficult for the algorithm to re-
establish small, promising areas within the range. There may
be a potential for further optimisation of the range adaptation
in this respect.

In the future, we will also investigate the use of information
about possible correlations of the values of different param-
eters as well as the potential integration of such information
into the meta-optimiser.
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