
Adaptive Neighbourhood Search for the
Component Deployment Problem

Aldeida Aleti1 and Madalina Drugan2

1 Faculty of Information Technology, Monash University, Australia
aldeida.aleti@monash.edu

2 Artificial Intelligence Lab, Vrije Universiteit Brussel, Belgium
mdrugan@vub.ac.be

Abstract. Since the establishment of the area of search-based software
engineering, a wide range of optimisation techniques have been applied
to automate various stages of software design and development. Archi-
tecture optimisation is one of the aspects that has been automated with
methods like genetic algorithms, local search, and ant colony optimisa-
tion. A key challenge with all of these approaches is to adequately set
the ballance between exploration of the search space and exploitation
of best candidate solutions. Different settings are required for different
problem instances, and even different stages of the optimisation process.
To address this issue, we investigate combinations of different search op-
erators, which focus the search on either exploration or exploitation for
an efficient variable neighbourhood search method. Three variants of the
variable neighbourhood search method are investigated: the first variant
has a deterministic schedule, the second variant uses fixed probabilities
to select a search operator, and the third method adapts the search
strategy based on feedback from the optimisation process. The adaptive
strategy selects an operator based on its performance in the previous it-
erations. Intuitively, depending on the features of the fitness landscape,
at different stages of the optimisation process different search strategies
would be more suitable. Hence, the feedback from the optimisation pro-
cess provides useful guidance in the choice of the best search operator,
as evidenced by the experimental evaluation designed with problems of
different sizes and levels of difficulty to evaluate the efficiency of varying
the search strategy.

Keywords: Adaptive neighbourhood search, component deployment op-
timisation

1 Introduction

One of the main aims of search-based software engineering (SBSE) is the automa-
tion of software design and development [14]. Ideally, the system developer would
only have to submit requirements models, which would be used to generate the
entire software system. Although many stages of software design and develop-
ment have been automated, such as architecture design optimisation [3,1], code

2 Aldeida Aleti and Madalina Drugan

generation and repair [25], and software test case generation [4], a system that
performs the enormous task of completely automating the process of software
development from requirements does not exist, at least not yet. Nevertheless,
each individual effort in the automation of specific stages brings us one step
closer to the ultimate goal of SBSE.

The decision regarding the architecture of the system, being one of the most
creative and important steps of software development [3] affects the quality of the
final software system. Designing a software architecture that does not only sat-
isfy the functional requirements, but that is at the same time optimal in terms
of quality attributes, such as performance and reliability is not an easy task.
The concept of software architecture is defined as ‘the fundamental concepts or
properties of a system in its environment embodied in elements, relationships,
and in the principles of its design and evolution’ [15]. In this paper we focus on
embedded systems, where the architecture is composed of software components,
hardware units, interactions of software components, and communications be-
tween hardware units. The allocation of software components into the hardware
units and the assignment of interactions to the communication network, known
as the component deployment problem is among design decision that have to
be made at this stage. The search space of this problem is very large. For in-
stance, in a system with 10 hardware units and 60 software components there
are 2060 ≈ 1.15 × 1078 possible options, which are clearly beyond a human’s
capacity to handle at a reasonable amount of time.

This has lead to the application of a wide range of search-based methods
in software architecture design [3], to deal with the complexity of software sys-
tems, the enormous design space and the effect of design decisions on quality
attributes. Furthermore, search-based methods may produce architectures that a
system designer would have not been able to think of, helping with the creative
process. These efforts include methods like linear programming [23,9], genetic
algorithms [20,1,17], and local search [13]. The majority of these approaches con-
sider experimental studies to determine the success of the optimisation strategy
based on a set of selected problem instances. The no-free-lunch theorems tell us
that ‘for any algorithm, any elevated performance over one class of problems is
exactly paid for in performance over another class’ [26].

More specifically, the performance of an optimisation algorithm highly de-
pends on the fitness landscape of the targeted optimisation problem. Examples
of landscape features are the number and distribution as well as the sizes of the
optima, the location of the global optimum, and plateaus. A fitness landscape
with a single optimum is easy to search with a local search method. On the other
extreme, problems with many local optima and an isolated global optimum cre-
ate a fitness landscape that is rugged and hard to explore. A plateau symbolises
the presence of neighbouring solutions with equal fitness, where the progress of
a search algorithm potentially stagnates.

The choice of neighbourhood structure determines whether the fitness land-
scape is easy to search. For example, if the fitness difference between any two
neighbouring solutions is on average small then the landscape is more likely to be

Adaptive Neighbourhood Search for the Component Deployment Problem 3

suited for a wide range of local search operators. In contrast, if significant fitness
difference is encountered in the neighbourhood, different operators will produce
different quality results, and the choice of the operator becomes important.

For new problems, like the Component Deployment, the structure of the fit-
ness landscape that arises from different search operators is not known. A poor
choice of the neighbourhood operator may lead to suboptimal algorithm per-
formance. Ideally, the neighbourhood operator should be adapted during the
search-based on the structure of the fitness landscape. In this work, we inves-
tigate three strategies for varying the neighbourhood operator: a determinis-
tic schedule, where the change is controlled by a deterministic rule, a variable
schedule, where operators are selected based on predefined probabilities, and an
adaptive strategy, which uses feedback from the optimisation process.

2 Component Deployment Optimisation

The component deployment problem refers to the allocation of software com-
ponents to the hardware nodes, and the assignment of inter-component com-
munications to network links. Formally, we define the software components as
C = {c1, c2, ..., cn}, n ∈ N. The execution of the software system is initiated
in one software component (with a given probability), and during its execution
uses many other components connected via communication links, which are as-
signed with a transition probability [16]. A software component has a memory
size sz expressed in KB (kilobytes), workload wl, which is the computational re-
quirement of a component expressed in MI (million instructions), and initiation
probability q0, which is the probability that the execution of a system starts
from the component. Software components interact to perform various tasks.
Each interaction from component ci to cj is annotated with the following prop-
erties: (i) data size dsij in kilobytes, referring to the amount of data transmitted
from software component ci to cj during a single communication event, and (ii)
next-step probability pij the probability that the execution of component ci ends
with a call to component cj .

The hardware architecture is composed of a distributed set of hardware hosts,
denoted as H = {h1, h2, ..., hm}, m ∈ N. Each hardware host is annotated with
the following properties: (i) memory capacity (cp) expressed in kilobytes, (ii)
processing speed (ps), which is the instruction-processing capacity of the hard-
ware unit, expressed in million instructions per second (MIPS), and (iii) failure
rate (fr), which characterises the probability of a single hardware unit failure [7].

The hardware hosts are connected via links denoted as N = {n1, n2, ...ns},
with the following properties: (i) data rate (drij), which is the data transmis-
sion rate of the bus, expressed in kilobytes per second (KBPS), and (ii) failure
rate (frij) is the exponential distribution characterising the data communication
failure of each link.

The way the components are deployed affects many aspects of the final sys-
tem, such as the processing speed of the software components, how much hard-
ware is used or the reliability of the execution of different functionalities [21,5],

4 Aldeida Aleti and Madalina Drugan

which constitute the quality attributes of the system. Formally, the component
deployment problem is defined as D = {d | d : C → H}, where D is the set of all
functions assigning components to hardware resources.

2.1 Objective Function

The reliability evaluation obtains the mean and variance of the number of visits
of components in a single execution and combines them with the failure parame-
ters of the components. Failure rates of execution elements can be obtained from
the hardware parameters, and the time taken for the execution is defined as a
function of the software-component workload and processing speed of its hard-
ware host. The reliability of a component ci can be computed by Equation 1,
where d(ci) denotes the hardware host where component ci is deployed.

Ri = e
−frd(ci)·

wli
psd(ci) . (1)

where d(ci) is the deployment function that returns the hardware host where
component ci has been deployed. The reliability of a communication element is
characterised by the failure rates of the hardware buses and the time taken for
communication, defined as a function of the bus data rates dr and data sizes
ds required for software communication. The reliability of the communication
between component ci and cj is defined as

Rij = e
−frd(ci)d(cj)·

dsij
drd(ci)d(cj) . (2)

The probability that a software system produces the correct output depends
on the number of times it is executed. The expected number of visits for each
component v : C → R≥0 is vi = qi +

∑
j∈I vj ·pji, where I denotes the index set

of all components. The transfer probabilities pji can be written in a matrix form
Pn×n, where n is the number of components. Similarly, the execution initiation
probabilities qi can be expressed with matrix Qn×1. The matrix of expected
number of visits for all components Vn×1 can be calculated as V = Q+ PT · V .

The reliability of a software system is also influenced by the failure rate of the
network links used during the execution of the system. The more frequently the
network is used, the higher is the probability of producing an incorrect output.
It should be noted that the execution of a software system is never initiated
in a network link, and the only predecessor of link lij is component ci. Hence,
the expected number of visits of network links v : C × C → R≥0 is calculated
as vij = vi · pij . Finally, the reliability of a deployment architecture d ∈ D is
calculated as:

R =

n∏
i=1

Rvi
i

∏
i,j (if used)

R
vij
ij . (3)

Adaptive Neighbourhood Search for the Component Deployment Problem 5

2.2 Constraints

The problem is naturally constrained, since not all possible deployment architec-
tures can be feasible. For the purpose of this work, we consider three constraints:
allocation, memory and communication.

Allocation constraint takes care of the allocation of all software components into
hardware resources. Formally, this constraint is modelled as

m∑
j=1

xij = 1, ∀i = 1, . . . , n, (4)

where xij is 1 if the software component i is deployed on the hardware unit j,
and 0 otherwise.

Hardware memory capacity deals with the memory requirements of software
components and makes sure that there is available memory in the hardware
units. Processing units have limited memory, which enforces a constraint on the
possible components that can be deployed into each hardware host. Formally,
the memory constraint is defined as

n∑
i=1

szixij ≤ cpj , ∀j ∈ {1, . . . ,m}. (5)

Communication constraint is responsible for the communication between
software components. If the transition probability between two software compo-
nents i and j is positive, pij > 0, these two components will communicate with
a certain probability. Therefore, either they should be deployed on the same
hardware unit, or on different units that are connected with a communication
link (bus) with a positive data rate, drij > 0. This is modelled as follows:

xik + xjl ≤ 1, if pij > 0 and drkl ≤ 0. (6)

2.3 Related Work

For many decades, researchers have been developing evermore sophisticated al-
gorithms to solve the component deployment problem [3]. Notable examples are
genetic algorithms [19,18], ant colony optimisation [24,5] and heuristics [6]. Aleti
et al. [5] formulated the component deployment problem as a biobjective optimi-
sation problem with data transmission reliability and communication overhead
as objectives. Memory capacity constraints, location and colocation constraints
were considered in the formulation, which was solved using P-ACO [12] as well
as MOGA [11]. P-ACO was found to produce better solutions in the initial opti-
misation stages, whereas MOGA continued to produce improved solutions long
after P-ACO had stagnated.

A Bayesian learning method was developed by Aleti and Meedeniya [6] and
applied to the formulation defined by Aleti et al. [5]. The probabilities of a

6 Aldeida Aleti and Madalina Drugan

solution being part of the non-dominated set was calculated as the ratio of non-
dominated solutions produced in the current generation and the overall num-
ber of solutions in the generation. Compared to NSGA-II [10] and P-ACO, the
Bayesian method was found to produce approximation sets with higher hyper-
volume values.

Meedeniya et al. [18] applied NSGA-II to the robust optimisation of the CDP
considering a varying response time. In reality, vehicles and their ECUs are ex-
posed to temperature differences and similar external factors, which causes the
software components to react differently at each invocation. The formulation by
Meedeniya et al. [18] treats response time and reliability as probability distribu-
tions and presents solutions which are robust with regards to the uncertainty.

In the work by Thiruvady et al. [24], one of the most successful ACO solvers,
Ant Colony System (ACS) is combined with constraint programming (CP) to
optimise problem instances with different degrees of constrainedness. The con-
straints considered are limited memory of a hardware unit, collocation restric-
tions of software components on the same hardware units, and communication
between software components. Furthermore, the authors explore the alternative
of adding a local search to ACS and CP-ACS. When the search space is ex-
tremely constrained, the feasible areas form isolated islands between which the
CP solver finds it hard to navigate, unless it is allowed to cross through an in-
feasible space using relaxation mechanisms. For this reason, ACS outperforms
the CP-hybrid in the component deployment optimisation problem, especially
when the colocation constraint is very tight.

Both constraints and the objective function affect the suitability of optimisa-
tion methods in solving the component deployment problem. The choice of the
search operator becomes essential in the efficiency of the optimisation process.
In many cases, different search operators may be optimal at different stages
of the optimisation process, which motivated this work. Using feedback from
the search to adjust the neighbourhood operator has the potential for avoiding
getting stuck in a local optimum, or in an infeasible area of the search space.

3 Varying the Neighbourhood Operator for the
Component Deployment Problem

Variable neighbourhood search is a general, successful and powerful local search-
based method for difficult optimization problems. Local search (LS) based meta-
heuristics starts from an initial solution and iteratively generates new solutions
using a neighbourhood strategy. Each step, a solution that improves over the
existing best-so-far solution is chosen. The local search stops when there is no
possible improvement, i.e. in a local optimum. Because LS can be stuck in local
optima, some advanced local search algorithms consist in alternating (randomly
or adaptively) the neighbourhood of the current solution.

The suitability of a local search method for solving an optimisation problem
instance depends on the structure of the fitness landscape of that instance. A
fitness landscape in the context of combinatorial optimisation problems refers

Adaptive Neighbourhood Search for the Component Deployment Problem 7

to the (i) search space S, composed of all possible solutions that are connected
through (ii) the search operator, which assigns each solution s∈S to a set of
neighbours N(s)⊂S, and the fitness function F : S→<. As the neighbourhood
of a solution depends on the search operator, a given problem can have any
number of fitness landscapes. The neighbourhoods can be very large, such as
the ones arising from the crossover operator of a genetic algorithm, while a 2-
opt operator of a permutation problem has a neighbourhood that is relatively
limited in size.

3.1 Neighbourhood strategies

We vary the application of three different neighbourhood operators: OneFlip,
kOpt and Perturb. The search starts with a randomly initialised solution, where
components are randomly allocated to hardware hosts.

kOpt exchanges the host allocations of k components. In this work, the
value of k is equal to 2. Formally, the 2Opt operator produces a new solution d′i
from existing di by switching the mapping of two components, e.g. for selected
k, l: d′i = [di(c1), di(c2), ..., di(ck)..., di(cl), ..., di(cn)] while the original solution
is di = [di(c1), di(c2), ..., di(cl)..., di(ck), ..., di(cn)]. With this operator, from one
solution di we can generate

(
n
2

)
possible new solutions.

OneFlip neighbourhood operator changes the allocation of a single com-
ponent. Formally, the OneFlip operator produces a new solution d′i from exist-
ing solution di by changing the mapping of one components, e.g. for selected
k: d′i = [di(c1), d′i(c2), ..., di(ck), ..., di(cn)] while the original parent solution is
di = [di(c1), di(c2), ..., di(ck), ..., di(cn)]. From one solution di, we can generate
2n new solutions corresponding to the n positions and 2 values for each posi-
tion.

Perturb changes the allocation of a random component into a random host.
The application of this neighbourhood operator creates a new solution d′i from
existing solution di by changing the mapping of one components, e.g. for a ran-
dom k: d′i =[di(c1), d′i(c2), ..., di(ck), ..., di(cn)] while the original parent solution
is di = [di(c1), di(c2), ..., di(ck), ..., di(cn)]. From one solution di, we can gener-
ate k1n new solutions corresponding to the n positions and k1 values for each
position in di.

3.2 Adaptive Neighbourhood Search for the Component
Deployment Problem

Each operator is applied until a local optimum is found. The solution is then
evaluated (line 7 in algorithm 1) and the change in fitness is recorded. The
adaptive neighbourhood uses the change in fitness as feedback for adjusting the
operator selection probabilities. At the beginning, all operators have equally
probability of being selected. The selection probabilities are updated over the
iterations based on operator performance. The main steps of these methods are
described in algorithm 1. The feedback is used to decide whether to continue to
use the current operator or switch to a different one, as shown in algorithm 2.

8 Aldeida Aleti and Madalina Drugan

Algorithm 1 Neighbourhood operators.

procedure OneFlip(S)
2: S∗ = S

localOptimum = True
4: for all c < C do

h = RandomlySelectHost(H)
6: S′ = AssignComponentToHost(S, c, h)

Evaluate(S′)
8: if S′ > S∗ then

S∗ = S′

10: end if
end for

12: improvement = FitnessDifference(S, S∗)
S = S∗

14: Return(improvement)
end procedure

16: procedure KOpt(S, k)
S∗ = S

18: localOptimum = True
for c = 0; c < |C| − k; c + + do

20: S′ = AssignComponentToHost(S, c, d(c + k))
S′ = AssignComponentToHost(S, c + k, d(c))

22: Evaluate(S′)
if S′ > S∗ then

24: S∗ = S′

end if
26: end for

improvement = FitnessDifference(S, S∗)
28: S = S∗

Return(improvement)
30: end procedure

procedure Perturb(S)
32: c = RandomlySelectComponent(C)

h = RandomlySelectHost(H)
34: S′ = AssignComponentToHost(S, c, h)

Evaluate(S′)
36: if S′ > S∗ then

S∗ = S′

38: end if
improvement = FitnessDifference(S, S∗)

40: S = S∗

Return(improvement)
42: end procedure

The mechanism used for the selection of the neighbourhood operator is a
fitness proportionate method (line 4 in algorithm 2). Each operator is assigned a
selection probability proportionate to its quality (line 14 in algorithm 2). For the

Adaptive Neighbourhood Search for the Component Deployment Problem 9

Algorithm 2 Adaptive neighbourhood search.

procedure AN
2: S = RandomlyAllocate(C,H)

N = SelectNeighbourhoodOperator(P (N))
4: if N == OneFlip then

Q(N)=OneFlip(S)
6: end if

if N == KOpt then
8: Q(N)=KOpt(S, k)

end if
10: if N == Perturb then

Q(N)=Perturb(S)
12: end if

ReportFeedback(Q(N))
14: Return(S)

end procedure

purpose of this work, the fitness change in the solution modified by an operator
is used to updates the operator’s quality. Given the operator’s quality Q(N), the
update rule for the operator’s selection probability P (N) is calculated as

P (N) = αP (N) + (1− α)Q(N), (7)

where α is a parameter that controls the influence of previous versus immediate
performance. Higher values for α increase the effect of previous performance,
whereas lower values focus on immediate effects. In this study, α was set to 0.9.
Formally, the operators quality is calculated as:

Q(N) =
|f(S)− f(S∗)|

f(S)
(8)

where f(S) is the quality of the solution at the start of the search, and f(S∗) is
the quality of the optimised solution.

The deterministic neighbourhood strategy, performs a variable neighbour-
hood search by applying the three neighbourhood operators sequentially, in the
order given in Algorithm 3. We have selected this order arbitrarily and can be
changed by the user. Another alternative would have been to select at random
one of these operators.

The variable neighbourhood search, on the other hand, assigns equal prob-
abilities to OneFlip and kOpt. The main steps are listed in algorithm 3. At
each iteration, VN selects one of the two operators with equal probability. The
Perturb operator is the most disruptive operator since it can make the largest
changes in the search space. Therefore, Perturb is applied after the OneFlip or
kOpt with a very small probability, which ensures that the search does not get
trapped in a local optimum.

10 Aldeida Aleti and Madalina Drugan

Algorithm 3 Deterministic and variable neighbourhood search operators.

procedure DN
2: S = RandomlyAllocate(C,H)

OneFlip(S)
4: Perturb(S)

KOpt(S, k)
6: Return(S)

end procedure
8:

procedure VN
10: S = RandomlyAllocate(C,H)

r = Random([0,1])
12: if r > 0.5 then

OneFlip(S)
14: end if

if r < 0.5 then
16: KOpt(S, k)

end if
18: p = Random([0,1])

if p < 0.01 then
20: Perturb(S)

end if
22: Return(S)

end procedure

4 Experiments

To evaluate the efficiency of the proposed methods for varying the neighbourhood
search operator, we have designed a set of experiments with problems of different
sizes and level of difficulty. The design of experiments and the analysis of results
is described in the following sections.

4.1 Experimental Design

The problems used for the experiments consist of a number of randomly gener-
ated instances with varying complexity and constrainedness. The memory con-
straint takes its tightness from the ratio of components to hardware hosts - the
fewer hosts, the less ‘space’ there is for components. The smallest instances con-
sist of 10 hosts and 23 software components whereas the largest instances consist
of 62 hardware hosts and 130 software components. All algorithms were allowed
50 000 function evaluations, and all trials were repeated 30 times to account
for the stochastic behaviour of the algorithms. Results from the 30 runs were
analysed and compared using the Kolmogorov-Smirnov (KS) non-parametric
test [22]. Furthermore, the effect size was reported for each experiment.

The validity of the presented experiments may be questioned on the grounds
that the results may only reflect the performance of the algorithms in certain

Adaptive Neighbourhood Search for the Component Deployment Problem 11

problem instances, and there is a chance that the approaches may perform dif-
ferently for other problems. In the design of experiment, we aimed at reducing
this threat by generating problem instances of different sizes and characteris-
tics. Instead of manually setting specific problem properties, we developed a
problem generator integrated in ArcheOpterix [2]. The problem generator and
the problem files can be downloaded from users.monash.edu.au/~aldeidaa/

ArcheOpterix.html. As a result, the experiments set themselves apart from an
instance-specific setting to a broader applicability.

4.2 Results

The experiments were performed on a 64-core 2.26 GHz processor computer.
There was little difference in the run-times of the different optimisation schemes
for the same problem instances. The main difference in run-time was observed
between the problem instances with different size. Solving the smaller instances
was faster, since the evaluation of the quality attributes takes less time. The
distributions of the fitness values (reliability function in eq. 3) of the 30 runs
are visualised as boxplots for Adaptive Neighbourhood (AN), Variable neigh-
bourhood (VN), deterministic neighbourhood (DN) and local search (LS). The
middle lines represent the median value for each case. The means and stan-
dard deviations for all problem instances and optimisation schemes are shown
in Table 1. AN outperforms the other strategies in the majority of the prob-
lem instances, which indicates that using feedback from the search to adapt the
neighbourhood operator benefit the optimisation process.

Table 1: The mean and standard deviation of the 30 trials of adaptive neighbour-
hood search (AN), variable neighbourhood search (VN), deterministic neigh-
bourhood search (DN) and local search (LS).

AN VN DN LS

Problem Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

H10C23 0.999871 0.000000 0.999871 0.000000 0.998980 0.000057 0.999871 0.000000

H20C45 0.999993 0.000000 0.999979 0.000004 0.999965 0.000009 0.999993 0.000000

H25C54 0.999981 0.000000 0.999980 0.000000 0.999935 0.000010 0.999979 0.000000

H30C65 0.999780 0.000002 0.999746 0.000007 0.999615 0.000048 0.999743 0.000005

H35C74 0.999986 0.000000 0.999980 0.000001 0.999912 0.000023 0.999983 0.000000

H42C85 0.999777 0.000039 0.999770 0.000027 0.999759 0.000037 0.999737 0.000045

H55C107 0.999796 0.000004 0.999771 0.00007 0.999679 0.000006 0.999667 0.000043

H62C130 0.999974 0.000009 0.999932 0.000008 0.999918 0.000016 0.999919 0.000013

As the adaptive neighbourhood strategy consistently outperforms the three
other optimisation schemes, we use the Kolmogorov-Smirnov (KS) non-parametric
test [22] to check for a statistical difference. The 30 results of the repeated trials

12 Aldeida Aleti and Madalina Drugan

AN VN DN LS
0.9986

0.9988

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

Fi
n
a
l
fi
tn

e
ss

(a) H10C23

AN VN DN LS
0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

1.00000

Fi
n
a
l
fi
tn

e
ss

(b) H20C45

AN VN DN LS
0.99986

0.99988

0.99990

0.99992

0.99994

0.99996

0.99998

1.00000

Fi
n
a
l
fi
tn

e
ss

(c) H25C54

AN VN DN LS
0.9992

0.9993

0.9994

0.9995

0.9996

0.9997

0.9998

Fi
n
a
l
fi
tn

e
ss

(d) H30C65

AN VN DN LS
0.99988

0.99989

0.99990

0.99991

0.99992

0.99993

0.99994

0.99995

Fi
n
a
l
fi
tn

e
ss

(e) H42C85

AN VN DN LS
0.99980

0.99985

0.99990

0.99995

1.00000

Fi
n
a
l
fi
tn

e
ss

(f) H35C74

AN VN DN LS
0.9994

0.9995

0.9996

0.9997

0.9998

0.9999

Fi
n
a
l
fi
tn

e
ss

(g) H55C107

AN VN DN LS
0.99965

0.99970

0.99975

0.99980

0.99985

0.99990

Fi
n
a
l
fi
tn

e
ss

(h) H62C130

Fig. 1: Boxplots of fitness values (reliability function in eq. 3) for Adaptive Neigh-
bourhood (AN), Variable neighbourhood (VN), deterministic neighbourhood
(DN) and local search (LS).

Adaptive Neighbourhood Search for the Component Deployment Problem 13

Table 2: The KS test values and effect size of the 30 trials of adaptive neighbour-
hood search vs. variable neighbourhood search (AN vs. VN), adaptive neighbour-
hood search vs. deterministic neighbourhood search (AN vs. DN) and adaptive
neighbourhood search vs. local search (AN vs. LS).

KS test Effect size

Problem AN vs. VN AN vs. DN AN vs. LS AN vs. VN AN vs. DN AN vs. LS

H10C23 1 ≤ 0.01 1 0.00 0.99 0.00

H20C45 ≤ 0.01 ≤ 0.01 1 0.92 0.91 0.00

H25C54 0.02 ≤ 0.01 ≤ 0.01 0.99 0.95 0.99

H30C65 ≤ 0.01 0.05 ≤ 0.01 0.95 0.92 0.98

H35C74 ≤ 0.01 ≤ 0.01 ≤ 0.01 0.97 0.98 0.99

H42C85 0.01 0.03 0.03 0.91 0.92 0.94

H55C107 ≤ 0.01 0.02 ≤ 0.01 0.90 0.99 0.90

H62C130 0.01 0.04 0.05 0.92 0.90 0.93

for each of the problem instances were submitted to the KS analysis. The adap-
tive neighbourhood search (AN) was compared to the other three optimisation
schemes, with a null hypothesis of an insignificant difference between the perfor-
mances (AN vs. VN, AN vs. DN, and AN vs. LS). The results of the tests are
shown in Table 2.

All KS tests, used for establishing that there is no difference between inde-
pendent datasets under the assumption that they are not normally distributed,
result in a rejection of the null hypothesis at a 95% confidence level in the major-
ity of the cases. AN and LS have the same performance in two problems H20C45
and H10C23. The search space of these two instances is relatively small, and the
problems can be solved to high quality with local search. For larger and more
complex search spaces, the local search method fails at finding good results. The
deterministic neighbourhood search method has the worst performance out of
the four optimisation schemes. Clearly, applying the three operators sequentially
does not benefit the search, although for the large problem instances, varying
the neighbourhood produces better results than local search, even if it is done
in a deterministic way.

Since statistical significance depends on the sample size, we also compute
the effect size for each comparison (AN vs. VN, AN vs. DN, and AN vs. LS), as
shown in Table 2. The effect of the sample size is measured using the Cohen’s d
estimation [8], which considers the pooled standard deviation. In reporting the
effect size, we follow the guidelines proposed by Cohen [8]: a ‘small’ effect size
is 0.2, a ‘medium’ effect size is 0.5, and a ‘large’ effect size is 0.8. In essence,
the effect size indicates the number of standard deviations difference between
the means of the samples. The effect size for the problem instances that show
statistical significance in terms of the KS test was above 0.9. As a results, it can
be concluded that the difference in the performance of the optimisation schemes

14 Aldeida Aleti and Madalina Drugan

is meaningful, and that the AN strategy is the most successful search method
for the component deployment problem.

5 Conclusion

This paper propose an adaptive variable neighbourhood search for component
deployment components that uses multiple neighbourhood operators to escape
local optimum. These operators are adaptively selected such that the operator
that improves the most the fitness value and most frequently the current solu-
tion is selected the most often. Two other versions of this variable neighbourhood
search algorithm alternate uniformly at random or deterministically the three
operators. We test the three proposed algorithms and a simple version of multi-
ple restarts local search on several instances of component deployment problems
with different level of difficulty. The experimental results show that the adap-
tive variable neighbourhood algorithm outperforms the other algorithms. We
conclude that the local search algorithms are useful optimization algorithms for
component deployment problems.

Acknowledgements: This research was supported under Australian Re-
search Council’s Discovery Projects funding scheme, project number DE 140100017.

References

1. Aldeida Aleti. Designing automotive embedded systems with adaptive genetic
algorithms. Automated Software Engineering, pages 1–42, 2014.

2. Aldeida Aleti, Stefan Björnander, Lars Grunske, and Indika Meedeniya.
ArcheOpterix: An extendable tool for architecture optimization of AADL mod-
els. In Model-based Methodologies for Pervasive and Embedded Software, pages
61–71. ACM and IEEE Digital Libraries, 2009.

3. Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Koziolek, and Indika Mee-
deniya. Software architecture optimization methods: A systematic literature re-
view. IEEE Transactions on Software Engineering, 39(5):658–683, 2013.

4. Aldeida Aleti and Lars Grunske. Test data generation with a kalman filter-based
adaptive genetic algorithm. Journal of Systems and Software, 103(0):343 – 352,
2015.

5. Aldeida Aleti, Lars Grunske, Indika Meedeniya, and Irene Moser. Let the ants
deploy your software - an ACO based deployment optimisation strategy. In ASE,
pages 505–509. IEEE Computer Society, 2009.

6. Aldeida Aleti and Indika Meedeniya. Component deployment optimisation with
bayesian learning. In ACM Sigsoft symposium on Component based software engi-
neering, pages 11–20. ACM, 2011.

7. Ismail Assayad, Alain Girault, and Hamoudi Kalla. A bi-criteria scheduling heuris-
tic for distributed embedded systems under reliability and real-time constraints. In
Dependable Systems and Networks, pages 347–356. IEEE Computer Society, 2004.

8. J. Cohen. Statistical power analysis for the behavioral sciences. 1988.
9. David W. Coit and Abdullah Konak. Multiple weighted objectives heuristic for the

redundancy allocation problem. IEEE Transactions on Reliability, 55(3):551–558,
2006.

Adaptive Neighbourhood Search for the Component Deployment Problem 15

10. Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A Fast Elitist
Multi-Objective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6:182–197, 2000.

11. Carlos M Fonseca, Peter J Fleming, et al. Genetic algorithms for multiobjective
optimization: Formulation, discussion and generalization. In ICGA, volume 93,
pages 416–423, 1993.

12. Michael Guntsch and Martin Middendorf. Solving multi-criteria optimization prob-
lems with population-based aco. In Evolutionary Multi-Criterion Optimization.
Second International Conference, EMO 2003, pages 464–478. Springer, 2003.

13. Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. Search-based software
engineering: Trends, techniques and applications. ACM Comput. Surv., 45(1):11:1–
11:61, December 2012.

14. Mark Harman and Phil McMinn. A theoretical and empirical study of search-based
testing: Local, global, and hybrid search. IEEE Transaction Software Engineering,
36(2):226–247, 2010.

15. ISO/IEC. IEEE international standard 1471 2000 - systems and software engi-
neering - recommended practice for architectural description of software-intensive
systems, 2000.

16. Peter Kubat. Assessing reliability of modular software. Operations Research Let-
ters, 8(1):35–41, 1989.

17. Sam Malek, Nenad Medvidovic, and Marija Mikic-Rakic. An extensible frame-
work for improving a distributed software system’s deployment architecture. IEEE
Transactions on Software Engineering, 38(1):73–100, 2012.

18. Indika Meedeniya, Aldeida Aleti, Iman Avazpour, and Ayman Amin. Robust
archeopterix: Architecture optimization of embedded systems under uncertainty.
In Software Engineering for Embedded Systems, pages 23–29. IEEE, 2012.

19. Indika Meedeniya, Aldeida Aleti, and Lars Grunske. Architecture-driven reliability
optimization with uncertain model parameters. Journal of Systems and Software,
85(10):2340–2355, 2012.

20. Indika Meedeniya, Barbora Buhnova, Aldeida Aleti, and Lars Grunske.
Architecture-Driven Reliability and Energy Optimization for Complex Embedded
Systems. In Research into Practice - Reality and Gaps, 6th International Confer-
ence on the Quality of Software Architectures, pages 52–67. Springer, 2010.

21. Indika Meedeniya, Barbora Buhnova, Aldeida Aleti, and Lars Grunske. Reliability-
Driven Deployment Optimization for Embedded Systems. Journal of Systems and
Software, 2011.

22. A. N. Pettitt and M. A. Stephens. The kolmogorov-smirnov goodness-of-fit statistic
with discrete and grouped data. Technometrics, 19(2):205–210, 1977.

23. Songqing Shan and G. Gary Wang. Reliable design space and complete single-loop
reliability-based design optimization. Reliability Engineering and System Safety,
93(8):1218 – 1230, 2008.

24. Dhananjay Thiruvady, I Moser, Aldeida Aleti, and Asef Nazari. Constraint pro-
gramming and ant colony system for the component deployment problem. Procedia
Computer Science, 29:1937–1947, 2014.

25. Westley Weimer, Stephanie Forrest, Claire Le Goues, and ThanhVu Nguyen. Au-
tomatic program repair with evolutionary computation. Communications of the
ACM, 53(5):109–116, 2010.

26. David H. Wolpert and William G. Macready. No free lunch theorems for optimiza-
tion. IEEE Transactions on Evolutionary Computation, 1(1):67–82, 1997.

