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Abstract. The use of redundant computational nodes is a widely used
design tactic to improve the reliability of complex embedded systems.
However, this redundancy allocation has also an effect on other qual-
ity attributes, including energy consumption, as each of the redundant
computational nodes requires additional energy. As a result, the two
quality objectives are conflicting. The approach presented in this paper
applies a multi-objective optimization strategy to find optimal redun-
dancy levels for different architectural elements. It is implemented in the
ArcheOpterix tool and validated based on a realistic case study from the
automotive domain.

1 Introduction

Motivation. Reliability is one of the key quality attributes of complex embedded
systems [1]. To increase reliability, replication of computational nodes (so-called
redundancy allocation) is used, which however introduces additional life-cycle
costs for manufacturing and usage of the system. One more drawback of in-
troducing redundancy is that the system requires more energy to support the
additional computational nodes. In most embedded systems, reducing energy
consumption is an important design objective, because these systems must sup-
port their operation from a limited battery that is hard to recharge (e.g., in
deep-sea or outer-space missions) or at least uncomfortable to be recharged very
often (e.g., in mobile phones). This is further stressed in systems requiring the
minimal size of the battery (e.g., in nano-devices).

State of the art. Research in both reliability and energy consumption for embed-
ded systems is already well established. These two quality attributes are however
rarely used in trade-off studies. Energy consumption is typically put in connec-
tion with performance [2, 3]. Reliability (when resolved using redundancy alloca-
tion) is typically put in connection with production costs [4–6]. The approaches
balancing both reliability and energy consumption do not deal with architecture-
level optimization, and are often strongly driven by energy consumption rather
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then reliability. Such approaches typically examine low-level decision such as
voltage reduction [7, 8] or channel coding techniques [9] to improve energy con-
sumption without threatening reliability. Such techniques can be however hardly
employed to maximize reliability and minimize energy consumption at the same
time, since they have only a minor impact on reliability.

Aim of the paper. In this paper we aim to apply a trade-off analysis between
reliability and energy consumption at an architectural level, and employ the
technique of redundancy allocation, which has a significant effect on both the
discussed quality attributes – reliability and energy consumption. To achieve this
aim, we identify the main reliability- and energy-relevant attributes of embedded
systems with respect to the redundancy allocation problem. We formalize the
system model in terms of an annotated Markov Reward Model, formulate the
optimization problem, and design an algorithm to resolve it. The whole approach
is implemented within the ArcheOpterix framework [10], and illustrated on a
realistic case study from the automotive domain.

Contribution of the paper. There are three main contributions of the paper:
(i) architecture-level technique to optimize reliability and energy consumption,
(ii) novel formalization of the problem and its solution, based on the expected
number of visits of individual subsystems and links in between, (iii) employment
of a meta-heuristic optimization algorithm, which reduces the likelihood to get
stuck in local optima as the greedy algorithms used by related approaches.

Outline of the paper. The paper is structured as follows. After discussion of re-
lated work in Section 2, we summarize the essential definitions in Section 3 and
present system model and its formalization in Section 4. Based on the model, Sec-
tion 5 describes our technique of quantifying the quality of a single architectural
alternative, from both a reliability and an energy-consumption point of view,
and Section 6 designs an optimization algorithm to find the set of near-optimal
candidates. Finally, Section 7 discusses our tool support, Section 8 illustrates
the approach on a case study, and Section 9 concludes the paper.

2 Related Work

Estimation and optimization of the energy consumption of embedded systems
has been the focus of many research groups. The application of energy opti-
mization is evident in design, implementation and runtime [11]. Energy-aware
compilation [12] and software design [13–15] has been addressed to achieve en-
ergy advantage independent from the hardware-level optimization. Apart from
the limited optimizations in different parts of systems, a system-level energy con-
sumption optimization has been proposed by Benini et al. [11]. Energy-efficient
runtime adaptation of embedded systems has also been a primary approach,
which can be broadly categorized as predictive, adaptive and stochastic con-
trol [2]. A key commonality of the approaches is that they use greedy heuristics
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for the optimization and focus on the balance of energy consumption and per-
formance.

A number of formal models have been adopted in the context of embedded-
systems energy consumption estimation. Continuous Time Markov Chains (CTMC)
have been widely used including the work of Qiu et al. [16]. Vijayakrishnan et
al. [17] proposed to use the more powerful model of Generalized Stochastic Petri
Nets (GSPN). The use of Markov Reward Models (MRM) has gained visibil-
ity [18, 19] due to their power of modeling and expressiveness in the domain of
energy consumption. Cloth et al. [20] presented the efficient use of MRMs in
energy-consumption modeling for embedded systems.

On the reliability side, there is a considerable amount of approaches that
address the Redundancy Allocation Problem (RAP) [4] at the system architecture
design level [6]. Coit et al. [4] introduced an approach solving RAP defined as the
use of functionally similar (but not necessarily identical) components in a way
that if one component fails, the redundant part performs required functionality
without a system failure. They have visualized the problem as the minimization
of cost incurred for the redundancy allocation while satisfying a user defined
system reliability level. In [4], Genetic Algorithms (GA) have been proposed
for the optimization of component redundancy allocation, and Neural networks
(NN) techniques have also been integrated in [21]. Kulturel-Konak et al. [5] has
presented Tabu Search as the design space exploration strategy. The RAP has
been adapted to Ant Colony Optimization (ACO) by Liang et al. [22]. Significant
similarity of all the approaches is the view on RAP as cost minimization problem
while satisfying the predefined reliability constraints. Grunske [23] addressed
RAP by integrating multi-objective optimization of the reliability and weight.

Finally, the trade-off with respect to energy consumption and reliability has
been the focus of a few research contributions. Negative implications on the reli-
ability has been investigated due to energy optimization methods such as voltage
reduction [7, 8] and channel coding techniques in the communication [9], which
are however not connected to RAP. The work of Zhang et al. [24] on finding
trade-offs of energy, reliability, and performance in redundant cache line allo-
cation can be viewed as conceptually close to RAP context. Similarly, Perillo
et al. [25] have presented an approach of finding the optimal energy manage-
ment with redundant sensors. However, both these contributions observe only
the static (hardware) architecture of the system, without taking the system ex-
ecution and its control flow (software layer) into account. This allows them to
disregard from the execution transfer among system components (which is cru-
cial in software architectures), and to employ simple additive models.

In contrast to the above mentioned approaches, this paper describes a novel
architecture-level approach of finding the optimal redundancy levels of system
components (integrating both software and hardware) with respect to system
reliability and energy consumption.
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3 Preliminaries

This section outlines the definitions and preliminary formalizations used in the
rest of the paper.

Definition 1 A Discrete Time Markov Chain (DTMC) is a tuple (S, P ) where
S is a finite set of states, and P : S×S → [0, 1] is a transition probability matrix.

A DTMC is called absorbing when at least one of its states has no outgoing
transition [18]. Such states are called absorbing states.

Definition 2 A labeled discrete time Markov Reward Model (MRM) is a triple
M = ((S, P ), ρ, τ) where (S, P ) is an underlying DTMC, ρ : S → R≥0 is a state
reward structure and τ : S × S → R≥0 is an impulse reward structure satisfying
∀s ∈ S : τ(s, s) = 0.

A path of an absorbing DTMC is a finite sequence σ = s0s1s2...sn of states,
where sn is an absorbing state. Let Xσ(s) denote the number of visits of state
s in path σ. Similarly, let XTσ(s, s′) represent the number of occurrences of
transition (s, s′) in σ. Then we can calculate the accumulated reward of σ as:

Rσ =
∑

s∈S

(Xσ(s) · ρ(s)) +
∑

(s,s′)∈(S×S)

(XTσ(s, s′) · τ(s, s′)) (1)

Having the expected number of visits of each state and transition, the expected
value of the accumulated reward in all paths can be computed as:

E[R] =
∑

s∈S

(E[X(s)] · ρ(s)) +
∑

(s,s′)∈(S×S)

(E[XT (s, s′)] · τ(s, s′)) (2)

In this paper, we use the method introduced by Kubat [26] to compute the
expected number of visits of a state/transition and the above relationship in
estimating the energy consumption, as described in Section 5.1.

4 System Model

In our approach, we target event-triggered embedded systems that are struc-
tured into interacting components (system elements), called special purpose mi-
croprocessors (MPs). The MPs are self-contained micro-computers along with
programmed software, dedicated to fulfil a specific functionality. They have only
one entry and exit point, and behave the same for each execution (visit of the
MP by system control flow). For example, in an autonomous weather data gath-
ering robot, these MPs are responsible for activities such as reading inputs from
sensors and calculating the relative humidity of the environment. As the MPs
need to communicate with each other during the operation, they are connected
via communication channels forming a distributed architecture.
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Inter-component communication is modeled as an execution transfer from
one component to another. In the redundancy allocation domain, systems are
modelled as Series-Parallel (S-P) systems [4, 5, 22, 23], with logical constructs for
both serial and parallel execution. In the embedded systems domain, the models
can be viewed as overlapped sets of S-P models (for individual system-level
services3), because the execution can start in different components (triggering
the services). The execution finishes in the components with no continuation
of the execution transfer. The existence of such components is implied by the
nature of services, which represent finite scenarios of system execution.

For the redundancy allocation, we use the hot spare design topology with N-
Modular Redundancy (NMR) extension [27]. In hot sparing, each component in
the system has a number of replicas (possibly zero), all of which are active at the
same time, mimicking the execution of the original component. With the NMR
extension the system employs a decision mechanism in the form of majority
voting, applied on entry to a component (if multiple replicas deliver their results
to the entry gate). See Figure 1 illustrating the concept. By merging the hot spare
and NMR, the system can be configured to tolerate fail-stop, crash, commission
and value failures. In this configuration, each component with its parallel replicas
is considered as a single unit called subsystem.

C1,2

C1,1

S0

S1

C0,1
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V
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Fig. 1. Component-interaction model, without and with redundancies

4.1 Formalization of the Model

Let C = {c1, c2, ..., cn}, n ∈ N, denote the set of all components (before replica-
tion), and I = {1, 2, ..., n} the index set for components in C. The assignment of
the redundancy level for all components is denoted a, and the set of all possible
a is denoted A = {a | a : C → N}, where N = {n | 0 ≤ n ≤ max, n ∈ N0}
delimits the redundancy level of a component4. Note that, since C and N are
finite, A is also finite. A component ci together with its redundancies form a
subsystem Si, which can be uniquely determined by ci (what we do along the
formalization).
3 In embedded systems, a service is understood as a system-level functionality em-

ploying possibly many components.
4 The original component is not counted as redundant, hence at least the one is always

present in a subsystem.
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Underlying DTMC model. The interaction among components without replica-
tion (Figure 1 on the left) can be formalized in terms of an absorbing DTMC,
where nodes represent system components ci ∈ C, and transitions the transfer of
execution from one component to another (together with the probability of the
transfer). Equivalently, the system with replication (Figure 1 on the right) can be
formalized as an absorbing DTMC where nodes represent the whole subsystems
Si, and the transitions represent the transfer of execution in between with all
the replicated communication links joined into a single transition (see Figure 2,
ignoring the annotation for now). Note that since the replicated links are joined
in the DTMC, the transfer probabilities remain unchanged with respect to re-
dundancy allocation. In both cases, the DTMC represents a single execution of
the system (its reaction to an external event), with possibly many execution sce-
narios (initiated in different nodes of the DTMC, based on the trigerring event).
In summary, the underlying DTMC is determined by the following parameters:

– Execution initiation probability, q0 : C → [0, 1], is the probability of initial-
izing the execution in the component (or subsystem);

∑
c∈C q0(c) = 1.

– Transfer probability, p : C×C → [0, 1], is the probability that the execution
continues to component (or subsystem) cj after component ci.

Energy and reliability annotation. The energy and reliability-relevant informa-
tion is added to the DTMC model via model annotation. In case of energy
consumption, the annotation is encoded in terms of rewards, and the DTMC
extended to a discrete time Markov Reward Model (MRM) [28], as discussed
below. In case of reliability, the annotation is directly connected to the parame-
ters derived from the DTMC, and used for reliability evaluation, as discussed in
Section 5.3. In both cases, the annotation is based on the following parameters
of system architecture and execution flow:

– Failure rate λc : C → R≥0, is the failure intensity of the exponential distri-
bution of failure behavior of a component [29]. Component failures in the
model are assumed independent and given per time unit.

– Failure rate λl : C × C → R≥0, is the failure intensity of the exponential
distribution of failure behavior of a communication link between two com-
ponents, assumed independent for different links and given per time unit.

– Processing time inside a component per visit, tc : C → R≥0, measured in a
model with no redundancy, given in time units (ms).

– Transfer time for a link per visit, tl : C × C → R≥0, measured in a model
with no redundancy, given in time units (ms).

– Energy consumption of component processing per visit, ec : C → R≥0, is
the estimated energy dissipation by the component during the execution per
single visit of the component, given in Joules (J).

– Energy consumption of an idle component, ei : C → R≥0, is the estimated
energy dissipation by the component when being in the idle state, given in
Joules (J) per time unit.
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– Energy consumption of a link transfer per visit, el : C × C → R≥0, is the
estimated energy dissipation in communication between two components per
single interaction. given in Joules (J).

– Trigger rate, r ∈ R, is the expected number of system executions (occurrence
of events trigerring system services) per time unit.

Energy annotated MRM. An example of a MRM (for the system in Figure 1) is
in Figure 2. In the example, the nodes are annotated with state rewards ρ(ci),
and transitions annotated with p(ci, cj)/τ(ci, cj) where p denotes the transition
probabilities and τ the impulse rewards.
Based on the above, the energy anno-
tated MRM derives state rewards from
the energy consumed in component pro-
cessing ec, and impulse rewards from the
energy consumed in communication el. In
both cases, the rewards are affected by
the redundancy level of the relevant sub- Fig. 2: Markov Reward Model

system.
As the total number of identical components in subsystem Si is given by

(a(ci) + 1), the energy consumed in component processing for the subsystem Si

(node of the MRM) per visit is given by ec(ci) · (a(ci)+1). The energy consumed
in communication from a sender subsystem Si to a recipient Sj (transition in
the MRM) is proportional to the number of senders (replicas in Si), and hence
given as el(ci, cj) · (a(ci) + 1). In summary, if ci, cj ∈ C are system components
(subsystems), and a ∈ A is a redundancy allocation, then:

– State reward of ci is defined as ec(ci) · (a(ci) + 1)
– Impulse reward of (ci, cj) is defined as el(ci, cj) · (a(ci) + 1)

5 Evaluation of an Architectural Alternative

Each architectural alternative is determined by a single redundancy allocation
a ∈ A (defined in Section 4.1). To quantify the quality of a, we define a quality
function Q : A → R2, where Q(a) = (Ea, Ra) for Ea quantifying the energy
consumption of a (defined in Section 5.2), and Ra the reliability (probability
of failure-free operation) of a (defined in Section 5.3). Both Ea and Ra are
quantified per a single time unit, which is possible thanks to the the trigger
rate r, and allows us to reflect also the energy consumed in the idle state. The
computation of both Ea and Ra employs the information about the expected
number of visits of system components and communication links during the
execution (see Section 3 for explanation), which we compute first, in Section 5.1.

5.1 Expected number of visits

Expected number of visits of a component, vc : C → R≥0, quantifies the expected
number of visits of a component (or subsystem) during system execution. Note
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that vc(c) corresponds to the expected number of visits of state ci in the under-
lying DTMC (as defined in Section 3), i.e. E[X(ci)]. This can be computed by
solving the following set of simultaneous equations [26]:

vc(ci) = q0(ci) +
∑

j∈I
(vc(cj) · p(cj , ci)) (3)

The formula (3) can be expanded to:

vc(c0) = q0(c0) + vc(c0) · p(c0, c0) + vc(c1) · p(c1, c0) + vc(c2) · p(c2, c0) + ... + vc(cn) · p(cn, c0)
vc(c1) = q0(c1) + vc(c0) · p(c0, c1) + vc(c1) · p(c1, c1) + vc(c2) · p(c2, c1) + ... + vc(cn) · p(cn, c1)
vc(c2) = q0(c2) + vc(c0) · p(c0, c2) + vc(c1) · p(c1, c2) + vc(c2) · p(c2, c2) + ... + vc(cn) · p(cn, c2)

.

.

.
vc(cn) = q0(cn) + vc(c0) · p(c0, c1) + vc(c1) · p(c1, cn) + vc(c2) · p(c2, cn) + ... + vc(cn) · p(cn, cn)

In a matrix form, the transfer probabilities p(ci, cj) can be written as Pn×n, and
execution initiation probabilities q0(ci) as Qn×1. The matrix of expected number
of visits Vn×1 can be expressed as:

V = Q + P T · V

With the usual matrix operations, the above can be transformed into the solu-
tion format:

I × V − P T × V = Q

(I − P T )× V = Q

V = (I − P T )−1 ×Q

Expected number of visits of a communication link, vl : C×C → R≥0, quantifies
for each link lij = (ci, cj) the expected number of occurrences of the transi-
tion (ci, cj) in the underlying DTMC (as defined in Section 3), i.e E[XT (ci, cj)].
To compute this value, we extend the work of Kubat et al. [26] for computing
the expected number of visits of system components to communication links. In
the extension, we understand communication links as first-class elements of the

model, and view each probabilistic transition ci
p(ci,cj)−−−−−→cj in the model as a tuple

of transitions ci
p(ci,cj)−−−−−→ lij

1−→ cj , the first adopting the original probability and
the second having probability =1. Then we can apply the above, and compute
the expected number of visits of a communication link as:

vl(lij) = 0 +
∑

x∈{i}
(vc(cx) · p(cx, lij)) (4)

= vc(ci) · p(ci, cj) (5)

since the execution is never initiated in lij and the only predecessor of link lij is
component ci.
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5.2 Energy Consumption

The energy consumption of architectural alternative a is computed with respect
to two contributing elements: (i) the energy consumed in system execution, and
(ii) energy consumed in the idle state.

The energy consumed in system execution is represented by the accumulated
reward defined in Section 3, whose computation employs the state and impulse
rewards of the energy annotated MRM (defined in Section 4.1) and expected
number of visits of both components/subsystems and communication links (de-
fined in Section 5.1). In summary, the energy consumed in system execution is
given as:

Ea
exec =

∑

ci∈C

ec(ci)·(a(ci)+1)·vc(ci)+
∑

ci∈C

∑

cj∈C

el(ci, cj) · (a(ci) + 1) · vl(lij) (6)

Since the MPs together with their redundancies consume certain amount
of energy during their idle state as well, the total energy consumption takes
into account also the energy consumed in the idle state, expressed for a single
subsystem Sj and one time unit as ei(cj) · (a(cj) + 1).

Consequently, the total energy consumption of the system for a given redun-
dancy allocation a and a single time unit can be expressed as:

Ea = Ea
exec · r +

∑

cj∈C

ei(cj) · (a(cj) + 1) (7)

5.3 Reliability

Having the failure rate λc and processing time tc defined in Section 4.1, the
reliability of a single component ci per visit can be computed as [29]:

Rc(ci) = e−λc·tc(ci) (8)

When the redundancy levels are employed, the reliability of a subsystem Si (with
identical replicas connected in parallel) for the architectural alternative a can be
computed as:

Ra
c (ci) = 1− (1−Rc(ci))a(i)+1 (9)

Similarly, the reliability of a communication link per visit is characterized by
λl and tl as:

Rl(ci, cj) = e−λl·tl(ci,cj) (10)

In consideration of a redundancy allocation a, the presence of multiple senders
increases the reliability (thanks to the tolerance against commission and value
failures) as follows:

Ra
l (ci, cj) = 1− (1−Rl(ci, cj))a(i)+1 (11)

Having the reliabilities of individual system elements (subsystems and links)
per a single visit, the reliability of the system execution can be computed analog-
ically to the accumulated reward above, based on the expected number of visits,
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with the difference that we employ multiplication instead of summation [1, 26]:

Ra
exec ≈

∏

i∈I
(Ra

c (ci))vc(ci) ·
∏

i,j∈I
(Ra

l (ci, cj))vl(lij) (12)

Finally, the system reliability for a given redundancy allocation a and a sin-
gle time unit (with respect to trigger rate r) can be expressed as:

Ra = (Ra
exec)

r (13)

6 Architecture Optimization with Non-dominated
Sorting Genetic Algorithm (NSGA)

The goal of our multi-objective optimization problem is to find the approxi-
mate set of solutions A∗ ⊆ A that represent a trade-off between the conflicting
objectives in Q : A → R2, i.e. the reliability of the system and the energy con-
sumption, and satisfy the set of constraints Ω. In our case, Ω consists of only
the constrains on the maximal redundancy levels of system MPs. Different al-
gorithms can be used for solving the optimization problem. In our approach, we
employ the Non-dominated Sorting Genetic Algorithm (NSGA) [30], which has
shown to be robust and have a good performance in the settings related to ours.

For the optimization process, NSGA uses an initial population of randomly
generated chromosomes, consisting of alleles. Each chromosome encodes a single
redundancy allocation alternative a ∈ A. Each allele in a chromosome represents
a redundancy level for a component ci ∈ C.

The three genetic operators of the evolution process are selection, cross-over
and mutation. NSGA varies from simple genetic algorithm only in the way the
selection operator works. The three operators are adapted to the redundancy
allocation problem as follows.

6.1 Selection

Before the selection operator is applied the population is ranked on the basis of
an individual’s non-domination. In a maximization problem a solution a∗ is non-
dominated if there exists no other a such that Q(a) ≤ Q(a∗) for all objectives,
and Q(x) < Q(x∗) for at least one objective. In other words, if there exists no
other feasible variable a which would be superior in at least one objective while
being no worse in all other objectives of a∗, then a∗ is said to be non-dominated.
The set of all non-dominated solutions is known as the non-dominated set.

First, the non-dominated solutions present in the population are identi-
fied and assigned a fitness value. These solutions will constitute the first non-
dominated front in the population, which will be ignored temporarily to process
the rest of the population in the same way, finding the solutions which belong
to the second non-dominated front. These solution are assigned a lower fitness
value. This process is continued until the entire population is classified into sep-
arate fronts.
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A mating pool is then created with solutions selected from the population
according to the fitness value that has been assigned to them during the ranking
process. The solutions with a greater fitness value have a higher chance of being
selected to be part of the mating pool than the ones with a lower fitness value.
This helps the quick convergence of the algorithm towards the optimal solutions.
The mating pool will then serve for the random selection of the individuals to
reproduce using crossover and mutation.

6.2 Crossover
Crossover is the creation of new solutions a′i, a

′
j ∈ A from two parents ai =

[ui1 , ui2 , ..., uin ] and aj = [uj1 , uj2 , ..., ujn ] coming from existing population by
recombining the redundancy levels of components, i.e. for a random k: a′i =
[ui1 , ..., uik−1 , ujk

, ..., ujn
] and a′j =[uj1 , ..., ujk−1 , uik

, ..., uin
]. After every crossover

operation, the solutions are checked for constraints satisfaction in Ω, and repair-
ing mechanisms are used to handle constraint violation.

6.3 Mutation
Mutation produces a new solution a′i from existing ai by switching the allocation
of two components, i.e. for randomly selected k, l: a′i =[ui1 , ..., uil

, ..., uik
, ..., uin ]

while the original is ai =[ui1 , ..., uik
, ..., uil

, ..., uin ]. Each newly created chromo-
some is first checked for constraint satisfaction (for constraints in Ω) before it is
allowed to become part of the population. This prevents us from the construction
of infeasible solutions.

7 Tool Support

The presented approach, including the NSGA optimization algorithm, has been
implemented within the ArcheOpterix framework [10], which has been developed
with Java/Eclipse and provides a generic platform for specification, evaluation
and optimization of embedded system architectures.

ArcheOpterix has a modular structure, with an entry module responsible for
interpreting and extracting a system description from a specification, recognizing
standard elements like components, services, processors, buses, etc., specified in
AADL or XML. It also provides extensions to other elements and domain-specific
parameters. The remaining modules allow for plug-in of different quality function
evaluators, constraint validators, and optimization algorithms, which makes it a
well fitting tool for multi-criteria quality optimization of embedded systems.

8 Validation on a Case Study

8.1 Automotive control system

An embedded system from the automotive domain is used as a case study for
the demonstration of the approach. The case study has been designed based
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on already published models [31, 32] and contains the Anti-lock Brake System
(ABS) and Adaptive Cruise Control (ACC) functionality. System parameters
required for the model are chosen to closely resemble the reality, including the
component failure rates [33], and estimated execution time per visit [34].

Anti-lock Brake System (ABS): The ABS is currently used in most of modern
cars to minimize hazards associated with skidding and loss of control due to
locked wheels during braking. Proper rotation during brake operations allows
better maneuverability and enhances the performance of braking.

Adaptive Cruise Control (ACC): Apart from usual automatic cruise control
functionality, the main aim of the ACC is to avoid crashes by reducing speed
once a slower vehicle in front is detected.

The main components used by the composite system and their interaction
diagram are presented in Figure 3. The ABS Main Unit is the major decision-
making unit regarding the braking levels for individual wheels, while the Load
Compensator unit assists with computing adjustment factors from the wheel load
sensor inputs. Components 4 and 5 represent the components that communicate
with wheel sensors while components 7 and 8 represent the electronic control
units that control the brake actuators. Brake Paddle is the component that reads
from the paddle sensor and sends the data to the Emergency Stop Detection unit.
Execution initialization is possible at the components that communicate with the
sensors and user inputs. In this case study the Wheel Sensors, Speed Limitter,
Object Recognition, Mode Switch and Brake Paddle components contribute to the
triggering of the service. The captured data from the sensors, are processed by
different components in the system and triggers are generated for the actuators
like Brake Actuators and Human Machine Interface.

Fig. 3. Automotive composite system

Parameters of the elements of the considered system, and probabilities of
transferring execution from one component to another are illustrated in Table 1.
The trigger rate r of the composite system is assumed to be 1 trigger per second.
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Comp q0 λc ec tc ei

ID (mJ) (ms) (mW)

0 0 4 · 10−6 20 33 2

1 0 6 · 10−6 10 30 1

2 0.01 5 · 10−6 20 10 2

3 0 8 · 10−6 25 33 2.5

4 0.17 8 · 10−6 30 10 3

5 0.17 8 · 10−6 30 10 3

6 0.17 8 · 10−6 40 10 4

7 0.17 8 · 10−6 40 10 4

8 0.01 5 · 10−6 10 20 1

9 0 5 · 10−6 10 20 1

10 0 5 · 10−6 20 33 2

11 0 4 · 10−6 30 28 3

12 0 7 · 10−6 40 28 4

13 0.15 3 · 10−6 50 33 5

14 0.15 3 · 10−6 40 33 4

Trans Prob. λl el tl

ci → cj p(ci, cj) (mJ) (ms)

0 → 7 0.5 4 · 10−5 40 40

0 → 6 0.5 5 · 10−5 40 40

1 → 3 1 6 · 10−5 60 10

2 → 1 0.75 5 · 10−5 60 30

3 → 0 1 4 · 10−5 35 30

4 → 0 0.7 4 · 10−5 60 30

4 → 3 0.3 5 · 10−5 60 30

5 → 0 0.7 3 · 10−5 40 30

5 → 3 0.3 5 · 10−5 50 40

2 → 9 0.25 6 · 10−5 30 40

8 → 9 0.6 8 · 10−5 50 30

8 → 10 0.4 12 · 10−5 40 30

9 → 0 0.2 4 · 10−5 20 10

9 → 11 0.4 5 · 10−5 20 10

9 → 12 0.6 5 · 10−5 30 10

10 → 9 1 6 · 10−5 50 20

11 → 12 1 8 · 10−5 50 20

13 → 10 0.5 10 · 10−5 20 40

13 → 11 0.5 12 · 10−5 20 40

14 → 10 0.5 4 · 10−5 30 40

14 → 11 0.5 5 · 10−5 45 40

Table 1. Parameters of components and communication links

8.2 Results

Even though the presented case study is a comparatively small segment of an
actual automotive system, the possible number of architectural alternatives is
415 ≈ 1.07 · 109 (assuming maximum redundancy level of 3), which is too large
to be traversed with an exact algorithm. Therefore we employed the NSGA (see
Section 6) as a meta-heuristic to obtain a near-optimal solutions in practically
affordable time frame.
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Fig. 4. Distribution of non-dominated solutions

The execution of the algorithm was set to 25 000 function evaluations, and
performed under a settings on a dual-core 2.26 GHz processor computer. The
algorithm took 7 seconds for the 25 000 function evaluations and generated 193
non-dominated solution architectures. The distribution of the near-optimal so-
lutions is graphically represented in Figure 4. The prevalence of the solutions in
the objective domain, together with their non-dominated trade-offs are depicted
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in the graph. The designers are provided this set to choose the desired solution
based on their utility (trade-off preference of reliability/energy consumption).

Solution Redundancy Allocation Reliability Energy

(h−1) Consumption(J/h)
A [1,0,0,1,1,1,0,0,0,1,1,1,0,1,1] 0.99999828 973.79
B [1,0,0,1,1,1,0,1,1,1,1,1,1,1,1] 0.99999948 1072.66

Table 2. Example of two non-dominated solutions

Table 2 illustrates two closely related non-dominated solutions generated by
the optimization process. The arrays in the second column represent the redun-
dancy levels for the components (subsystems) ordered by their ID. Note that the
reliabilities of the two solutions are very similar while the energy consumption
of B is approximately 100 J/h lower than of A. It should be highlighted that
the non-obvious change from solution A to solution B has significantly reduced
the energy consumption for a very small trade-off of reliability, which would
definitely be an interesting information for the system designer.

9 Conclusions and Future Work

In this paper, we have formulated the models for estimating reliability and energy
consumption at an architectural level, and combined the two quality attributes
in optimizing the redundancy levels of system components. The energy con-
sumption model, formulated in terms of a discrete time Markov Reward Model,
builds on the expected number of visits in obtaining a point estimate for the
accumulated state and impulse reward. The accumulated reward together with
the energy consumed in components’ idle states then characterizes system energy
consumption. The reliability evaluation model extends the Kubat’s model [26],
applying the concept of subsystems and expected number of visits of system
elements. The model is extended to consider also the impact of communication
elements of the system. As a result, both estimation techniques enable quantifi-
cation of the impact of critical design decision on reliability and energy consump-
tion. We have employed this for automatically identifying architecture specifica-
tion with optimal redundancy level to satisfy both quality attributes. For this
identification, the redundancy allocation problem is solved with a multi-objective
optimization strategy. We have implemented the architecture evaluation models
and used NSGA to find near-optimal architecture solutions. An automotive case
study of a composite system of Anti-lock Brake System (ABS) and Adaptive
Cruise Control (ACC) has been used for the validation of our approach.

In future work, we would like to extend the set of investigated design deci-
sions. In addition to the allocation of redundancy levels, also deployment deci-
sions for software components and selection of appropriate architectural elements
is interesting. Furthermore, we aim to investigate different optimization strate-
gies such as Ant Colony Strategies, Tabu Search, etc., to compare which of them
works better for which problem formulation.
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