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Abstract

Software testing is a crucial part of software development. It enables quality assurance,
such as correctness, completeness and high reliability of the software systems. Current
state-of-the-art software testing techniques employ search-based optimisation methods,
such as genetic algorithms to handle the difficult and laborious task of test data generation.
Despite their general applicability, genetic algorithms have to be parameterised in order
to produce results of high quality. Different parameter values may be optimal for different
problems and even different problem instances. In this work, we introduce a new approach
for generating test data, based on adaptive optimisation. The adaptive optimisation
framework uses feedback from the optimisation process to adjust parameter values of a
genetic algorithm during the search. Our approach is compared to a state of the art
test data optimisation algorithm that does not adapt parameter values online, and a
representative adaptive optimisation algorithm, outperforming both methods in a wide
range of problems.

Keywords: test data generation, optimisation, genetic algorithm, adaptive parameter
control

1. Introduction

Search-based optimisation methods, such as genetic algorithms, ant colony optimisa-
tion and simulated annealing have successfully been applied in solving a wide range of
software testing problems [41, 30, 2, 31, 40, 21]. The commonality of these approaches is
that they aim at optimising the quality of a given test data set. Quality could be measured
with respect to certain coverage criteria, eg. branch, statement, and method coverage for
source code, or metrics such as transition coverage for model-based testing. Beside these
function-oriented approaches, a variety of methods focus on non-functional aspects of test
data optimisation, such as searching for input situations that break memory or storage
requirements, automatic detection of memory leaks, stress testing and security testing. A
systematic literature review of search-based testing for non-functional system properties
by Afzal et al. [1] presents a comprehensive overview of these methods.

Genetic algorithms (GAs) are among the most frequently applied search-based op-
timisation method in test data generation [4]. GAs provide approximate results where
exact approaches cannot be devised and optimal solutions are hard to find. They can
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be used by practitioners as a ‘black box’, without mastering advanced theory, whereas
more sophisticated exact approaches are tailored to the specific mathematical structure
of the problem at hand, and can become completely inapplicable if small aspects of the
problem change. Another advantage of GAs compared to traditional methods, such as
gradient descent-based algorithms is the stochastic element which helps them get out of
local optima.

In recent years, it has been acknowledged that the performance of GAs depend on the
numerous parameters, such as crossover rate, mutation rate and population size [19, 17, 3].
Algorithm parameters determine how the search space is explored. They are responsible
for the flexibility and efficiency of the search procedure, and when configured appropri-
ately, produce high-quality results regardless of the search space difficulty. Because of the
influence of parameter values on algorithm performance, poor algorithm parameterisation
hinders the discovery of solutions with high quality [39, 19, 17]. It has been acknowledged
that parameters required for optimal algorithm performance are not only domain-specific,
but also have to be chosen based on the problem instance at hand [18].

The configuration of the algorithm is usually the responsibility of the practitioner,
who often is not an expert in search-based algorithms. General guidelines for successful
parameter values give different recommendations: e.g. De Jong [14] recommends using 0.6
for crossover rate, Grefenstette [27] suggests 0.95, whereas Schaffer et al. [48] recommends
any value in the range [0.75, 0.95]. These general guidelines conflict with each other,
because each one reports the best parameter configuration of a GA for a particular class
of problems. For a newly arising problem, the search space is typically unknown, hence it
is hard to formulate any general principles about algorithm parameter configurations for
universal applicability [42]. In these circumstances, algorithm parameterisation presents
itself as an optimisation problem in its own right [19]. To save time, practitioners tend to
configure the GA based on a few preliminary runs, where different parameter values are
tried in an attempt to fine-tune the algorithm to a particular problem [19]. Depending
on the number of parameters and their possible values, investigative trials for parameter
optimisations can themselves be attempts to solve a combinatorially complex problem.
Even if parameters are tuned to their optimal values, there is no guarantee that the
performance of the algorithm will be optimal throughout the optimisation process. In fact,
it has been empirically and theoretically demonstrated that different parameter settings
are required for different stages of the optimisation process [9, 8, 52, 50, 32, 11, 55]. This
means that tuning parameter values before the optimisation process does not guarantee
optimal GA performance. This problem has been tackled by many researchers in the
optimisation community, who propose to set GA parameter values during the run using
feedback from the search, known as adaptive parameter control [17, 25, 22, 12, 13, 33,
34, 36, 38, 49, 56]. The intuitive motivation comes from the way the optimisation process
unfolds from a more diffused global search, requiring parameter values responsible for
the exploration of unseen areas of the search space, to a more focused local optimisation
process, requiring parameter values which help with the convergence of the algorithm.

In essence, adaptive parameter control methods monitor the behaviour of a GA run,
and use the performance of the algorithm to adapt parameter values, such that successful
parameter values are propagated to the next generation. The majority of adaptive param-
eter control methods found in the literature belong to the class of probability matching
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techniques [12, 13, 33, 34, 36], in which the probability of applying a parameter value
is proportional to the quality of that parameter value. The earliest approaches [34, 33]
lacked the exploration of parameter values if the feedback from the algorithm was not
in their favour in the initial phases of the process. In later work, a minimum selection
probability was introduced [34], to ensure that under-performing parameter values did
not disappear during the optimisation, in case they were beneficial in the later stages of
the search. One of the more recent and mature examples of probability matching is the
work by Igel and Kreutz [34], where the selection probability for each parameter value
incorporates a minimum probability of selection.

These adaptive parameter control methods assume that the improvement in the quality
of the solutions is directly related to the use of certain parameter values. However, GAs are
stochastic systems that may produce different results for the same parameter values [16].
Ideally, the randomness induced by the stochastic behaviour of GAs should be taken care
of by the parameter control strategy. To address this issue, we introduce an adaptive
genetic algorithm, which adjusts algorithm parameters during the optimisation process
using a Kalman filter. The Kalman filter-based genetic algorithm (KFGA) redefines
parameter values repeatedly based on a learning process that receives its feedback from
the optimisation algorithm. The Kalman filter is employed to reduce the noise factor
from the stochastic behaviour of GAs when identifying the effect of parameter values on
the performance of the algorithm. KFGA outperforms a GA with pre-tuned parameter
values and the probability matching technique by Igel and Kreutz [34] when solving the
problem of test data generation. The proposed methods consistently finds test suites with
better branch coverage than the state-of-the-art, as shown by the experiments performed
on a set of open-source problem instances.

2. Test Data Generation

Software testing is used to estimate the quality of a software system. Quality may
refer to functional attributes, which describe how the system should behave, or non-
functional requirements as defined in ‘IEEE International Standard 1471 2000 — Sys-
tems and software engineering — Recommended practice for architectural description of
software-intensive systems’ [35], such as reliability, efficiency, portability, maintainability,
compatibility and usability.

A software test consists of two main components, an input to the executable program
and a definition of the expected outcome. In software testing, the aim is to find the
smallest number of test cases that expose as many scenarios as possible in which the
system may fail. It is important that the generated test inputs cover as many lines of
code as possible. However, since it is usually the task of a human tester to specify the
expected outcome, it is also essential to keep the number of test cases as small as possible
to make this task feasible.

Due to the time-consuming nature and computational load of this task, optimisation
techniques, such as genetic algorithms have been used to automate the process of test
case generation [23, 58, 51, 54, 26]. A common approach is to use coverage criteria, such
as branch coverage [23] to measure the quality of generated test cases and guide the opti-
misation process towards the optimal solution(s) that maximise or minimise the criteria.
Coverage criteria are a set of coverage goals, which are usually optimised separately [29].
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However, it is often the case that testing goals conflict with each other, hence should be
optimised simultaneously. EvoSuite [23] addresses the problem of conflicting test goals
by evolving test cases in a test suite simultaneously with a genetic algorithm, known as
whole test suite generation. We use the EvoSuite framework1 to model the optimisation
problem of test suite generation, and extend it to incorporate adaptive optimisation which
adjusts the parameter values of the GA during the optimisation process.

3. Optimisation Model for Test Data Generation

GAs evolve a population of solutions using the genetic operators: mutation, crossover,
selection, and replacement procedure. The aim is to optimise some quality function(s)
by searching the space of potential solutions. GAs start the optimisation process by
randomly generating a set of solutions. In certain cases, this initial set of solutions is
created by applying heuristic rules (e.g. greedy algorithm), or obtained using expert
knowledge. Usually, the genetic operators are applied based on predefined rates, such as
for crossover or mutation. These operators are employed to create the new solutions by
changing excising solutions that are selected according to the selection procedure. The
new candidate solutions are added to the pool of population. Finally, the set of solutions
that will survive to the next generation are selected using the replacement procedure,
which removes as many individuals as required to maintain the prescribed population
size.

For test data generation we employ EvoSuite [23], which evolves test suites using a
GA with the aim of covering all test goals while minimising the total size of the suite. To
measure the quality of a solution, we use branch coverage as an objective function. The
aim is to cover as many control structures, such as if and while statements as possible,
by evaluating the logical predicates that result in both true and false. In order for all
branches to be covered, each predicate should be executed at least twice, resulting in true
and false values. In EvoSuite, the branch distance d(b, T ) for each branch b in test suite
T is defined as

d(b, T ) =


0 if the branch has been covered,
dmin(b, T ) if the predicate has been executed at least twice,
1 otherwise.

(1)

The distance dmin(b, T ) is 0 if at least one of the branches has been covered, and > 0
otherwise. The fitness function that is minimised by EvoSuite and used in the experiments
in Section 6 is formally defined as

f(T ) = |M | − |MT |+
∑
b∈B

d(b, T ), (2)

where |M | is the total number of methods, |MT | is the number of executed methods in test
suite T and B is the set of branches in the program. The optimisation process in EvoSuite
starts with a set of solutions, which are uniformly, randomly generated. Formally, let t

1EvoSuite can be downloaded from http://www.evosuite.org.
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denote a test case, composed of a sequence of statements t = 〈s1, s2, ..., sl〉 of length l.
A statement si can be a constructor, a field, a primitive, a method or an assignment. A
solution is defined as a collection of T = {t1, t2, ..., tn} of test cases. The test suite should
not only cover as many branches as possible, but also be the shortest possible. Hence, an
optimal solution T ∗ is a test suite that covers all possible branches, but at the same time
has the smallest possible number of statements. The sum of the lengths of all test cases
in a test suite defines its length, i.e.

|T | =
n∑
i=1

|ti|. (3)

Since the number of test cases in a test suite and the number of statements in a test
case may vary, the solution representation is of a variable size. The solutions are evolved
in iterations until a stopping criterion is achieved. The new generations of solutions are
created with the help of four genetic operators: the crossover operator, the mutation
operator, the selection operator and the replacement operator. The crossover operator
creates two new solutions T ′1 and T ′2 by combining test cases from two pre-existing test
suites T1 and T2. A parameter α, which is randomly selected in the range [0, 1] indicates
how the solutions are combined: the first new solution T ′1 receives dα|T1|e test cases from
T1 and the rest from T2, whereas the new second solution is composed of the first α|T2|
test cases from the second parent solutions and b(1 − α)|T1|c test cases from the second
parent.

The mutation operator is applied after the crossover operator. There are two different
types of mutations that can occur: at a test suite level and at a test case level. Test
suites are mutated by changing each of the test cases with a probability 1/n, where n is
the number of test cases in the test suite. At the same time, new test cases are added to
the test suite with a probability σ. Mutation of test cases is performed by either adding,
changing or removing statements from a test case with a probability 1/l, where l is the
number of statements in a test case.

A rank-based selection procedure is employed to select the parent solutions that will
undergo recombination and mutation procedures [57]. Solutions are ranked based on the
fitness function defined in eq. 2. When there is a tie between solutions, shorter test
suites are assigned better ranks. As a result, solutions with better branch coverage and
shorter length have a higher chance of projecting their ‘genes’ to the next generation.
Similar to the original studies with EvoSuite, an elitist strategy is used as a replacement
procedure [23]. The elitist strategy selects the best solutions to create the next generation.

4. Adjusting Parameters of Genetic Algorithms

Genetic algorithms (GAs) have successfully been applied to Whole Test Suite Gen-
eration [23] and many other optimisation problems in Software Engineering [46, 28, 5].
The performance of GAs is affected by the configuration of its parameter values, such as
crossover rate, mutation rate and population size [10, 20, 15, 6]. Parameter values can be
configured in two different ways: by tuning their values before the optimisation process,
or by dynamically adjusting parameter assignments during the run. The later is referred
to as parameter control, and is more effective than parameter tuning, since different algo-
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rithm configurations may be optimal at different stages of the search [10, 20, 15, 6]. An
investigation on the benefit of tuning parameter values for solving software engineering
problems showed that tuned parameter values do not necessarily produce better algorithm
performance compared to default parameter values [7].

Parameter control methods can be classified into three groups: deterministic, self-
adaptive and adaptive. Deterministic parameter control changes parameter values based
on a predefined schedule composed of intervals with preassigned parameter values, e.g.
decreasing mutation rate by a certain amount every iteration. Using a predefined sched-
ule is likely to lead to suboptimal values for some problems or instances, since smaller
problems may require shorter intervals for the schedule, as the search progress will be
faster when the problem complexity is lower.

Alternatively, the search for optimal parameters can be integrated into the optimi-
sation process itself — usually by encoding parameter settings into the genotype of the
solution to evolve [10, 20, 15], known as self-adaptive parameter control. Extending the
solution size to include the parameter space obviously increases the search space and
makes the search process more time-consuming [17]. The approach proposed in this work
falls into the category of adaptive parameter control, in which feedback from the optimi-
sation process is collected and used to evaluate the effect of parameter value choices and
adjust the parameter values over the iterations.

Adaptive parameter control does not use a predefined schedule and does not extend
the solution size, which makes it a more effective way for adjusting parameter values. Fur-
thermore, unlike self-adaptive methods, adaptive strategies use feedback from the search
to adjust parameter values based on their ability to create high-quality solutions. The
genetic operators, and other elements of a GA that are involved in the optimisation pro-
cess, such as the probabilities of applying the genetic operators, the size of the population,
and the number of new solutions produced at every iteration are the parameters of the
algorithm that can be adapted by the parameter control method.

Every iteration, the solutions created are evaluated using the objective function, which,
in our case, is the branch coverage. The output from the evaluation process is used to
assess the effect of the parameter values on the performance of the optimisation algorithm.
The approximated effect is employed for a projection of parameter values performing
well to the next iterations, based on certain rules, such as the average effect over a
number of iterations, instantaneous effect, or the total usage frequency of parameter
values. The quality values assigned to the algorithm parameters are used to select the
next parameter values, which are employed to create the next generation of solution(s).
The selection mechanism configures the components of a GA (variation, selection and
replacement operators). The main challenge faced at this step is the trade-off that has
to be made between the choice of current best configuration(s) and the search for new
optimal settings.

5. Effect Assessment of Parameter Values using the Kalman Filter

Formally, given a set {υ1, ..., υn} of n algorithm parameters, where each parameter υi
has {υi1, ..., υim} values that can be discrete numbers or intervals of continuous numbers,
parameter control derives the optimal next value υij to optimise the effect of υi on the
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performance of the algorithm [3]. As an example, when the mutation rate υ1 is dynami-
cally adjusted by considering 4 intervals (m = 4), υ12 stands for a mutation rate sampled
from the second interval. In the discrete case of optimising the type of mutation operator
υ2, υ22 could represent the single-point mutation operator.

Adaptive parameter control methods keep a vector of probabilities denoted as P =
{p(υ11), p(υ12), ..., p(υ1m1), ..., p(υnmn)}, which represents the selection probability for each
parameter value υij. At each time step, the jth value of the ith parameter is selected with
probability p(υij). Its effect on the performance of the algorithm is denoted as e(υij).
The main goal of adaptive parameter control is to adapt the vector of probabilities P to
maximize the expected value of the cumulative effect E[E ] =

∑n
i=1 e(υij) [3]. The adaptive

parameter control employed in this work adjusts parameter values as the optimisation
process progresses, using feedback from the search space. Due to the stochastic nature
of GAs, the discovery of high-quality solutions may not always be related to algorithm
parameters. Instead, the performance of the algorithm is highly susceptible to noise and
error, involving random effects of parameter values.

To reduce the noise factor from the stochastic behaviour of GAs, we employ the
Kalman filter [37]. The Kalman filter uses a series of measurements observed over time
that usually contain noise, and produces a statistically optimal estimate of unknown
variables. The algorithm has two main phases: first, it uses previous measurements
to predict the current behaviour of parameter values, along with their uncertainties and
taking into account noise. In the second phase, once the outcome of the next measurement
is observed, which usually contains noise, the estimates are updated using a weighted
average, with highly certain estimates being given more weight. As a result, Kalman
filter produces reliable estimates of the true performance of parameter values.

5.1. Kalman Filter Model

The effect of a parameter value on the performance of the optimisation algorithm
is approximated as the fitness change of the solution created by that parameter value
compared to the parent solution. More specifically, if a parameter value υij creates a
solution s

υij
k by modifying a parent solution sk, the effect of υij on the performance of the

optimisation algorithm is calculated as:

e(υij) = f(s
υij
k )− f(sk), (4)

where f(s
υij
k ) and f(sk) are the fitnesses of the child and parent solutions respectively.

The observed effect e(υij) is stochastic, susceptible to noise and error. This is due to the
probabilistic behaviour of GAs, which produce different results for the same parameter
values. Hence, instead of using the fitness change to describe the effect of parameter values
(eq. 4), the parameter control strategy investigated in this work performs a stochastic
estimation of the effect parameter values. To this end, we employ the Kalman filter [37].

Kalman filter has successfully been used for tracking and data prediction problems.
It is implemented as a predictor-corrector estimator, which minimises the estimated error
covariance. The relationship between the parameter value effect at time t and the effect
at the previous iteration t − 1 is represented by an n × n matrix A. In this paper, we
assume A is constant over time. The optional control input u ∈ Rl is denoted using the
n × 1 matrix B. Finally, an m × n matrix H relates the state of the system (parameter
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effect) to measurement e′t. The filter estimates the state e ∈ Rn of a process (effect of a
parameter value) governed by a linear stochastic difference equation modelled as follows:

et = Aet−1 +But + wt−1, (5)

In our application of the Kalman filter, B is a zero matrix, since we do not have a control
input. Hence, eq. 6 can be simplified to

et = Aet−1 + wt−1, (6)

with a measured effect e′t ∈ Rm defined as

e′t = Het + vt. (7)

The random variables wt−1 and vt represent the process and measurement noise, as-
sumed to be normally distributed and independent of each other. If the noise is not
normally distributed, the Kalman filter tries to converge to correct estimations.

The Kalman filter model has previously been used to deal with aspects of uncertainty in
GAs. Stroud [53] used the Kalman formulation for stochastic problems, where the fitness
function is affected by nonstationary noisy environments. Other works have employed the
Kalman model in the context of particle swarm optimisation, such as the Kalman Swarm
algorithm [43], which uses the filter to update the position of particles. In this work, we
apply the Kalman model for estimating the effect of parameter values on the performance
of the algorithm, which to the best of our knowledge has not been previously investigated.

5.2. Kalman Filter Algorithm

The feedback control loop of the Kalman filter has two distinct sets of equations: time
update equations used in prediction and measurement update equations, necessary for
correction. The time update equations are

ê−t = Aêt−1 (8)

which projects the state ahead, and

P−t = APt−1A
T +Q, (9)

which projects the error covariance P ahead. Matrices A and B are the same as in eq. 6,
whereas Q is the process noise covariance matrix. The update equations are

Kt = P−t H
T (HP−t H

T +R)−1 (10)

êt = ê−t +Kt(e
′
t −Hê−t ) (11)

Pt = (I −KtH)P−t . (12)

Equation 10 calculates the Kalman gain Kt at time t, where R is the measured error
covariance. As R approaches zero, the gain K weights the residual more heavily. Equa-
tion 11 computes the a posteriori state êt from the measurement ê−t . Finally, equation 12
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estimates the a posteriori covariance matrix Pt. In the next time step, the a posteri-
ori estimates are used to predict the new a priori estimates. This process is performed
recursively.

Algorithm 1 Kalman filter-based adaptive genetic algorithm (KFGA).

1: procedure KFGA
2: input: f - fitness function
3: µ - population size
4: SC - stopping criterion
5: λ - number of children per generation
6: m̂, m̂r - mutation operator and mutation rate
7: ĉ, ĉr - crossover operator and crossover rate
8: output: st - evolved set of solutions
9: s0 ← GenerateRandomSolutions(µ)

10: t = 0
11: while !SC do
12: Evaluate(f, st)
13: parentst = SelectParents(ŝ, st)
14: childrent =Evolve(parentst, λ, m̂, m̂r, ĉ, ĉr)
15: st+1 = Replace(childrent, st, r̂, µ)
16: AdaptiveParameterControl(λ, m̂, m̂r, ĉ, ĉr, t)
17: t = t+ 1
18: end while
19: return st
20: end procedure

21: procedure AdaptiveParameterControl
22: input: υi, ..., υn - set of parameters to be adapted
23: t - time step
24: for all parameters υi, i ∈ n do
25: for all parameter values υij , j ∈ m do
26: et(υij) = KalmanFilter(υij , t)
27: end for
28: υij = ParameterValueSelection(et(υi1), ..., et(υim))
29: end for
30: end procedure

31: procedure KalmanFilter(υij , t)
32: input: υij - parameter value
33: t - time step
34: output: êt(υij) - effect of parameter value
35: ê−t (υij) = Aêt−1(υij) +Buk
36: P−t = APt−1A

T +Q
37: Kt = P−t H

T (HP−t H
T +R)−1

38: Pt = (I −KtH)P−t
39: êt(υij) = ê−t (υij) +Kt(e

′
t(υij)−Hê−t (υij))

40: return êt(υij)
41: end procedure
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The main steps of the Kalman filter-based adaptive genetic algorithm are described
in algorithm 1. The optimisation process starts with a set of solutions (s0) as initial
population, which can be randomly generated, created by applying heuristic rules (e.g.
greedy algorithm), or provided by an expert. Line 9 in algorithm 1 describes this process.
Parameter µ is the number of solutions required for each generation. After the initial-
isation, EA evolves the population using crossover (ĉ), mutation (m̂) and selection (ŝ)
operators until a stopping criterion, defined as ‘SC’ in line 11 is satisfied. The crossover
and mutation operators are applied according to the predefined crossover and mutation
rates ĉr and m̂r. These operators are used to evolve solutions (line 14) that are selected
according to the selection procedure (line 13).

The offspring created by the genetic operators are added to the population of solutions.
The number of offspring generated every iteration is denoted as λ. The replacement
procedure r̂ selects the solutions that will survive in the next generation and removes
as many individuals as required to maintain the prescribed population size µ. Next, the
adaptive parameter control procedure is invoked to estimate the effect of parameter values
using a Kalman filter. The effect of parameter values is used to select the appropriate
values for the next iteration using a fitness proportionate selection strategy (line 28). The
selection strategy is described in algorithm 2.

Adaptive parameters are set for an iteration at a time, sampling the respective val-
ues probabilistically from the distribution obtained from the Kalman filter. A fitness-
proportionate selection mechanism is applied to choose the next parameter configurations,
described in algorithm 2. The predicted selection probabilities for values [1,m] of param-
eter υi are used to associate a probability of selection with each parameter configuration.
Initially, a vector of cumulative sums of selection probabilities is created (lines 5-8 in List-
ing 2). Then a random number is generated in the range [0, sum] (line 9) and matched
to the parameter value whose selection probability falls in the interval of the cumulative
sums (lines 10-14).

Algorithm 2 Parameter value selection.
1: procedure ParameterValueSelection
2: input: p(υi1), ..., p(υim) - selection probabilities of parameter values υi1, ..., υim
3: output: υij - parameter value to use in the next generation
4: sum = 0.0
5: for all j ← 1, m do
6: sum+ = p(υij)
7: cumulativeSumij = sum
8: end for
9: r = Random([0, sum])

10: for all j ← 1, m do
11: if r < cumulativeSumij then
12: return υij
13: end if
14: end for
15: end procedure

While candidate parameter values with a higher success rate will be less likely to
be eliminated, there remains a probability that they may be. With this kind of fitness
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proportionate selection, there is a chance that some weaker solutions may survive the
selection process; this is an advantage, as though a parameter value may be not as suc-
cessful, it may include some component which could prove useful in the following stages
of the search.

6. Experimental Evaluation

The new adaptive control method is applied to adjust the mutation and crossover
rate of a GA during the optimisation process2. The experiments were conducted using
EvoSuite [23], described in Section 3. The Kalman filter-based adaptive parameter control
was compared against pre-tuned parameter settings and probability matching technique
(PM) [34]. The three optimisation schemes were used to optimise the same set of problem
instances. A fixed number of computations was used as a stopping criterion. The problem
instances, experimental settings and results are described in the following sections.

6.1. Problem Instances

Table 1: The set of open source libraries and programs used to validate the adaptive genetic algorithm.
LOC represents the lines of code, |M | is the total number of methods, and |B| is the number of branches.

Project Version Website LOC |M | |B| |B|
|M |

DAWN V1.1.0 water-simulator.sourceforge.net 5,433 28 4 0.1

DsaChat V1.2.0 dsachat.sourceforge.net 2,807 950 3,224 3.4

GreenCow 2010-04-10 greencow.sourceforge.net 4 1 1 1.0

PetSoar 2013-03-08 petsoar.sourceforge.net 3,168 101 26 0.3

TulliBee 2012-09-23 sourceforge.net/projects/tullibee 3,708 154 840 5.5

A4j V1.0.1 a4j.sourceforge.net 2,826 307 390 1.3

Jwbf V3.0.0 jwbf.sourceforge.net 7,548 381 572 1.5

SaxPath V1.1.6 www.saxpath.org 1,919 150 578 3.9

Follow V1.7.4 follow.sourceforge.net 3,394 522 560 1.4

DvdHome V0.3.3 dvd-homevideo.sourceforge.net 2,289 78 114 1.5

Resources4J 2010-04-01 resources4j.sourceforge.net 938 14 154 11.0

DieBierse 2009-12-27 diebierse.sourceforge.net 1,647 116 160 1.4

Biff 2005-06-08 biff.sourceforge.net 1,753 3 12 0.7

JGaap 2007-09-05 jgaap.sourceforge.net 4,021 54 98 1.8

Heal 2002-08-02 heal.sourceforge.net 17,213 2,810 4,906 1.8

Lilith V0.9.44 lilith.huxhorn.de 54,060 748 2,258 30.5

Lotus 2007-12-07 lotus.sourceforge.net 681 69 62 0.9

To analyse the performance of the optimisation schemes, we selected 17 open source
libraries and programs depicted in Table 1. To avoid any bias towards selecting problem
instances that are in favour of the proposed method, the instances were selected uniformly
at random from SourceForge, and can be downloaded from the websites listed in the third
column. They vary in the number of methods, statements and branches. The smallest
problem is composed of 1 method and 1 branch (GreenCow), whereas the largest problem

2The source code of the GA with adaptive parameter control can be downloaded from http://users.

monash.edu.au/~aldeidaa/AdaptiveOptimisation.

11

water-simulator.sourceforge.net
dsachat.sourceforge.net
greencow.sourceforge.net
petsoar.sourceforge.net
sourceforge.net/projects/tullibee
a4j.sourceforge.net
jwbf.sourceforge.net
www.saxpath.org
follow.sourceforge.net
dvd-homevideo.sourceforge.net
resources4j.sourceforge.net
diebierse.sourceforge.net
biff.sourceforge.net
jgaap.sourceforge.net
heal.sourceforge.net
lilith.huxhorn.de
lotus.sourceforge.net
http://users.monash.edu.au/~aldeidaa/AdaptiveOptimisation
http://users.monash.edu.au/~aldeidaa/AdaptiveOptimisation


has 748 methods and 2258 branches (Lilith). The second column in Table 1 shows the
version or latest update of the programs used in the experiments.

Branch coverage is used as an indicator of the performance of the optimisation algo-
rithm. Branch coverage evaluates whether Boolean expressions tested in control struc-
tures (if-statement and while-statement) evaluate to both true and false. The number
of branches and their ratio to the number of methods in a problem instance affects this
metric, and is an indication of problem difficulty. Hence, we have selected a wide range
of problems with different number of branches and branch/method ratios, as depicted in
Table 1.

6.2. Experimental Settings

The crossover and mutation operators and their rates are probably the most prominent
control parameters to optimise in genetic algorithms [9]. Hence, for the benefit of the
experiments, the crossover and mutation rates were varied, with different value intervals
to sample from. Preliminary trials have shown that a cardinality of four intervals in
the range {[0.7, 0.775), [0.775, 0.85), [0.85, 0.925), [0.925, 1.0)} produced the best results
among several cardinalities with even spreads between 0.7 and 1 for crossover rate, and
four intervals in the range [0.001, 0.3] for mutation rate.

The parameter values for the pre-tuned GA are based on recommendation from Fraser
and Arcuri [23], many of which are ‘best practice’. The crossover rate is set to 0.75, the
rate of inserting a new test case is 0.1, whereas the rate for inserting a new statement is
0.5.

6.3. Benchmark Methods

The proposed method is compared against the probability matching technique (PM),
which is one of the most prominent techniques for adjusting GA parameters [34]. PM
calculates the selection probability for each parameter value at time step t as

pt(υij) =

{
w/(

∑m
r=1 qt(υir))

∑t−1
r=t−τ qr(υij) + (1− w)pt−1(υij) if

∑m
r=1 q(υis) > 0

w
m

+ (1− w)pt−1(υij) otherwise,
(13)

where m is the number of possible values for parameter υi, τ is the time window considered
to approximate the quality of a parameter value, and w ∈ (0, 1] is the weight given to
each parameter value.

Igel and Kreutz [34] introduce a minimum selection probability pmin for each parameter
value, to ensure that under-performing parameter values do not disappear during the
optimisation, since they may be beneficial in the later stages of the search. The selection
probability for each parameter value is calculated using eq. 14.

p′t(υij) = pmin + (1−mpmin)
pt(υij)∑m
r=1 pt(υir)

(14)

Dividing the selection probability by the sum of selection probabilities of all possible
parameter values normalises the values in the interval [0,1].
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6.4. Comparative Measure

To obtain a fair comparison, the generally accepted approach is the Mean of Solutions
Quality (MSQ), which allows the same number of function evaluations for each trial [47].
Therefore, for the current comparison, all trials were repeated 30 times for each optimi-
sation scheme, for 1, 000, 000 function evaluations, i.e. maximum number of statements
created. These values were decided after running the algorithm once for every problem
and choosing the value where the quality of the solutions seemed to not improve any fur-
ther. Nevertheless, there are indications that all algorithms still make small but steady
improvements after these numbers of evaluations. MSQ considers the stochastic nature
of GAs, which leads to different results for different runs, by expressing the performance
measure as the mean of the final quality of the solutions over a number of independent
runs. Altogether 30 independent runs are performed per optimisation scheme and test
problem in order to restrict the influence of random effects. A different initial popula-
tion is randomly created each time, and for each test problem all GAs operate on the
same 30 initial populations. The MSQ can always be used to measure the performance
of stochastic optimisers, since it does not require the optimal solutions. In order to check
for a statistical difference in the outperformance of the optimisation schemes, results are
validated using the Kolmogorov-Smirnov (KS) non-parametric test [45].

6.5. Analysis of Results

The results of the experiments are shown in Table 2, 3 and 4. For each problem
instance and optimisation scheme, we have recorded the test coverage as the percentage
of total goals covered, branch coverage as the percentage of branches covered, and the test
suite length. Total goals represent method and branch coverage. The most important
indicator of the performance of the optimisation algorithm is the branch coverage, since it
is the primary objective considered during the optimisation process. In the case of branch
and goal coverage, higher mean values indicate better performance, whereas for test suite
length lower values are more desirable.

Table 3 shows the mean, standard deviation and KS test values of branch coverage
over the 30 runs of the optimisation schemes and problems instances. It can be observed
that the Kalman filter-based Genetic algorithm (KFGA) has outperformed the standard
genetic algorithm (SGA) and the GA with probability matching parameter control (PM)
in the majority of the problem instances with respect to branch coverage. The difference
in results is more evident for larger problems, such as Heal (2810 methods, and 4906
branches), TulliBee (154 methods, and 840 branches), and DsaChat (950 methods, and
3224 branches).

In the case of GeenCow and Biff, all optimisation schemes find test suites with 100%
branch coverage. GeenCow is a very small problem, with 1 method and 1 branch. Biff, on
the other hand, is a slightly bigger problem, with 3 methods and 2 branches. However, it is
still relatively small compared to the other problems considered. A 100% branch coverage
ensures that all branches in terms of control flow are executed at least once. A high
branch coverage helps ensure correct functionality. In the larger problem instances, the
three optimisation schemes (KFGA, SGA and PM) do not achieve 100% branch coverage.
The larger the problem, the lower the branch coverage is, with DvdHomevideo having
the smallest value for branch coverage. Although, this assertion is not always true. For
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Table 2: The mean, standard deviation, and the KS-tests (d-values and p-values) of the 30 runs for branch
coverage in the open source libraries and programs when optimised with the Kalman filter-based genetic
algorithm (KFGA), the standard genetic algorithm (SGA) and the GA with the probability matching
technique (PM).

Problem Mean Standard deviation KS test

instance SGA KFGA PM SGA KFGA PM KFGA-SGA KFGA-PM

DAWN 76.3% 76.3% 76.3% 0.0% 0.0% 0.0% 1.00 1.00

DsaChat 56.4% 61.9% 57.3% 4.6% 13.6% 3.4% 0.03 0.00

GreenCow 100.0% 100.0% 100.0% 0.0% 0.0% 0.0% 1.00 1.00

PetSoar 83.4% 88.5% 87.7% 3.7% 0.9% 0.6% 0.00 0.03

TulliBee 74.5% 83.9% 82.8% 2.3% 1.4% 2.8% 0.00 0.00

A4j 85.9% 92.3% 88.4% 2.6% 0.8% 2.4% 0.00 0.01

Jwbf 67.5% 75.8% 72.0% 11.0% 0.3% 0.4% 0.00 0.00

SaxPath 84.4% 91.3% 80.8% 2.9% 1.8% 1.9% 0.01 0.00

Follow 42.2% 74.8% 70.0% 1.5% 1.2% 3.6% 0.00 0.01

DvdHome. 29.4% 38.3% 33.3% 2.1% 0.9% 3.8% 0.00 0.00

Resources. 44.9% 50.5% 45.0% 1.8% 4.6% 0.8% 0.00 0.00

DieBierse 24.8% 34.9% 26.1% 4.1% 0.4% 2.6% 0.03 0.04

Biff 100.0% 100.0% 100.0% 0.0% 0.0% 0.0% 1.00 1.00

JGaap 78.6% 84.8% 84.4% 6.0% 3.8% 2.4% 0.00 0.98

Heal 72.5% 84.3% 83.8% 4.2% 1.2% 3.0% 0.00 0.00

Lilith 34.7% 40.1% 30.8% 2.1% 3.1% 3.8% 0.00 0.00

Lotus 85.8% 86.8% 86.1% 0.4% 0.9% 0.6% 0.00 0.03

example, in the case of Heal, despite being a problem with a large number of branches,
branch coverage is relatively high for all optimisation schemes.

Certain branches are difficult to cover. Uncovered branches could be infeasible, such
as private methods not called in any of the public methods, dead code, and abstract
methods or methods of abstract classes that are overridden in all concrete subclasses.
In such cases, the branch coverage is less than 100%. Infeasible branches may be the
cause of infeasible coverage goals, for which no test data can be generated. Examples are
DvdHomevideo and DieBierse, which have the lowest branch coverage of all problems.

As our method outperforms the GA with pre-tuned parameter values and the prob-
ability matching technique in the majority of the problems, we employ the Kolmogorov-
Smirnov (KS) non-parametric test [45] to check for a statistical difference in the results.
The 30 branch coverage values of the repeated trials for each of the problem instances were
submitted to the KS analysis. KFGA was compared to the standard genetic algorithm
(KFGA-SGA) and the GA with probability matching technique (KFGA-PM), with a null
hypothesis of no significant difference in the performance. The results of the tests are
shown in Table 2. All KS tests, used for establishing that there is no difference between
independent datasets under the assumption that they are not normally distributed, re-
sulted in a rejection of the null hypothesis with a minimum d-value equal to 0.32 at a 95%
confidence level in most cases apart from the smaller problems, where both optimisation
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schemes found the optimal solution. Hence we conclude that the superior performance of
KFGA is statistically significant.

Results of the goal coverage (method and branch coverage) for all problem instances
and optimisation schemes are shown in Table 3. Similar to branch coverage, we record the
means and standard deviations of 30 runs of goal coverage for all methods, and perform a
KS analysis for statistical significance. It can be observed that in general the mean goal
coverage of KFGA is higher than the other methods. When solving small problems, such
as GreenCow and Biff, all methods find the same-quality solutions. KFGA is outperformed
by SGA in PetSoar. However, the KS analysis in this case shows that the difference in
the results is not statistically significant, with p equal to 0.11.

One interesting observation is the absence of test suites with 100% goal coverage. One
reason for this is the infeasibility of test goals [24], which is caused by infeasible test
branches or private methods. This affects the performance of the algorithm in such a way
that tuning or controlling parameter values does not have any effect on the goal coverage
criterion. Examples are the generation of test data for Resources4J, which results in very
low goal coverage (7.0%), and Lilith, which has a test suite of 14.4% goal coverage. Dead
code may create infeasible branches or unreachable methods, which results in infeasible
test goals. In this example, the KS analysis indicates no statistical significance in the
difference between the performance of the optimisation schemes.

Table 3: The means, standard deviations, and the KS-tests (d-value and p-value) for goal coverage of the
open source libraries and programs when optimised with the adaptive genetic algorithm (KFGA) and the
standard genetic algorithm (SGA).

Problem Mean Standard deviation KS test

instance SGA KFGA PM SGA KFGA PM KFGA-SGA KFGA-PM

DAWN 58.9% 66.9% 43.8 0.0% 0.0% 0.0% 1.00 1.00

DsaChat 26.1% 31.6% 23.8% 1.3% 15.4% 2.3% 0.03 0.00

GreenCow 75.0% 75.0% 75.0% 0.0% 0.0% 0.0% 1.00 1.00

PetSoar 28.4% 27.1% 25.9% 4.7% 5.1% 1.1% 0.11 0.11

TulliBee 34.2% 37.8% 29.6% 1.7% 1.1% 3.3% 0.00 0.00

A4j 46.5% 59.6% 42.1% 1.4% 1.6% 33.6% 0.00 0.05

Jwbf 25.4% 30.1% 26.7% 2.6% 2.6% 0.9% 0.00 0.00

SaxPath 33.7% 70.6% 38.9% 2.3% 2.1% 34.6% 0.01 0.02

Follow 17.7% 36.4% 31.45 0.5% 0.1% 3.3% 0.00 0.04

DvdHome. 19.4% 28.3% 24.4% 0.3% 0.1% 3.2% 0.00 0.01

Resources4J 6.0% 7.0% 6% 1.8% 0.9% 1.9% 0.00 0.68

DieBierse 24.8% 26.2% 12.9% 0.2% 0.1% 1.6% 0.03 0.01

Biff 77.8% 77.8% 77.8% 0.0% 0.0% 0.0% 1.00 1.00

JGaap 40.8% 47.3% 39.0% 10.8% 9.0% 2.2% 0.11 0.03

Heal 33.2% 56.9% 31.7% 1.2% 0.2% 2.8% 0.00 0.00

Lilith 8.7% 14.4% 12.9% 2.6% 1.7% 2.8% 0.00 0.00

Lotus 37.2% 40.8% 38.2% 5.6% 6.8% 1.1% 0.03 0.03
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The mean lengths of the test suites produced by the two optimisation schemes are
shown in Table 4. DvdHomevideo is a medium size problem instance. For this prob-
lem, the adaptive method has found a test suite which is much shorter in length (more
than 11 times shorter) than the test suite produced by the standard GA. In addition,
the KFGA optimisation scheme has achieved better branch coverage and goal coverage
compared to the SGA. The probability matching technique performs better than SGA,
but is outperformed by KFGA.

For small problems like DAWN (28 methods and 4 branches), Biff (3 methods and
2 branches), SGA and KFGA exhibit similar performance, producing test suites with
very similar length. The test suite produced by PM, however, is very large compared to
the other two method. In terms of the number of statements that were executed, which
indicates the efficiency of the algorithm, KFGA outperforms the other two optimisation
schemes. For Biff, KFGA has produced a shorter test suite (54 vs. 183 test cases),
whereas for Jwbf the test suite produced by SGA is shorter (160 vs. 217). These problem
instances are easy to solve, hence the parameter values do not affect the performance of
the algorithm greatly.

The adaptive method (KFGA) struggles to produce test suites with smaller length
than the ones found by SGA in certain problem instances, such as TulliBee (1652 vs.
1813) and Jwbf (160 vs. 217). It is clear that the adaptive algorithm has spent most of
the resources in maximising the branch coverage. In our experiments, the maximisation
of branch coverage and the minimisation of the test suite length are not performed simul-
taneously, which makes it a single-objective optimisation problem. We believe that by
converting the problem to multi-objective, and optimising branch coverage and test suite
length simultaneously, i.e. by considering the Pareto optimal solutions [44], the adaptive
optimisation algorithms will produce better results.

Each optimisation scheme was granted 1, 000, 000 function evaluations to solve each
of the problem instances. However, often the optimisation algorithms stopped earlier.
This can happen if a test case with 100% branch coverage is found before all function
evaluations are consumed. For an indication of the resources used by each optimisation
scheme, we recorded the average number of executed statements over 30 runs by each
optimisation scheme. Results are shown in Table 4.

It can clearly be observed that the PM and KFGA converge faster and use fewer
function evaluation than SGA. PM is faster than KFGA in some of the problems, however,
it fails to find solutions with better branch coverage, goal coverage and test suite length
compared to KFGA. The biggest difference in the number of statements executed is
observed for problem Biff, where KFGA is approximately 1493 times faster than SGA,
and 213 times faster than PM. Biff is one of the problem instances that were solved to
optimum by all three optimisation schemes. This means that if a test suite with 100%
branch coverage is feasible, KFGA is capable of finding it in fewer function evaluations that
SGA and PM. Furthermore, these results show that the proposed optimisation strategy
is efficient. KFGA is capable of adapting the strategy parameters of a GA to the problem
being solved, and as a results improving its performance in efficient time.

The rates of selecting the crossover and mutation probabilities over time are illustrated
in Figure 1 for one run of the problem instance Heal. A distinctive difference can be ob-
served between these two algorithm parameters. In the initial iterations, higher mutation
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Table 4: The mean test suite length, and the mean number of statements executed for each open source
library and program when optimised with the adaptive genetic algorithms (KFGA) and the standard
genetic algorithm (SGA).

Problem Length Number of statements

instance SGA KFGA PM SGA KFGA PM

DAWN 169 201 1,215 1,006,450 116,812 865,146

DsaChat 99 98 500 645,536 52,098 113,119

GreenCow 2 2 16 5,617 5,097 5,630

PetSoar 569 404 435 10,389,713 655,986 464,339

TulliBee 1,652 1,813 1,849 6,551,126 2,155,416 567.350

A4j 6,941 3,367 7,218 21,961,264 4,547,900 2,353,929

Jwbf 160 217 884 3,136,824 1,326,044 627,666

SaxPath 392 1,028 1,058 6,395,148 1,034,359 305,071

Follow 7,288 2,488 3,153 1,462,369 901,748 1,164,283

DvdHomeVideo 713 63 71 2,838,512 312,583 70,628

Resources4J 254 16 62 1,323,240 281,310 93,138

DieBierse 1,399 106 459 1,041,220 467,795 121,634

Biff 183 54 67 771,994 517 110,422

JGaap 799 330 610 7,855,304 1,066,733 342,959

Heal 20,128 14,096 15,160 52,695,245 71,317,028 7,864,123

Lilith 14,205 10,546 8,336 12,752,073 3,689,768 3,015,605

Lotus 3,246 3,491 24,596 7,397,925 659,535 2,629,219
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Figure 1: The development of selection rates for mutation rates in the ranges [0.151,0.226) and [0.226,0.3],
and crossover rate in the ranges [0.85,0.925) and [0.925,1.0].

rates and lower crossover rates are more successful. After a few iterations, KFGA iden-
tifies lower mutation rates in the range [0.151,0.226) as performing better. At the same
time, the probability of selecting higher crossover rates in the range [0.925,1.0] steadily
increases until iteration 115. After this point, lower crossover rates become again more
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successful than lower crossover rates. The selection probabilities of different ranges of mu-
tation rate, on the other hand, become almost equal towards the end of the optimisation
process. This means that the mutation operator is not discovering solutions with better
quality, despite the changes in the mutation rate. In the future, we will investigate the
relationship between the behaviour of different parameter values and the structure of the
search space of different problems instances.

7. Conclusion

We presented a Kalman filter-based genetic algorithm (KFGA) for solving the problem
of test case generation in software testing. The method uses a Kalman filter to reduce
the effect of the stochastic behaviour of GAs when estimating the appropriate parameter
values to use in each iteration of the optimisation process. KFGA was implemented
in EvoSuite, a framework for whole test suite generation. A set of experiments were
conducted using open-source libraries and programs with different characteristics, such as
number of methods, number of branches and number of testing goals. The performance of
the KFGA was compared to the performance of a standard GA with pre-tuned parameter
setting and a GA with probability matching parameter control. Results showed that the
adaptive method outperformed the standard GA and the probability matching method
over the majority of the problem instances.

In some cases, the difference in the performance of the algorithms was not statistically
significant. This usually happens either when problems are easy to solve by all optimisa-
tion schemes, so controlling parameter values does not have any benefit, or when branches
are infeasible, such that no method is able to find any solutions. In general, KFGA not
only performed better than the other method, but also used fewer function evaluations,
which reflects its efficiency in adapting the search strategy to the problem being solved. In
the future, the test suite generation problem will be converted to a multi-objective prob-
lem, where branch coverage and the length of the test suite will be modelled as conflicting
objectives and optimised simultaneously.
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