
Efficient Sensitivity Analysis of Reliability in Embedded
Software

Indika Meedeniya
Faculty of Information and

Communication Technologies,
Swinburne University of
Technology, Melbourne,

Australia
imeedeniya@swin.edu.au

Aldeida Aleti
Faculty of Information
Technology, Monash

University, Melbourne,
Australia

aldeida.aleti@monash.edu

I. Moser
Faculty of Information and

Communication Technologies,
Swinburne University of
Technology, Melbourne,

Australia
imoser@swin.edu.au

ABSTRACT
The reliability of software architectures is an important qual-
ity attribute to consider in the design of embedded software
systems. Reliability is especially important in safety-critical
systems where human health and safety is often at stake.
Researchers have developed a number of models that can
estimate the reliability of software systems at design time.
These models use matrix operations of considerable com-
plexity, such as matrix inversions. During the design process
of an embedded system as used by the automotive industry,
the reliability of a system has to be evaluated after each
change in the design. Such safety-critical systems are often
subjected to sensitivity analysis, where a single parameter is
changed numerous times to estimate its effect on the safety
of a system, with a subsequent re-evaluation of the system’s
reliability.

In this paper, we introduce an efficient sensitivity analysis
technique which does not require the complete re-evaluation
of the system reliability. The approach uses the ∆ Evalua-
tion technique, which computes the change in reliability of
the part of the system architecture which was affected by
a change. Results from experiments based on a real case-
study from the automotive industry indicate a significant
improvement in time of the proposed approach compared to
traditional sensitivity analysis methods.

Keywords
Sensitivity analysis, reliability, delta evaluation.

1. INTRODUCTION
Reliability is one of the crucial quality concerns in the

design of embedded software. Design-time reliability pre-
diction has to consider a great number of details related to
the hardware and software to be used as well as the commu-
nication and usage profile of the prospective system. Prob-
abilistic models have been developed to abstract relevant

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

aspects and to provide quantitative reliability metrics.
In software reliability prediction, Discrete Time Markov

Chain (DTMC) based models are a common formalisation
technique [20, 25]. Since its first introduction by Cheung [7],
this probabilistic model has been used in many different ar-
chitectural styles [43] and as the basis of hierarchical relia-
bility evaluations [21]. Goševa-Popstojonava et al. [25] illus-
trated the applicability of the model in various scenarios by
analysing the state-of-the-art in reliability evaluation. The
authors also discussed the usefulness of the model in un-
certainty analysis when the ‘method of moments’ [24] and
Monte Carlo simulation [23] are applied.

The design phase of embedded software systems gener-
ally comprises a sensitivity analysis, bottleneck identifica-
tion, exploration of design options and uncertainty analysis.
State-of-the-art techniques require then generation of relia-
bility models which have to be re-evaluated in their entirety
even when a small change is made to the model. This applies
in run-time architecture evaluations when a component or
the operational profile has been changed [14, 27].

Probabilistic model evaluation is a computation- and memory-
intensive process. Extensive re-evaluations of practical-sized
problems are often impossible due to complex matrix oper-
ations. Matrix inversions in DTMC based evaluations have
a complexity of O(n3). In such models, the time required to
evaluate an architecture increases significantly with the size
of the architectural model. Having to re-evaluate the entire
model with every change of the architecture is particularly
time-consuming in sensitivity analysis.

Sensitivity analysis investigates the relationship between
model parameters and architecture-based quality evaluation.
Sensitivity graphs are constructed to analyse the response
characteristics of a quality attribute of interest with respect
to possible variations of one or more parameters. The sen-
sitivity analysis techniques can help analyse the effects of
parameter uncertainties on specific quality attributes in de-
tail. Cheung [7] presented a method to obtain the sensi-
tivity of DTMC-based reliability evaluation model to com-
ponent reliabilities. This method is purely analytical, and
consists of 2nd and 3rd order partial derivatives of system
reliabilities which are hard to estimate in real cases. Goševa-
Popstajanova et al. [24] proposed using the method of mo-
ments to calculate the sensitivity of the system reliability to
component reliabilities and transition probabilities. In this
approach, variances and covariances of model parameters are
employed. A similar approach is proposed by Cortellessa et

al. [10], who analyse the sensitivity of system reliability on
failure propagation.

All of the above methods have taken an analytical ap-
proach to quantifying the sensitivity of system reliability.
Analytical sensitivity analysis methods are hard to gener-
alise, whereas the sensitivity models may be difficult to com-
pute in real case scenarios. Goševa-Popstojanova et al. [22]
have shown that analytical methods of uncertainty analysis
do not scale well. To address this issue, they proposed a
Monte Carlo simulation-based method, demonstrating that
it scales better than the previous approaches [22]. In the
safety evaluation domain, Förster et al. [18] have introduced
a similar approach to obtain the sensitivity of hazard prob-
abilities to the probability uncertainties of low level failure
events, which also applies Monte Carlo simulations to obtain
a probability distribution of the output hazard probability.

Monte Carlo simulation-based methods are more scalable
compared to analytical methods [22]. However, these meth-
ods require the re-evaluation of the quality attributes for ev-
ery sampled parameter value, which can be computationally
expensive. In this paper, we introduce a novel architecture-
based sensitivity analysis method for reliability, which takes
advantage of ∆ Evaluation [37]. Instead of re-evaluating
the entire system, ∆ Evaluation uses previous evaluation
results to compute the changed reliability by estimating the
impact of the architectural change on the overall system re-
liability. Only the changed part of the system ∆ has to be
re-evaluated and incorporated into the whole system relia-
bility. This incremental evaluation is achieved by applying
matrix operations from linear algebra.

In this paper, we integrate ∆ Evaluation into the sensi-
tivity analysis of software systems with respect to reliability
and investigate the efficiency and applicability of the ap-
proach. A significant computational advantage is obtained
using the new method, leveraging comprehensive reliability
analysis techniques into practice. We illustrate the approach
on a case study from the automotive industry.

2. STATE-OF-THE-ART IN RELIABILITY
EVALUATION

Many of the probabilistic models used in software archi-
tecture evaluation are mathematical abstractions of certain
aspects of the system which are relevant to an attribute of
interest. Some probabilistic properties can be quantified by
solving the model analytically. Probabilistic model check-
ing [31, 26, 15, 13, 11, 30] is one way of verifying proba-
bilistic properties from the system model. In cases where
the quality attributes are given as algebraic functions of ar-
chitectural parameters, the attributes can be computed by
analytical methods. Usually, probabilistic models are hard
to solve analytically. Model simulation techniques become
useful in obtaining the quality attributes from such models

The research in this paper complements existing simulation-
based reliability evaluation approaches [20, 25, 28] by intro-
ducing an efficient technique for re-evaluating software ar-
chitectures in the event of changes in the model parameters
or re-configurations. The approach extends the ∆ Evalua-
tion method introduced by Meedeniya and Grunske [37].

The majority of reliability evaluation methods [6, 10, 29,
38, 39] are based on Cheung’s model [7]. These studies focus
mainly on component-based systems where the architecture
is modelled using architecture description languages. Che-

ung’s model uses a first order partial derivative of system
reliability with respect to component reliability (i.e. ∂R

∂Ri
).

The method is purely analytical and consists of a number of
2nd and 3rd order partial derivatives of system reliabilities,
which are hard to estimate in real cases.

Cortellessa et al. [10] used Cheung’s model to consider
the effects of error propagation among components, whereas
Wang et al. [42, 43] presented the use of Cheung’s model for
reliability evaluation in different architectural styles. Gokhale
et al. [21] have used the model as the basis for their extension
to hierarchical reliability evaluation. Goševa-Popstojonava
et al. [25] illustrated extensive use of the model in their re-
liability evaluation survey.

These reliability evaluation methods provide only an indi-
cation of how the system reliability would change for a small
change in component reliability from its original prediction.
It does not produce the range of system reliability, which is
a common practical requirement. To address this problem,
Goševa-Popstojanova et al. [24] introduced the use of the
method of moments. The approach calculates the sensitivity
of a system’s reliability to component reliabilities and transi-
tion probabilities. This sensitivity analysis method can help
identify the most critical system components.

Coit et al. [44, 8] used the means and variances of the reli-
ability estimates of software components to derive the mean
and variance of the reliability of a redundancy allocation
analytically. With the assumption of normally distributed
input parameters, Finodella et al. [16] derived the distribu-
tion of system reliability from a multinomial distribution.
Coit et al. [9] presented an analytical approach to obtain
the lower bound of the reliability values in series-parallel
systems. A similar analytical approach can be seen in eval-
uation of reliability bounds [4].

The methods described above use an analytical approach
to quantifying the sensitivity, which limits their applica-
bility to analytically solvable models, which are hard to
generalise. All discussed approaches assume the parame-
ter distributions to be normal and variations to be charac-
terised by the mean and variance alone. To address this is-
sue, Gošva-Popstojanova et al. [22] investigated the use of a
combined analytical and simulation-based method for uncer-
tainty analysis, and confirmed that Monte-Carlo-simulation-
based methods scale better than the analysis using the method
of moments. One major drawback of the Monte Carlo simu-
lation based uncertainty analysis is that it requires the cre-
ation of a large number of sample variations of an architec-
ture from the probability distributions of parameters, which
can be very computationally expensive [3, 22, 32]. The reli-
ability models have to be re-evaluated for each variant.

3. DTMC-BASED RELIABILITY PREDIC-
TION

A Discrete Time Markov Chain (DTMC) is a tuple (S, P)
where S is a finite set of states, and P : S×S → [0, 1] is the
transition probability matrix. A DTMC is absorbing when
at least one of its states has no outgoing transition [41].

The program flow graph of a terminating application has
a single entry and a single exit node. A terminating applica-
tion is an application that operates on demand, and a single
run of software that corresponds to a terminating execution
can be clearly identified. This model can easily be extended
to support multiple initial nodes and multiple final states by

Emergency
Stop
Detector

1

Human
Machine
Interface

12
Distance
Calc

13

14

Speed
Calc

Object
Recogn-
ition

10

Speed
Limiter

8

Mode
Switch

9
ABS
Main
Unit

0

Load
Compen-
sator

3

5
WSR-F

6
WAC-R

7WAC-F

Brake
Pedal

2

4
WSR-R

ACC
Main
Unit

11

WAC : Wheel Actuator Controllers (Front and Rear)
WSR : Wheel Sensor Readers (Front and Rear)

Figure 1: Automotive composite system

introducing super-initial, super-final states [43]. The trans-
fer of control among modules can be described by an ab-
sorbing DTMC with transition probability matrix P = [pij],
where pij denotes the probability of jth module being called
after executing the ith module.

An assumption of Cheung’s model is that the components
fail independently. According to this model, the reliability
of component i is characterized by the probability Ri that
the component performs its function correctly, i.e., the com-
ponent produces the correct output and transfers control to
the next component without a failure.

Two absorbing states C and F are added, representing
the correct output and failure respectively. The transition
probability matrix P is modified to P̂ , which incorporates
these two states. The original transition probability pij be-
tween the components i and j is modified to Ripij , which
represents the probability that the module i produces the
correct result and the control is transferred to component
j. From the final (exit) state n, a directed edge to state
C is added with transition probability Rn to represent the
correct execution.

The failures of a component i are considered by creating
a directed edge to failure state F with transition probabil-
ity (1 − Ri). This process integrates the failure behaviour
of the components into the functional behaviour described
in the original control flow. Thus, a DTMC defined by the
transition probability matrix P̂ is considered as a compos-
ite model of the software system [21]. Figure 2 illustrates a
control flow graph of a software system and the correspond-
ing DTMC when the two states C and F are added. The
reliability of the system is the probability of reaching the
absorbing state C of the DTMC.

Let Q be the matrix obtained from P̂ by deleting rows
and columns corresponding to the absorbing states C and
F . Qk(1,n) represents the probability of reaching state n from
1 through k transitions. From initial state 1 to final state
n, the number of transitions k may vary from 0 to infinity.
It can be proved that the infinite summation converges as
follows [7]:

Figure 2: Control flow graph and corresponding DTMC for
Cheung’s model.

S = I +Q+Q2 +Q3 + ... =

∞∑
k=0

Qk = (I −Q)−1 (1)

The matrix S is called the fundamental matrix of the
DTMC, and S(i,j) represents the expected number of vis-
its to the state j starting from state i before it is absorbed.
Cheung [7] introduced an architecture based reliability pre-
diction method in which the reliability of the overall system
can be computed from S as follows:

Rs = S(1,n)Rn (2)

4. AUTOMOTIVE CASE STUDY
An embedded system from the automotive domain is used

as a case study for the demonstration of the approach, which
is described in the following sections. In the automotive do-

main, reliability is an important quality characteristic, be-
cause specific functions (e.g. brake assistance) are safety
critical. The case study we use in this section has been de-
signed based on already published models [19, 35] and rep-
resents a subsystem which implements an Anti-lock Brake
System (ABS) and Adaptive Cruise Control (ACC) func-
tionality. The components in the system refer to Electronic
Control Units (ECU)s, which are microprocessors with built-
in software. The system parameters required for the model,
such as the component failure rates [2] and the estimated
execution times per visit [17], have been chosen as closely to
a real system as possible given the exact information is not
in the public domain.

Anti-lock Brake System (ABS): ABS is currently used in
the majority of modern cars to minimise hazards associated
with skidding and loss of control due to locked wheels dur-
ing braking. Proper rotation during brake operations allows
better manoeuvrability and decreases the speed more effec-
tively.

Adaptive Cruise Control (ACC): Apart from the usual au-
tomatic cruise control functionality, the main aim of the
ACC is to avoid crashes by reducing speed once a slower
vehicle is detected ahead.

The main components used by the composite system and
their interaction diagram are presented in Figure 1. The
ABS Main Unit is the major decision-making component
regarding the braking levels of individual wheels, while the
Load Compensator unit assists with computing adjustment
factors from the wheel load sensor inputs. Components 4
and 5 represent the components that communicate with
wheel sensors, whereas components 7 and 8 represent the
electronic control units that control the brake actuators.
Brake Pedal is the component that reads from the pedal
sensor and sends the data to the Emergency Stop Detection
unit.

Execution initialisation is possible at the components that
communicate with the sensors and user inputs. In this case
study the Wheel Sensors, Speed Limiter, Object Recognition,
Mode Switch and Brake Pedal components contribute to the
triggering of the service. The data from the sensors is pro-
cessed by a number of components in the system and triggers
are generated for the actuators like Brake Actuators and
Human Machine Interface. The software components are
characterised by three externally observable parameters:

(a) Failure Rate (λc), the failure intensity of the exponen-
tial distribution of failure behaviour of a component [40].
Component failures in the model are assumed independent.
(b) Estimated Time per Visit (tc), the estimated time taken
by component execution within a single visit of the compo-
nent measured in milliseconds (ms).
(c) Execution Initiation Probability (q0), the probability of
the program execution starting at this component.

The interaction between two components Ci and Cj have
the following observable characteristics:

(a) Failure Rate (λl), the failure intensity of the exponen-
tial distribution of failure behaviour of a communication link
between two components, assumed independent for different
links and given per time unit.
(b) Transfer time for a link per visit (tl), the communication
time between two components measured in a model with no
redundancy, given in time units (ms).
(c) Next-step probability (p), the probability that a service

Comp ID q0 λc tc
ID (ms)

0 0 4 · 10−6 33

1 0 6 · 10−6 30

2 0.01 5 · 10−6 10

3 0 8 · 10−6 33

4 0.17 8 · 10−6 10

5 0.17 8 · 10−6 10

6 0.17 8 · 10−6 10

7 0.17 8 · 10−6 10

8 0.01 5 · 10−6 20

9 0 5 · 10−6 20

10 0 5 · 10−6 33

11 0 4 · 10−6 28

12 0 7 · 10−6 28

13 0.15 3 · 10−6 33

14 0.15 3 · 10−6 33

Table 1: Probabilities of a process starting at a given compo-
nent, component failure rates and estimated execution time.

calls component Cj after component Ci. Parameters of the

Trans Prob. λl tl
ci → cj p(ci, cj)

0→ 7 0.5 4 · 10−5 40

0→ 6 0.5 5 · 10−5 40

1→ 3 1 6 · 10−5 10

2→ 1 0.75 5 · 10−5 30

3→ 0 1 4 · 10−5 30

4→ 0 0.7 4 · 10−5 30

4→ 3 0.3 5 · 10−5 30

5→ 0 0.7 3 · 10−5 30

5→ 3 0.3 5 · 10−5 40

2→ 9 0.25 6 · 10−5 40

8→ 9 0.6 8 · 10−5 30

8→ 10 0.4 12 · 10−5 30

9→ 0 0.2 4 · 10−5 10

9→ 11 0.4 5 · 10−5 10

9→ 12 0.6 5 · 10−5 10

10→ 9 1 6 · 10−5 20

11→ 12 1 8 · 10−5 20

13→ 10 0.5 10 · 10−5 40

13→ 11 0.5 12 · 10−5 40

14→ 10 0.5 4 · 10−5 40

14→ 11 0.5 5 · 10−5 40

Table 2: Probabilities of communication between compo-
nents, duration and failure rates of communication.

elements of the considered system, and probabilities of trans-
ferring execution from one component to another are illus-
trated in Table 2.

5. EFFICIENT RELIABILITY ANALYSIS
In order to obtain quantitative metrics on the reliabil-

ity of a software-intensive system, an appropriate reliability
model has to be constructed. Several aspects of the sys-

tem such as execution model, usage behaviour and failure
characteristics have to be captured to assess the degree of
reliability. Markov models are a powerful technique for the
analysis of complex probabilistic systems based on the no-
tion of states and transitions between states. They provide a
comprehensive reliability modelling technique with the abil-
ity to include both structural and behavioural abstraction
of a software system.

5.1 Reliability Model Construction
In this work, we assume a DTMC-based reliability model

which has been widely-accepted in the field. We consider two
types of possible failures in the reliability evaluation [36].

Execution failures: Components are considered as self-
contained micro-computers with the software to fulfil a spe-
cific functionality. Failures may occur during the execution
of a process in a software component. This type of failure is
expressed in the failure rate values.

Communication failures: A failure of a data communica-
tion bus at a time when a software component communicates
with another over the bus leads to a failure of the service
that depends on this communication.

Figure 3 shows the DTMC for the case study described
in Section 4. The digits in the node labels point to the cor-
responding nodes in Figure 1. Single digit nodes represent
execution of a software component, and nodes labelled li,j
denote the communications between software components.
A super-initial node [43] has been added to represent the
start of the software execution, and arcs originating at the
node have been annotated with relevant execution initializa-
tion probabilities(q0). Two new absorbing states C and F
have been added, representing the correct output and failure
states respectively.

Failures during execution are mapped to arcs from each
execution node ci to F state with a probability (1 − Ri)
and communication failures are mapped to arcs from each
communication node lij to F with a probability (1 − Rij),
where Ri, Rij represent component reliability and execution
link reliability respectively. Note that only a few of these
failure transitions have been added for the clarity of the
figure.

The failure probabilities during the execution of a software
component (ci) can be obtained from it’s estimated failure
rate parameter and the execution time as follows:

Ri = e−λci
×tci (3)

A similar computation can be employed to establish the
reliability of the communication elements, which, in our
model, is characterised by the failure rates of the link, and
the time taken for inter-component communication. There-
fore, the reliability of the communication between compo-
nent ci and cj is defined according to Equation 4.

Rlij = e
−λlij

×tlij (4)

5.2 Incremental Reliability Evaluation
Many of the analyses needed at design-time require re-

evaluating the reliability model. For instance, Sensitivity
Analysis, which is widely used as a technique to determine
the impact of parameters on the behaviour of the composite
system. Parameter sweeps are most commonly applied for
this purpose and quality evaluations are necessary at each

change of parameter.
The relationship between architecture to probabilistic qual-

ity model maps architectural elements (e.g. software com-
ponents, interactions) to the elements of probabilistic model
(e.g. nodes, transition probabilities). When a change is
made to the architecture, the change is identified and prop-
agated without a complete reconstruction of the quality eval-
uation model.

The model evaluation process can be enhanced by ap-
plying the change through the model instead of a complete
model evaluation using ∆ Evaluation [33, 37]. With the
annotations in Figure 4 and using ⇒ to represent deriva-
tion, the approach can be formally defined as (A,∆A,M)⇒
∆M ⇒M ′ and (M,∆M,R)⇒ R′.

λ

C

A B

C’C

A B
∆A

∆M

∆R

λ′

’A

’M

’R

A

M

R

µ

Architecture
Model (A)

Reliability
Model (M)

Computation of the
Reliability Metric (R)

Figure 4: Outline of the proposed approach

5.3 ∆ Evaluation for Sensitivity Analysis
∆ Evaluation [33, 37] can be applied in the architecture-

based reliability evaluation by using it for the calculation
of the probability of reaching the correct execution com-
pletion state C in the DTMC-based model. Suppose the
transitions of the system have been changed and the change
is expressed by ∆Q such that the new matrix Q′ is Q′ =
Q+ ∆Q. The new system reliability is R′s = S′1,nRn, where
S′ = (I −Q′)−1.
The change matrix ∆Q can be expressed as a row vector r
and a column vector c such that ∆Q = cr.
With the notation of A = (I −Q) and B to denote the ma-
trix obtained by deleting the nth row and the 1st column
from A, A′ = A+ ∆A = A+ c′r′ where c′r′ = I − cr
Similarly, B′ = B + c′′r′′ where c′′, r′′ are obtained by re-
moving the nth row and the 1st column from c′r′.
Meedeniya et al.[33] have shown that,

S′1,n =
(−1)n+1|B′|
|A′| =

(−1)n+1|B|(1 + r′′B−1c′′)

|A|(1 + r′A−1c′)
(5)

= S1,n
1 + r′′B−1c′′

1 + r′A−1c′
(6)

The results obtained in above derivation can be general-
ized to any single element modification (δij) in the transition
matrix Q,

S′(1,n) = S(1,n)

1− δij ×B−1
(j−1,i)

1− δij ×A−1
(j,i)

(7)

In summary, if only one element of the transition matrix
is changed, the updated reliability can be obtained simply

4

5

0

31

2

6

7

8

q0(8)

q0(4)

q0(2)

q0(5)

p(8, 0) ·R8

R6

C

F

l8,0

l4,0

l4,3

l1,3

l5,3

l5,0

l3,0

l0,6

l0,7l2,1

p(4, 0) ·R4

p(2, 1) ·R2

p(5, 3) ·R5

p(5, 0) ·R5

p(1, 3) ·R1
p(3, 0) ·R3

p(0, 6) ·R6

p(0, 7) ·R0 R7

p(4, 3) ·R4

R8,0

R4,0

R4,3

R3,0

R1,3

R5,3

R2,1

R5,0

R0,7

R0,6

(1 −R6)(1 −R0,6)

(1 −R8,0)
(1 −R8)

(1 −R0)

S

Figure 3: Annotated DTMC for service reliability evaluation. Note that only a few of the possible failure transitions are
included in the diagram as an illustration. Similar arcs exist from each transient state to the final state F .

by computing Equation 7. If more than one element in one
row or column in the matrix is changed, Equation 6 is appli-
cable which requires a significantly less computation power
than the computation of (I − Q)−1. The next section fur-
ther illustrates the significance of the computational gain in
various analysis activities.

6. VALIDATION
The proposed sensitivity analysis of reliability using the

∆ Evaluation technique has been implemented within the
ArcheOpterix [1] framework, which is able to extract the
architecture specification of an embedded system to analyse
and optimise a variety of quality attributes. In order to
validate the computational advantage of the ∆ Evaluation
in reliability analysis, we have conducted a series of analyses
to compare the results obtained using:
• Full evaluation of the reliability model by Cheung [7]

after each change,
• ∆ Evaluation, and
• PRISM tool for reachability formulae evaluation.

6.1 Objectives of Reliability Analysis
A number of reliability-related aspects have to be analysed

during the design stage of automotive software. The most
relevant are:
• What is the predicted reliability of the automotive

software system for the given configuration?
• Which are the most sensitive software components that

affect the system’s reliability?
• What are the best architectures to add redundancy/improve

reliability?
• Which component contributes the most to the worst-

case reliability?

• How sensitive is the system reliability to behavioural
model estimation?

In this work, we show how the proposed method can help
in answering these questions quicker and with less compu-
tational effort.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

10-10 10-8 10-6 10-4 10-2 100 102

S
ys

te
m

 M
T

T
F

 (
 s

ec
on

ds
)

Failure Rate of Component 7 (h-1)

Figure 5: Sensitivity of MTTF with respect to failure rate
of component 7.

6.2 Scenario 1: Sensitivity Analysis with Re-
spect to the Failure Rate

Estimating the failure rate of software and hardware el-
ements is a difficult task, especially in embedded systems
where environment conditions may affect failures in the sys-
tem [5]. For example, the operating temperature of a hard-
ware host directly affect its failure rate [12]. Therefore, it is

important to analyse how the system reliability would vary
if the component failure rate changed. We conducted an
experiment to analyse the sensitivity of the mean time to
failure (MTTF) when the failure rate of the brake actuator
is changed (component ID 7 in Figure 1).

Figure 5 is a sensitivity graph, which depicts the variation
of system MTTF against a parameter sweep of the failure
rate for the range [10−9 − 102], i.e. sensitivity of the the
system MTTF to failure rate of component 7. For the pur-
pose of this experiment, only one parameter (failure rate of
component 7) was changed in 50 homogeneous steps across
the range [10−9−102] while all other parameters were fixed.
This change affects the changes in two probabilities in the
reliability model given in Figure 3: transitions 7→ SF , and
7→ F . Since the rows and columns corresponding to state
F are removed to obtain the modified matrix Q, only one
value is changed.

The sensitivity analysis is conducted by using the simpli-
fied formulae in Equation 6 instead of the complete model
evaluation. It can be observed that the system MTTF is
very sensitive to the failure rate of component 7. The im-
pact on MTTF is not significant when component 7’s failure
rate is below 10−7h−1 where as the MTTF drops rapidly
with increasing failure rate from about 10−7h−1.

103

104

105

106

107

108

109

1010

 0 5 10 15 20 25 30 35 40 45 50

E
va

lu
at

io
n

T
im

e
(

na
no

-s
ec

on
ds

)

Evaluation Step

Full Re-evaluation

Delta	 Evaluation

PRISM

Figure 6: The computation time for each evaluation step in
the analysis.

Figure 6 illustrates the computation time for each eval-
uation step in the sensitivity analysis experiment. It can
be observed that ∆ Evaluation usually takes less than 104

nanoseconds, whereas the complete model evaluation re-
quires more than 105 nanoseconds. The extremely high eval-
uation time arising from the PRISM evaluation compared to
the Cheung [7] model evaluation is largely explained by calls
to third party applications.

6.3 Scenario 2: Sensitivity Analysis with Re-
spect to Redundancy Allocation Parame-
ters

A diversity of identical or similar units (hardware or soft-
ware) are commonly employed in software-intensive systems
in order to to gain additional tolerance against faults. As
the redundant units have negative consequences such as ad-
ditional cost, impact on performance, additional weight and
higher energy consumption, the problem of finding appropri-

ate redundancy levels in the architecture design has gained
significant interest of the industry. For the illustration, we
conducted a set of experiments by changing the redundancy
levels of components in a hot-spare, homogeneous redun-
dancy configuration. In this configuration, the reliability of a
component cican be obtained from Raci = (1−(1−Ri)aci+1)
where acidenotes the redundancy level of component ci.
Meedeniya et al. [34] provided a detailed explanation of the
relationship between reliability and redundancy allocation.

 83200

 83400

 83600

 83800

 84000

 84200

 84400

 84600

 84800

 85000

 85200

 0 1 2 3 4

Sy
st

em
 M

TT
F

(s
ec

on
ds

)
Redundancy Level

Component 2

Component 13

Component 14

Figure 7: The variation of system reliability for different
redundancy levels of brake pedal sensor, distance calculator
and speed calculator.

Figure 7 depicts the variation of system reliability for dif-
ferent redundancy levels of brake pedal sensor, distance cal-
culator and speed calculator. It can be seen that component
14 produces the highest gain for redundancy level 1.

These values were obtained by evaluating the reliability
model for different redundancy levels. However, as changing
the redundancy level of a single component changes the reli-
ability of a logical component (Ri), this change only affects
the outgoing transition probabilities from the corresponding
node in DTMC model in Figure 3.

104

105

106

107

108

109

1010

 0 2 4 6 8 10 12 14 16

E
va

lu
at

io
n

T
im

e
(

na
no

-s
ec

on
ds

)

Evaluation Step

Full Re-evaluation

Delta	 Evaluation

PRISM

Figure 8: The computation time for each evaluation step in
the analysis.

Consequently, only one row in the transition matrix is af-
fected by a change, and equation 2 can be applied. Figure 8

illustrates the average computation times for each evaluation
model. It is evident that ∆ Evaluation requires significantly
less computation time compared to either full model evalu-
ation.

Table 3: The minimum, maximum, average, median and
standard deviation of the time in nanoseconds taken by the
three sensitivity analysis schemes.

Time Complete ∆ Eval. PRISM

Minimum 166,711 18,787 1,812,691,769

Average 1,957,982 75,070 1,870,216,668

Median 777,124 78,781 1,862,849,752

Maximum 18,462,611 135,981 1,970,328,002

Standard dev. 4,582,946 32,933 34,281,780

Table 3 shows the minimum, maximum, average, median
and standard deviation of the time taken by the three sen-
sitivity analysis schemes. The maximum evaluation time is
high for all three methods, although it is considerably lower
for the ∆ Evaluation technique. The first time the model is
evaluated the ∆ methods has to perform a complete eval-
uation, hence the high computation time. The subsequent
evaluations are very efficient, since only part of the model
is re-evaluated. This is evidence by the very low minimum
computational time for ∆ Evaluation.

6.4 Scenario 3: Sensitivity Analysis with Re-
spect to Behaviour of Model Parameters

One key advantage of Markov Chain-based reliability mod-
els is that they are capable of combining many reliability
related aspects of the system, including systems execution
behaviour, usage profile and failure characteristics. At the
design phase of an embedded system, it is important to anal-
yse how the system’s reliability would vary according to var-
ious user profiles. Considering this analysis requirement, we
conducted a sensitivity analysis experiment with respect to
a set of user behaviour parameters.

For illustration, we will consider the estimated call proba-
bilities of break pedal sensor component. The original ratio
given in Table 2 is varied in the range [0,1]. Figure 9 presents
the values of system reliability (MTTF) for different param-
eter values.

For the purpose of this experiment, only two transition
probabilities were changed in the reliability model: 2 → 1
and 2 → 9. The new ∆ Evaluation formula described in
Equation 7 was applied and compared to the process of re-
evaluating the whole model for each parameter value.

Similar to the other two scenarios, Figure 10 presents con-
siderably lower computation time for each change in compar-
ison to conventional model evaluation. Table 4 summarises
the results. Similar to the previous scenario, the compu-
tational time of the ∆ Evaluation technique is high for the
first evaluation of the system reliability, hence the high max-
imum value, and very low for the subsequent re-evaluations
of the system.

7. THREATS TO VALIDITY
The results presented in the paper may be affected by

the implementation of the approach, which may be erro-
neous or biased towards favourable results. To avoid this,

 83420

 83430

 83440

 83450

 83460

 83470

 83480

 83490

 83500

 83510

 83520

 83530

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sy
st

em
 M

TT
F

(s
ec

on
ds

)

Probability P1

Figure 9: System reliability (MTTF) change for different
parameter values.

104

105

106

107

108

109

1010

 1 2 3 4 5 6 7 8 9 10

E
va

lu
at

io
n

T
im

e
(

na
no

-s
ec

on
ds

)

Evaluation Step

Full Re-evaluation

Delta	 Evaluation

PRISM

Figure 10: The computation time for each evaluation step
in the analysis.

Table 4: The minimum, maximum, average, median and
standard deviation of the time in nanoseconds taken by the
three sensitivity analysis schemes.

Time Complete ∆ Eval. PRISM

Minimum 240,952 76,965 1,854,119,309

Average 2,020,277 94,942 1,909,975,390

Median 678,962 81,470 1,889,220,665

Maximum 13,841,141 184,731 2,062,513,326

Standard dev. 4,185,132 34,181 63,140,203

we have consulted experienced programmers and followed
regular code-review sessions in several occasions. Due mea-
sures were taken to cross check the implementation and the
conceptual design. By taking these precautions, we have
minimised the possibility of having erroneous or misleading
results in the experiments.

Another threat to validity of the results is that the ap-
plicability of the contribution may be limited to a specific
scenario. To reduce the risk, three distinct scenarios were
created, which consider very different aspects of sensitivity

analysis.

8. CONCLUSION AND FUTURE WORK
Models for reliability evaluation are computationally ex-

pensive due to the complex matrix operations involved. The
time-consuming aspect of model calculations is especially
crucial in sensitivity analysis, where several values of model
parameters have to be analysed. The reliability of the sys-
tem has to be re-evaluated for every small change made to
the architecture or the parameters of the model. The ap-
proach introduced in this paper helps reduce the computa-
tional complexity of sensitivity analysis by using ∆ Evalu-
ation, which builds on previous evaluation results by evalu-
ating a change in the architecture to estimate its reliability
rather than re-evaluating the architecture in its entirety. Ex-
periments on a practical demonstrate significant economies
in computation time compared to state-of-the-art sensitivity
analysis methods. In the future, we would like to extend the
approach to analyse the sensitivity of reliability with respect
to other design aspects, such as component deployment.

9. REFERENCES
[1] Aldeida Aleti, Stefan Björnander, Lars Grunske, and

Indika Meedeniya. Archeopterix: An extendable tool
for architecture optimization of AADL models. In
ICSE 2009 Workshop on Model-Based Methodologies
for Pervasive and Embedded Software, MOMPES
2009, pages 61–71. IEEE Computer Society, 2009.

[2] Ismail Assayad, Alain Girault, and Hamoudi Kalla. A
bi-criteria scheduling heuristic for distributed
embedded systems under reliability and real-time
constraints. In Dependable Systems and Networks
(DSN’04), pages 347–356. IEEE Computer Society,
2004.

[3] Hans-Georg Beyer and Bernhard Sendhoff. Robust
optimization - a comprehensive survey. Computer
Methods in Applied Mechanics and Eng.,
196(33-34):3190 – 3218, 2007.

[4] A. K. Bhunia, L. Sahoo, and D. Roy. Reliability
stochastic optimization for a series system with
interval component reliability via genetic algorithm.
Applied Mathematics and Computation,
216(3):929–939, 2010.

[5] Alessandro Birolini. Reliability Engineering: Theory
and Practice, Fourth Edition. Springer-Verlag, 6th
edition edition, 2010.

[6] Franz Brosch and Barbora Zimmerova. Design-Time
Reliability Prediction for Software Systems. In
Proceedings of the International Workshop on
Software Quality and Maintainability (SQM’09), pages
70–74, 2009.

[7] Roger C. Cheung. A user-oriented software reliability
model. IEEE Transactions on Software Engineering,
6(2):118–125, 1980.

[8] David W. Coit, Tongdan Jin, and Naruemon
Wattanapongsakorn. System optimization with
component reliability estimation uncertainty: a
multi-criteria approach. IEEE Transactions on
Reliability, 53(3):369–380, 2004.

[9] David W. Coit and Alice E. Smith. Genetic algorithm
to maximize a lower-bound for system time-to-failure
with uncertain component weibull parameters.

Computers & Industrial Engineering, 41(4):423 – 440,
2002.

[10] Vittorio Cortellessa and Vincenzo Grassi. A modeling
approach to analyze the impact of error propagation
on reliability of component-based systems. In
Component-Based Software Engineering CBSE’07,
volume 4608, pages 140–156, 2007.

[11] Conrado Daws. Symbolic and parametric model
checking of discrete-time markov chains. In Theoretical
Aspects of Computing (ICTAC’04), volume 3407 of
LNCS, pages 280–294. Springer Berlin / Heidelberg,
2004.

[12] Department of Defense. MIL-HDBK-217,Military
Handbook, Reliability Prediction of Electronic
Equipment. Department of Defense, United States of
America, 1990.

[13] Matthew B. Dwyer, John Hatcliff, Robby Robby,
Corina S. Pasareanu, and Willem Visser. Formal
software analysis emerging trends in software model
checking. In Future of Software Engineering
(FOSE’07), pages 120–136. IEEE Computer Society,
2007.

[14] Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and
Giordano Tamburrelli. Model evolution by run-time
parameter adaptation. In International Conference on
Software Engineering (ICSE’09), pages 111–121. IEEE
Computer Society, 2009.

[15] Antonio Filieri, Carlo Ghezzi, and Giordano
Tamburrelli. Run-time efficient probabilistic model
checking. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE 2011,
Waikiki, Honolulu, HI, USA, May 21-28, 2011, pages
341–350. ACM, 2011.

[16] Lance Fiondella and Swapna S. Gokhale. Software
reliability with architectural uncertainties. In IEEE
International Symposium on Parallel and Distributed
Processing, pages 1–5. IEEE Computer Society, 2008.

[17] Bastian Florentz and Michaela Huhn. Embedded
systems architecture: Evaluation and analysis. In
QoSA:Quality of Software Architectures, Second
International Conference on Quality of Software
Architectures, (QoSA’06), volume 4214, pages
145–162. Springer, 2006.

[18] Marc Förster and Mario Trapp. Fault tree analysis of
software-controlled component systems based on
second-order probabilities. In ISSRE ’09, pages
146–154. IEEE Computer Society, 2009.

[19] Johan Fredriksson, Thomas Nolte, Mikael Nolin, and
Heinz Schmidt. Contract-based reusable worst-case
execution time estimate. In The International
Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), pages 39–46,
2007.

[20] Swapna S. Gokhale. Architecture-based software
reliability analysis: Overview and limitations. IEEE
Transactions Dependable and Secure Computing,
4(1):32–40, 2007.

[21] Swapna S. Gokhale and Kishor S. Trivedi. Reliability
prediction and sensitivity analysis based on software
architecture. In International Symposium of Software
Reliability Engineering (ISSRE’02), pages 64–78.
IEEE Computer Society, 2002.

[22] Katerina Goševa-Popstojanova, Margaret Hamill, and
Xuan Wang. Adequacy, accuracy, scalability, and
uncertainty of architecture-based software reliability:
Lessons learned from large empirical case studies. In
International Symposium of Software Reliability
Engineering (ISSRE’06), pages 197–203. IEEE
Computer Society, 2006.

[23] Katerina Goševa-Popstojanova and Sunil Kamavaram.
Assessing uncertainty in reliability of
component-based software systems. In ISSRE, pages
307–320. IEEE Computer Society, 2003.

[24] Katerina Goševa-Popstojanova and Sunil Kamavaram.
Software reliability estimation under uncertainty:
Generalization of the method of moments. In
High-Assurance Systems Engineering (HASE’04),
pages 209–218. IEEE Computer Society, 2004.

[25] Katerina Goševa-Popstojanova and Kishor S. Trivedi.
Architecture-based approach to reliability assessment
of software systems. Performance Evaluation,
45(2-3):179–204, 2001.

[26] Lars Grunske, Robert Colvin, and Kirsten Winter.
Probabilistic Model-Checking Support for FMEA. In
Proc. 4th International Conference on the
Quantitative Evaluation of Systems, QEST 07, pages
119–128. IEEE Computer Society, 2007.

[27] Lars Grunske and Pengcheng Zhang. Monitoring
probabilistic properties. In Proceedings of the 7th joint
meeting of the European Software Engineering
Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
FSE/ESEC 2009, pages 183–192. ACM, 2009.

[28] Anne Immonen and Eila Niemelä. Survey of reliability
and availability prediction methods from the
viewpoint of software architecture. Software and
System Modeling, 7(1):49–65, 2008.

[29] Heiko Koziolek and Franz Brosch. Parameter
dependencies for component reliability specifications.
In 6th International Workshop on Formal Engineering
approaches to Software Components and Architectures
(FESCA’09), volume 253 of Electronic Notes in
Theoretical Computer Science, pages 23 – 38. Elsevier,
2009.

[30] Marta Kwiatkowska, Gethin Norman, and David
Parker. Prism: Probabilistic symbolic model checker.
In Computer Performance Evaluation: Modelling
Techniques and Tools, volume 2324 of Lecture Notes in
Computer Science, pages 113–140. Springer Berlin /
Heidelberg, 2002.

[31] Marta Z. Kwiatkowska, Gethin Norman, and David
Parker. Probabilistic model checking in practice: case
studies with prism. SIGMETRICS Performance
Evaluation Review, 32(4):16–21, 2005.

[32] Marzio Marseguerra, Enrico Zio, and Luca Podofillini.
Multiobjective spare part allocation by means of
genetic algorithms and monte carlo simulation.
Reliability Engineering & System Safety, 87(3):325 –
335, 2005.

[33] Indika Meedeniya. An incremental methodology for
quantitative software architecture evaluation with
probabilistic models. In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering - Volume 2, ICSE 2010, Cape Town,

South Africa, 1-8 May 2010, pages 339–340. ACM,
2010.

[34] Indika Meedeniya, Aldeida Aleti, and Barbora
Bühnova. Redundancy allocation in automotive
systems using multi-objective optimisation. In
Symposium of Avionics/Automotive Systems
Engineering (SAASE’09), San Diego, CA, 2009.

[35] Indika Meedeniya, Barbora Buhnova, Aldeida Aleti,
and Lars Grunske. Architecture-driven reliability and
energy optimization for complex embedded systems.
In 6th International Conference on the Quality of
Software Architectures, QoSA 2010, volume 6093 of
Lecture Notes in Computer Science, pages 52–67.
Springer, 2010.

[36] Indika Meedeniya, Barbora Bühnova, Aldeida Aleti,
and Lars Grunske. Reliability-driven deployment
optimization for embedded systems. Journal of
Systems and Software, 84(5):835–846, 2011.

[37] Indika Meedeniya and Lars Grunske. An Efficient
Method for Architecture-Based Reliability Evaluation
for Evolving Systems with Changing Parameters. In
IEEE International Symposium on Software Reliability
Engineering (ISSRE’10), pages 229–238. IEEE, 2010.

[38] Ralf Reussner, Heinz W. Schmidt, and Iman
Poernomo. Reliability prediction for component-based
software architectures. Journal of Systems and
Software, 66(3):241–252, 2003.

[39] Vibhu Saujanya Sharma and Kishor S. Trivedi.
Quantifying software performance, reliability and
security: An architecture-based approach. Journal of
Systems and Software, 80(4):493–509, 2007.

[40] Sol M. Shatz, Jia-Ping Wang, and Masanori Goto.
Task allocation for maximizing reliability of
distributed computer systems. IEEE Trans.
Computers, 41(9):1156–1168, 1992.

[41] K.S. Trivedi. Probability & Statistics with Reliability,
Queuing and Computer Science Applications.
Wiley-India, 2009.

[42] Wen-Li Wang, Dai Pan, and Mei-Hwa Chen.
Architecture-based software reliability modeling.
Journal of Systems and Software, 79(1):132–146, 2006.

[43] Wen-Li Wang, Ye Wu, and Mei-Hwa Chen. An
architecture-based software reliability model. In
Pacific Rim International Symposium on Dependable
Computing (PRDC’99),, pages 143–150. IEEE
Computer Society, 1999.

[44] Naruemon Wattanapongskorn and David W. Coit.
Fault-tolerant embedded system design and
optimization considering reliability estimation
uncertainty. Reliability Engineering & System Safety,
92(4):395–407, 2007.

