Ergodic components of partially hyperbolic systems Andy Hammerlindl Monash University

June 2016

$$f_0(x, y, z) = (2x + y, x + y, z)$$

This product $f_0 = A \times id$ is defined on $\mathbb{T}^2 \times \mathbb{S}^1 = \mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$.

$$f_0(x, y, z) = (2x + y, x + y, z)$$

This product $f_0 = A \times id$ is defined on $\mathbb{T}^2 \times \mathbb{S}^1 = \mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$.

It preserves Lebesgue measure, but is not ergodic.

$$f_0(x, y, z) = (2x + y, x + y, z)$$

This product $f_0 = A \times id$ is defined on $\mathbb{T}^2 \times \mathbb{S}^1 = \mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$.

It preserves Lebesgue measure, but is not ergodic.

For instance any set of the form $\mathbb{T}^2 \times X$ is invariant

$$f_0(x, y, z) = (2x + y, x + y, z)$$

This product $f_0 = A \times id$ is defined on $\mathbb{T}^2 \times \mathbb{S}^1 = \mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$.

It preserves Lebesgue measure, but is not ergodic. For instance any set of the form $\mathbb{T}^2 \times X$ is invariant

However, "most" perturbations $f \sim f_0$ are ergodic.

$$f_0(x, y, z) = (2x + y, x + y, z)$$

This product $f_0 = A \times id$ is defined on $\mathbb{T}^2 \times \mathbb{S}^1 = \mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$.

It preserves Lebesgue measure, but is not ergodic. For instance any set of the form $\mathbb{T}^2 \times X$ is invariant

However, "most" perturbations $f \sim f_0$ are ergodic. Why? Partial hyperbolicity.

$$f_0(x, y, z) = (2x + y, x + y, z)$$

This product $f_0 = A \times id$ is defined on $\mathbb{T}^2 \times \mathbb{S}^1 = \mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$.

Partial Hyperbolicity: $f: M \rightarrow M$

Tf-invariant splitting $TM = E^{s} \oplus E^{c} \oplus E^{u}$

 $f_0(x, y, z) = (2x + y, x + y, z)$

This product $f_0 = A \times id$ is defined on $\mathbb{T}^2 \times \mathbb{S}^1 = \mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$.

Partial Hyperbolicity: $f: M \to M$ Tf-invariant splitting $TM = E^s \oplus E^c \oplus E^u$ E^s contracting, E^c dominated, E^u expanding. $\|Tfv^s\| < \|Tfv^c\| < \|Tfv^u\|$ and $\|Tfv^s\| < 1 < \|Tfv^u\|$ for unit vectors v^s , v^c , v^u .

 $f_0(x, y, z) = (2x + y, x + y, z)$

This product $f_0 = A \times id$ is defined on $\mathbb{T}^2 \times \mathbb{S}^1 = \mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$.

Partial Hyperbolicity: $f: M \to M$ Tf-invariant splitting $TM = E^s \oplus E^c \oplus E^u$ E^s contracting, E^c dominated, E^u expanding. $\|Tfv^s\| < \|Tfv^c\| < \|Tfv^u\|$ and $\|Tfv^s\| < 1 < \|Tfv^u\|$ for unit vectors v^s , v^c , v^u .

Pugh-Shub Conjecture 1

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2

Pugh-Shub Conjecture 3

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^s \oplus E^c \oplus E^u$

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^{s} \oplus E^{c} \oplus E^{u}$ There are foliations tangent to E^{u} and E^{s} . Accessibility:

•*Y*

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

• Y

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

• Y

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

 $TM = E^{s} \oplus E^{c} \oplus E^{u}$ There are foliations tangent to E^{u} and E^{s} . Accessibility:

Conjectures are true when $\dim(E^c) = 1$.

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Long history of related work by

Birkhoff, Hopf, Anosov, Sinai, Brin, Pesin, Grayson, Pugh, Shub, Burns, Dolgopyat,Wilkinson, Rodriguez-Hertz, Rodriguez-Hertz, Ures, Avila, Crovisier, and others. **Example system**: $f_0(x, y, z) = (2x + y, x + y, z)$ on \mathbb{T}^3 .

Example system: $f_0(x, y, z) = (2x + y, x + y, z)$ on \mathbb{T}^3 . Ergodicity is open and dense in a neighbourhood of f_0 .

Can we say exactly when ergodicity holds here? Yes.

(1) Rotate by a small rational $\theta \in \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ to get

 $f_{\theta}(x, y, z) = (2x + y, x + y, z + \theta).$

(1) Rotate by a small rational $\theta \in \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ to get

 $f_{\theta}(x, y, z) = (2x + y, x + y, z + \theta).$

(2) Perturb on a set of the form $\mathbb{T}^2 \times U$.

(1) Rotate by a small rational $\theta \in \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ to get

 $f_{\theta}(x, y, z) = (2x + y, x + y, z + \theta).$

- (2) Perturb on a set of the form $\mathbb{T}^2 \times U$.
- (3) Compose by a diffeo of the form $(x, y, z) \mapsto (\phi(x, y, z), z)$.

(1) Rotate by a small rational $\theta \in \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ to get

 $f_{\theta}(x, y, z) = (2x + y, x + y, z + \theta).$

- (2) Perturb on a set of the form $\mathbb{T}^2 \times U$.
- (3) Compose by a diffeo of the form $(x, y, z) \mapsto (\phi(x, y, z), z)$.
- (4) Conjugate by a map *h* to get

 $g = h^{-1} \circ f_0 \circ h$ where g is at least C^2 .

(1) Rotate by a small rational $\theta \in \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ to get

 $f_{\theta}(x, y, z) = (2x + y, x + y, z + \theta).$

- (2) Perturb on a set of the form $\mathbb{T}^2 \times U$.
- (3) Compose by a diffeo of the form $(x, y, z) \mapsto (\phi(x, y, z), z)$.
- (4) Conjugate by a map *h* to get

$$g = h^{-1} \circ f_0 \circ h$$
 where g is at least C^2 .

In some sense, these are the only ways to construct non-ergodic perturbations.

Ergodicity is open and dense in the space of partially hyperbolic systems with one-dimensional center E^c .

Ergodicity is open and dense in the space of partially hyperbolic systems with one-dimensional center E^c .

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?
Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Idea: generalize the previous example.

Consider the product $A \times id$ defined on $N \times \mathbb{S}^1$

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Idea: generalize the previous example.

Consider the product $A \times id$ defined on $N \times \mathbb{S}^1$

where *A* is an arbitrary Anosov diffeomorphism

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Idea: generalize the previous example.

Consider the product $A \times id$ defined on $N \times \mathbb{S}^1$

where *A* is an arbitrary Anosov diffeomorphism defined on a nilmanifold *N*.

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Idea: generalize the previous example.

Consider the product $A \times id$ defined on $N \times \mathbb{S}^1$

where A is an arbitrary Anosov diffeomorphism

defined on a nilmanifold *N*.

(One can think of *A* as a hyperbolic toral automorphism on $N = \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ for simplicity.)

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Idea: generalize the previous example.

Consider the product $A \times id$ defined on $N \times \mathbb{S}^1$

where A is an arbitrary Anosov diffeomorphism

defined on a nilmanifold *N*.

(One can think of *A* as a hyperbolic toral automorphism on $N = \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$ for simplicity.)

Also want to include suspensions of Anosov diffeomorphisms.

Suppose $A, B : N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.

Suppose $A, B : N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.

(One can think of *A*, *B* as toral automorphisms defined by commuting *n* by *n* matrices.)

Suppose $A, B : N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.

(One can think of *A*, *B* as toral automorphisms defined by commuting *n* by *n* matrices.) Then *A* and *B* define a diffeomorphism

$$f_{AB}: M_B \to M_B, \quad (\nu, t) \mapsto (A\nu, t)$$

on the manifold

$$M_B = \frac{N \times [0,1]}{(\nu,1)} \sim (B\nu,0),$$

Suppose $A, B : N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.

(One can think of *A*, *B* as toral automorphisms defined by commuting *n* by *n* matrices.) Then *A* and *B* define a diffeomorphism

$$f_{AB}: M_B \to M_B, \quad (\nu, t) \mapsto (A\nu, t)$$

on the manifold

$$M_B = \frac{N \times [0,1]}{(\nu,1)} \sim (B\nu,0),$$

For a product, $A \times id$ on $N \times S^1$, *B* is the identity.

Suppose $A, B : N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.

(One can think of *A*, *B* as toral automorphisms defined by commuting *n* by *n* matrices.) Then *A* and *B* define a diffeomorphism

$$f_{AB}: M_B \to M_B, \quad (\nu, t) \mapsto (A\nu, t)$$

on the manifold

$$M_B = \frac{N \times [0,1]}{(\nu,1)} \sim (B\nu,0),$$

For a product, $A \times id$ on $N \times S^1$, *B* is the identity. For a suspension, B = A.

Suppose $A, B : N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.

(One can think of *A*, *B* as toral automorphisms defined by commuting *n* by *n* matrices.) Then *A* and *B* define a diffeomorphism

$$f_{AB}: M_B \to M_B, \quad (\nu, t) \mapsto (A\nu, t)$$

on the manifold

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

More general examples exist. Say where *A*, *B* on $N = \mathbb{T}^3$ given by

$$\begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$

Suppose $A, B : N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.

(One can think of *A*, *B* as toral automorphisms defined by commuting *n* by *n* matrices.) Then *A* and *B* define a diffeomorphism

$$f_{AB}: M_B \to M_B, \quad (\nu, t) \mapsto (A\nu, t)$$

on the manifold

$$M_B = \frac{N \times [0,1]}{(\nu,1)} \sim (B\nu,0),$$

Note that every AB-prototype is a volume-preserving non-ergodic partially hyperbolic system.

$$M_B = \frac{N \times [0,1]}{(\nu,1)} \sim (B\nu,0),$$

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

As with the original example $f_0(x, y, z) = (2x + y, x + y, z)$, one can:

(1) Rotate by a rational θ to get $f_{\theta}(v, t) = (Av, t + \theta)$

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

- (1) Rotate by a rational θ to get $f_{\theta}(v, t) = (Av, t + \theta)$
- (2) Perturb on a set of the form $N \times U$.

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

- (1) Rotate by a rational θ to get $f_{\theta}(v, t) = (Av, t + \theta)$
- (2) Perturb on a set of the form $N \times U$.
- (3) Compose with $(v, t) \mapsto (\phi(v, t), t)$.

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

- (1) Rotate by a rational θ to get $f_{\theta}(v, t) = (Av, t + \theta)$
- (2) Perturb on a set of the form $N \times U$.
- (3) Compose with $(v, t) \mapsto (\phi(v, t), t)$.
- (4) Apply a conjugacy: $g = h^{-1} \circ f_0 \circ h$.

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

As with the original example $f_0(x, y, z) = (2x + y, x + y, z)$, one can:

- (1) Rotate by a rational θ to get $f_{\theta}(v, t) = (Av, t + \theta)$
- (2) Perturb on a set of the form $N \times U$.
- (3) Compose with $(v, t) \mapsto (\phi(v, t), t)$.
- (4) Apply a conjugacy: $g = h^{-1} \circ f_0 \circ h$.

These need to be included in our taxonomy.

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

Definition. $f: M \to M$ is an **AB-system** if it is partially hyperbolic and leaf conjugate to an AB-prototype.

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

Definition. $f: M \to M$ is an **AB-system** if it is partially hyperbolic and leaf conjugate to an AB-prototype.

That is, there is a foliation W_f^c tangent to E_f^c and a homeomorphism $h: M \to M_B$ such that

$$L \in W_f^c \Rightarrow h(L) \in W_{f_{AB}}^c \text{ and } f_{AB}h(L) = hf(L).$$

$$M_B = \frac{N \times [0,1]}{(v,1)} \sim (Bv,0),$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

Definition. $f: M \to M$ is an **AB-system** if it is partially hyperbolic and leaf conjugate to an AB-prototype.

That is, there is a foliation W_f^c tangent to E_f^c and a homeomorphism $h: M \to M_B$ such that

$$L \in W_f^c \Rightarrow h(L) \in W_{f_{AB}}^c \text{ and } f_{AB}h(L) = hf(L).$$

Leaf conjugacy is a technical but natural notion due to Hirsch-Pugh-Shub.

No.

No.

Have to consider finite iterates/covers.

No.

Have to consider finite iterates/covers.

Definition. f is an **infra-AB-system** if there is an iterate f^n ($n \ge 1$) which lifts to an AB-system on a finite cover.

No.

Have to consider finite iterates/covers.

Definition. f is an **infra-AB-system** if there is an iterate f^n ($n \ge 1$) which lifts to an AB-system on a finite cover.

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an *infra*-AB-system?

No.

Have to consider finite iterates/covers.

Definition. f is an **infra-AB-system** if there is an iterate f^n ($n \ge 1$) which lifts to an AB-system on a finite cover.

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an *infra*-AB-system?

Open question, so far as I know.

No.

Have to consider finite iterates/covers.

Definition. f is an **infra-AB-system** if there is an iterate f^n ($n \ge 1$) which lifts to an AB-system on a finite cover.

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an *infra*-AB-system?

Open question, so far as I know.

Further, we can classify the ergodic properties of AB-systems and infra-AB-systems completely.

Theorem (with R. Potrie). There are 3-dim'l manifolds where every partially hyperbolic system is an AB-system.

Theorem (with R. Potrie). There are 3-dim'l manifolds where every partially hyperbolic system is an AB-system.

Theorem. Suppose *f* is a volume-preserving partially hyperbolic skew product over a nilmanifold and dim $E^c = 1$.

If f is not ergodic, then it is an infra-AB-system.

Theorem (with R. Potrie). There are 3-dim'l manifolds where every partially hyperbolic system is an AB-system.

Theorem. Suppose *f* is a volume-preserving partially hyperbolic skew product over a nilmanifold and dim $E^c = 1$.

If f is not ergodic, then it is an infra-AB-system.

Theorem. Suppose *f* is leaf conjugate to the time-one map of an Anosov flow with dim $E^{uu} = 1$.

If f is not ergodic, then it is an AB-system.

Theorem. Suppose $f: M \to M$ is a C^2 conservative AB-system. Then, one of the following occurs.
• *f* is accessible and stably ergodic.

- f is accessible and stably ergodic.
- E^u and E^s are jointly integrable and f is topologically conjugate to $M_B \rightarrow M_B$, $(v, t) \mapsto (Av, t + \theta)$ for some θ .

- *f* is accessible and stably ergodic.
- E^u and E^s are jointly integrable and f is topologically conjugate to $M_B \rightarrow M_B$, $(v, t) \mapsto (Av, t + \theta)$ for some θ .
- There are $n \ge 1$, a C^1 surjection $p: M \to \mathbb{S}^1$,

and an open subset $U \subset \mathbb{S}^1$, such that

- *f* is accessible and stably ergodic.
- E^u and E^s are jointly integrable and f is topologically conjugate to $M_B \rightarrow M_B$, $(v, t) \mapsto (Av, t + \theta)$ for some θ .
- There are $n \ge 1$, a C^1 surjection $p: M \to \mathbb{S}^1$,

and an open subset $U \subset \mathbb{S}^1$, such that

• If $z \in \mathbb{S}^1 \setminus U$, then

 $p^{-1}(z)$ is an f^n -invariant submanifold tangent to $E^u \oplus E^s$.

- *f* is accessible and stably ergodic.
- E^u and E^s are jointly integrable and f is topologically conjugate to $M_B \rightarrow M_B$, $(v, t) \mapsto (Av, t + \theta)$ for some θ .
- There are $n \ge 1$, a C^1 surjection $p: M \to \mathbb{S}^1$,

and an open subset $U \subset \mathbb{S}^1$, such that

• If $z \in \mathbb{S}^1 \setminus U$, then

 $p^{-1}(z)$ is an f^n -invariant submanifold tangent to $E^u \oplus E^s$.

• If *I* is a connected component of *U* then $p^{-1}(I)$ is an ergodic component of f^n and is homeomorphic to $N \times I$.