Ergodic components
 of partially hyperbolic systems

Andy Hammerlindl
Monash University

June 2016

Example. The Cat Map times the identity map

$$
f_{0}(x, y, z)=(2 x+y, x+y, z)
$$

This product $f_{0}=A \times i d$ is defined on $\mathbb{T}^{2} \times \mathbb{S}^{1}=\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$.

Example. The Cat Map times the identity map

$$
f_{0}(x, y, z)=(2 x+y, x+y, z)
$$

This product $f_{0}=A \times i d$ is defined on $\mathbb{T}^{2} \times \mathbb{S}^{1}=\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$.

It preserves Lebesgue measure, but is not ergodic.

Example. The Cat Map times the identity map

$$
f_{0}(x, y, z)=(2 x+y, x+y, z)
$$

This product $f_{0}=A \times i d$ is defined on $\mathbb{T}^{2} \times \mathbb{S}^{1}=\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$.

It preserves Lebesgue measure, but is not ergodic.
For instance any set of the form $\mathbb{T}^{2} \times X$ is invariant

Example. The Cat Map times the identity map

$$
f_{0}(x, y, z)=(2 x+y, x+y, z)
$$

This product $f_{0}=A \times i d$ is defined on $\mathbb{T}^{2} \times \mathbb{S}^{1}=\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$.

It preserves Lebesgue measure, but is not ergodic.
For instance any set of the form $\mathbb{T}^{2} \times X$ is invariant

However, "most" perturbations $f \sim f_{0}$ are ergodic.

Example. The Cat Map times the identity map

$$
f_{0}(x, y, z)=(2 x+y, x+y, z)
$$

This product $f_{0}=A \times i d$ is defined on $\mathbb{T}^{2} \times \mathbb{S}^{1}=\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$.

It preserves Lebesgue measure, but is not ergodic.
For instance any set of the form $\mathbb{T}^{2} \times X$ is invariant

However, "most" perturbations $f \sim f_{0}$ are ergodic.
Why? Partial hyperbolicity.

Example. The Cat Map times the identity map

$$
f_{0}(x, y, z)=(2 x+y, x+y, z)
$$

This product $f_{0}=A \times i d$ is defined on $\mathbb{T}^{2} \times \mathbb{S}^{1}=\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$.

Partial Hyperbolicity: $f: M \rightarrow M$
$T f$-invariant splitting $T M=E^{s} \oplus E^{c} \oplus E^{u}$

Example. The Cat Map times the identity map

$$
f_{0}(x, y, z)=(2 x+y, x+y, z)
$$

This product $f_{0}=A \times i d$ is defined on $\mathbb{T}^{2} \times \mathbb{S}^{1}=\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$.

Partial Hyperbolicity: $f: M \rightarrow M$
$T f$-invariant splitting $T M=E^{s} \oplus E^{c} \oplus E^{u}$
E^{s} contracting, E^{c} dominated, E^{u} expanding.

$$
\left\|T f v^{s}\right\|<\left\|T f v^{c}\right\|<\left\|T f v^{u}\right\| \quad \text { and } \quad\left\|T f v^{s}\right\|<1<\left\|T f v^{u}\right\|
$$

for unit vectors v^{s}, v^{c}, v^{u}.

Example. The Cat Map times the identity map

$$
f_{0}(x, y, z)=(2 x+y, x+y, z)
$$

This product $f_{0}=A \times i d$ is defined on $\mathbb{T}^{2} \times \mathbb{S}^{1}=\mathbb{T}^{3}=\mathbb{R}^{3} / \mathbb{Z}^{3}$.

Partial Hyperbolicity: $f: M \rightarrow M$
$T f$-invariant splitting $T M=E^{s} \oplus E^{c} \oplus E^{u}$
E^{s} contracting, E^{c} dominated, E^{u} expanding.

$$
\left\|T f v^{s}\right\|<\left\|T f v^{c}\right\|<\left\|T f v^{u}\right\| \quad \text { and } \quad\left\|T f v^{s}\right\|<1<\left\|T f v^{u}\right\|
$$

for unit vectors v^{s}, v^{c}, v^{u}.

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2

Pugh-Shub Conjecture 3

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.
$T M=E^{s} \oplus E^{c} \oplus E^{u}$

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.
$T M=E^{s} \oplus E^{c} \oplus E^{u} \quad$ There are foliations tangent to E^{u} and E^{s}.

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.
$T M=E^{s} \oplus E^{c} \oplus E^{u} \quad$ There are foliations tangent to E^{u} and E^{s}.
Accessibility:

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.
$T M=E^{s} \oplus E^{c} \oplus E^{u} \quad$ There are foliations tangent to E^{u} and E^{s}.
Accessibility:

- y
- x

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.
$T M=E^{s} \oplus E^{c} \oplus E^{u} \quad$ There are foliations tangent to E^{u} and E^{s}.
Accessibility:

- y

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.
$T M=E^{s} \oplus E^{c} \oplus E^{u} \quad$ There are foliations tangent to E^{u} and E^{s}.
Accessibility:

- y

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.
$T M=E^{s} \oplus E^{c} \oplus E^{u} \quad$ There are foliations tangent to E^{u} and E^{s}.
Accessibility:

- y

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.
$T M=E^{s} \oplus E^{c} \oplus E^{u} \quad$ There are foliations tangent to E^{u} and E^{s}.
Accessibility:

- y

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.
$T M=E^{s} \oplus E^{c} \oplus E^{u} \quad$ There are foliations tangent to E^{u} and E^{s}.
Accessibility:

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.
$T M=E^{s} \oplus E^{c} \oplus E^{u} \quad$ There are foliations tangent to E^{u} and E^{s}.
Accessibility:

Conjectures are true when $\operatorname{dim}\left(E^{c}\right)=1$.

Among C^{2} partially hyperbolic diffeomorphisms preserving a smooth measure:
Pugh-Shub Conjecture 1 Ergodicity is open and dense.
Pugh-Shub Conjecture 2 Accessibility is open and dense.
Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Long history of related work by

Birkhoff, Hopf, Anosov, Sinai, Brin, Pesin, Grayson, Pugh, Shub, Burns, Dolgopyat,Wilkinson, Rodriguez-Hertz, Rodriguez-Hertz, Ures, Avila, Crovisier, and others.

Example system: $f_{0}(x, y, z)=(2 x+y, x+y, z)$ on \mathbb{T}^{3}.

Example system: $f_{0}(x, y, z)=(2 x+y, x+y, z)$ on \mathbb{T}^{3}.
Ergodicity is open and dense in a neighbourhood of f_{0}.
Can we say exactly when ergodicity holds here?

Example system: $f_{0}(x, y, z)=(2 x+y, x+y, z)$ on \mathbb{T}^{3}.
Ergodicity is open and dense in a neighbourhood of f_{0}.
Can we say exactly when ergodicity holds here? Yes.

Example system: $f_{0}(x, y, z)=(2 x+y, x+y, z)$ on \mathbb{T}^{3}.
Ergodicity is open and dense in a neighbourhood of f_{0}.
Can we say exactly when ergodicity holds here? Yes.
Four ways to perturb:

Example system: $f_{0}(x, y, z)=(2 x+y, x+y, z)$ on \mathbb{T}^{3}.
Ergodicity is open and dense in a neighbourhood of f_{0}.
Can we say exactly when ergodicity holds here? Yes.
Four ways to perturb:
(1) Rotate by a small rational $\theta \in \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$ to get

$$
f_{\theta}(x, y, z)=(2 x+y, x+y, z+\theta) .
$$

Example system: $f_{0}(x, y, z)=(2 x+y, x+y, z)$ on \mathbb{T}^{3}.
Ergodicity is open and dense in a neighbourhood of f_{0}.
Can we say exactly when ergodicity holds here? Yes.
Four ways to perturb:
(1) Rotate by a small rational $\theta \in \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$ to get

$$
f_{\theta}(x, y, z)=(2 x+y, x+y, z+\theta) .
$$

(2) Perturb on a set of the form $\mathbb{T}^{2} \times U$.

Example system: $f_{0}(x, y, z)=(2 x+y, x+y, z)$ on \mathbb{T}^{3}.
Ergodicity is open and dense in a neighbourhood of f_{0}.
Can we say exactly when ergodicity holds here? Yes.
Four ways to perturb:
(1) Rotate by a small rational $\theta \in \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$ to get

$$
f_{\theta}(x, y, z)=(2 x+y, x+y, z+\theta) .
$$

(2) Perturb on a set of the form $\mathbb{T}^{2} \times U$.
(3) Compose by a diffeo of the form $(x, y, z) \mapsto(\phi(x, y, z), z)$.

Example system: $f_{0}(x, y, z)=(2 x+y, x+y, z)$ on \mathbb{T}^{3}.
Ergodicity is open and dense in a neighbourhood of f_{0}.
Can we say exactly when ergodicity holds here? Yes.
Four ways to perturb:
(1) Rotate by a small rational $\theta \in \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$ to get

$$
f_{\theta}(x, y, z)=(2 x+y, x+y, z+\theta) .
$$

(2) Perturb on a set of the form $\mathbb{T}^{2} \times U$.
(3) Compose by a diffeo of the form $(x, y, z) \mapsto(\phi(x, y, z), z)$.
(4) Conjugate by a map h to get

$$
g=h^{-1} \circ f_{0} \circ h \text { where } g \text { is at least } C^{2} .
$$

Example system: $f_{0}(x, y, z)=(2 x+y, x+y, z)$ on \mathbb{T}^{3}.
Ergodicity is open and dense in a neighbourhood of f_{0}.
Can we say exactly when ergodicity holds here? Yes.
Four ways to perturb:
(1) Rotate by a small rational $\theta \in \mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$ to get

$$
f_{\theta}(x, y, z)=(2 x+y, x+y, z+\theta) .
$$

(2) Perturb on a set of the form $\mathbb{T}^{2} \times U$.
(3) Compose by a diffeo of the form $(x, y, z) \mapsto(\phi(x, y, z), z)$.
(4) Conjugate by a map h to get

$$
g=h^{-1} \circ f_{0} \circ h \text { where } g \text { is at least } C^{2} .
$$

In some sense, these are the only ways to construct non-ergodic perturbations.

Ergodicity is open and dense in the space of partially hyperbolic systems with one-dimensional center E^{c}.

Ergodicity is open and dense in the space of partially hyperbolic systems with one-dimensional center E^{c}.

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

Ergodicity is open and dense in the space of partially hyperbolic systems with one-dimensional center E^{c}.

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Ergodicity is open and dense in the space of partially hyperbolic systems with one-dimensional center E^{c}.

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Idea: generalize the previous example.
Consider the product $A \times i d$ defined on $N \times \mathbb{S}^{1}$

Ergodicity is open and dense in the space of partially hyperbolic systems with one-dimensional center E^{c}.

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Idea: generalize the previous example.
Consider the product $A \times i d$ defined on $N \times \mathbb{S}^{1}$
where A is an arbitrary Anosov diffeomorphism

Ergodicity is open and dense in the space of partially hyperbolic systems with one-dimensional center E^{c}.

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Idea: generalize the previous example.
Consider the product $A \times i d$ defined on $N \times \mathbb{S}^{1}$
where A is an arbitrary Anosov diffeomorphism
defined on a nilmanifold N.

Ergodicity is open and dense in the space of partially hyperbolic systems with one-dimensional center E^{c}.

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Idea: generalize the previous example.
Consider the product $A \times i d$ defined on $N \times \mathbb{S}^{1}$
where A is an arbitrary Anosov diffeomorphism
defined on a nilmanifold N.
(One can think of A as a hyperbolic toral automorphism on $N=\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$ for simplicity.)

Ergodicity is open and dense in the space of partially hyperbolic systems with one-dimensional center E^{c}.

Question. What are all of the non-ergodic partially hyperbolic systems with one-dimensional center?

I won't answer this question, but I'll give what could be an answer.

Idea: generalize the previous example.
Consider the product $A \times i d$ defined on $N \times \mathbb{S}^{1}$
where A is an arbitrary Anosov diffeomorphism
defined on a nilmanifold N.
(One can think of A as a hyperbolic toral automorphism on $N=\mathbb{T}^{d}=\mathbb{R}^{d} / \mathbb{Z}^{d}$ for simplicity.)

Also want to include suspensions of Anosov diffeomorphisms.

AB-prototypes

Suppose $A, B: N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.

AB-prototypes

Suppose $A, B: N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.
(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)

AB-prototypes

Suppose $A, B: N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.
(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)
Then A and B define a diffeomorphism

$$
f_{A B}: M_{B} \rightarrow M_{B}, \quad(v, t) \mapsto(A v, t)
$$

on the manifold

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

AB-prototypes

Suppose $A, B: N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.
(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)
Then A and B define a diffeomorphism

$$
f_{A B}: M_{B} \rightarrow M_{B}, \quad(v, t) \mapsto(A v, t)
$$

on the manifold

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

For a product, $A \times i d$ on $N \times \mathbb{S}^{1}, B$ is the identity.

AB-prototypes

Suppose $A, B: N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.
(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)
Then A and B define a diffeomorphism

$$
f_{A B}: M_{B} \rightarrow M_{B}, \quad(v, t) \mapsto(A v, t)
$$

on the manifold

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

For a product, $A \times i d$ on $N \times \mathbb{S}^{1}, B$ is the identity.
For a suspension, $B=A$.

AB-prototypes

Suppose $A, B: N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.
(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)
Then A and B define a diffeomorphism

$$
f_{A B}: M_{B} \rightarrow M_{B}, \quad(v, t) \mapsto(A v, t)
$$

on the manifold

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

More general examples exist. Say where A, B on $N=\mathbb{T}^{3}$ given by

$$
\left(\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{rrr}
2 & 0 & -1 \\
0 & 1 & 1 \\
-1 & 1 & 2
\end{array}\right) .
$$

AB-prototypes

Suppose $A, B: N \rightarrow N$ are commuting nilmanifold automorphisms and A is hyperbolic.
(One can think of A, B as toral automorphisms defined by commuting n by n matrices.)
Then A and B define a diffeomorphism

$$
f_{A B}: M_{B} \rightarrow M_{B}, \quad(v, t) \mapsto(A v, t)
$$

on the manifold

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

Note that every AB-prototype is a volume-preserving non-ergodic partially hyperbolic system.

AB-prototype: $f_{A B}(v, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

AB-prototype: $f_{A B}(\nu, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(\nu, 1) \sim(B v, 0),
$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

AB-prototype: $f_{A B}(v, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

As with the original example $f_{0}(x, y, z)=(2 x+y, x+y, z)$, one can:

AB-prototype: $f_{A B}(v, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

As with the original example $f_{0}(x, y, z)=(2 x+y, x+y, z)$, one can:
(1) Rotate by a rational θ to get $f_{\theta}(\nu, t)=(A v, t+\theta)$

AB-prototype: $f_{A B}(v, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

As with the original example $f_{0}(x, y, z)=(2 x+y, x+y, z)$, one can:
(1) Rotate by a rational θ to get $f_{\theta}(v, t)=(A v, t+\theta)$
(2) Perturb on a set of the form $N \times U$.

AB-prototype: $f_{A B}(v, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

As with the original example $f_{0}(x, y, z)=(2 x+y, x+y, z)$, one can:
(1) Rotate by a rational θ to get $f_{\theta}(v, t)=(A v, t+\theta)$
(2) Perturb on a set of the form $N \times U$.
(3) Compose with $(\nu, t) \mapsto(\phi(\nu, t), t))$.

AB-prototype: $f_{A B}(v, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

As with the original example $f_{0}(x, y, z)=(2 x+y, x+y, z)$, one can:
(1) Rotate by a rational θ to get $f_{\theta}(v, t)=(A v, t+\theta)$
(2) Perturb on a set of the form $N \times U$.
(3) Compose with $(\nu, t) \mapsto(\phi(\nu, t), t))$.
(4) Apply a conjugacy: $g=h^{-1} \circ f_{0} \circ h$.

AB-prototype: $f_{A B}(v, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

As with the original example $f_{0}(x, y, z)=(2 x+y, x+y, z)$, one can:
(1) Rotate by a rational θ to get $f_{\theta}(v, t)=(A v, t+\theta)$
(2) Perturb on a set of the form $N \times U$.
(3) Compose with $(\nu, t) \mapsto(\phi(\nu, t), t))$.
(4) Apply a conjugacy: $g=h^{-1} \circ f_{0} \circ h$.

These need to be included in our taxonomy.

AB-prototype: $f_{A B}(\nu, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(\nu, 1) \sim(B v, 0),
$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

AB-prototype: $f_{A B}(v, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

Definition. $f: M \rightarrow M$ is an AB-system if it is partially hyperbolic and leaf conjugate to an AB-prototype.

AB-prototype: $f_{A B}(v, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.

Definition. $f: M \rightarrow M$ is an AB-system if it is partially hyperbolic and leaf conjugate to an AB-prototype.
That is, there is a foliation W_{f}^{c} tangent to E_{f}^{c} and a homeomorphism $h: M \rightarrow M_{B}$ such that

$$
L \in W_{f}^{c} \Rightarrow h(L) \in W_{f_{A B}}^{c} \quad \text { and } \quad f_{A B} h(L)=h f(L)
$$

AB-prototype: $f_{A B}(v, t)=(A v, t)$ defined on

$$
M_{B}=N \times[0,1] /(v, 1) \sim(B v, 0),
$$

We want a large open family which includes every known non-ergodic example with one-dimensional center.
Definition. $f: M \rightarrow M$ is an AB-system if it is partially hyperbolic and leaf conjugate to an AB-prototype.

That is, there is a foliation W_{f}^{c} tangent to E_{f}^{c} and a homeomorphism $h: M \rightarrow M_{B}$ such that

$$
L \in W_{f}^{c} \Rightarrow h(L) \in W_{f_{A B}}^{c} \text { and } f_{A B} h(L)=h f(L)
$$

Leaf conjugacy is a technical but natural notion due to Hirsch-Pugh-Shub.

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an AB -system?

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an AB-system?

No.

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an AB-system?

No.
Have to consider finite iterates/covers.

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an AB-system?

No.
Have to consider finite iterates/covers.

Definition. f is an infra-AB-system if there is
an iterate $f^{n}(n \geq 1)$ which lifts to an AB-system on a finite cover.

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an AB-system?

No.
Have to consider finite iterates/covers.

Definition. f is an infra-AB-system if there is
an iterate $f^{n}(n \geq 1)$ which lifts to an AB-system on a finite cover.

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an infra-AB-system?

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an AB-system?

No.
Have to consider finite iterates/covers.

Definition. f is an infra-AB-system if there is
an iterate $f^{n}(n \geq 1)$ which lifts to an AB-system on a finite cover.

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an infra-AB-system?

Open question, so far as I know.

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an AB-system?

No.
Have to consider finite iterates/covers.

Definition. f is an infra-AB-system if there is
an iterate $f^{n}(n \geq 1)$ which lifts to an AB-system on a finite cover.

Question. Is every non-ergodic partially hyperbolic system with one-dimensional center necessarily an infra-AB-system?

Open question, so far as I know.

Further, we can classify the ergodic properties of AB-systems and infra-AB-systems completely.

Theorem (with R. Potrie). There are 3-dim'l manifolds where every partially hyperbolic system is an AB-system.

Theorem (with R. Potrie). There are 3-dim'l manifolds where every partially hyperbolic system is an AB-system.

Theorem. Suppose f is a volume-preserving partially hyperbolic skew product over a nilmanifold and $\operatorname{dim} E^{c}=1$.

If f is not ergodic, then it is an infra-AB-system.

Theorem (with R. Potrie). There are 3-dim'l manifolds where every partially hyperbolic system is an AB-system.

Theorem. Suppose f is a volume-preserving partially hyperbolic skew product over a nilmanifold and $\operatorname{dim} E^{c}=1$.

If f is not ergodic, then it is an infra-AB-system.

Theorem. Suppose f is leaf conjugate to the time-one map of an Anosov flow with $\operatorname{dim} E^{u u}=1$.
If f is not ergodic, then it is an AB -system.

Theorem. Suppose $f: M \rightarrow M$ is a C^{2} conservative AB-system. Then, one of the following occurs.

Theorem. Suppose $f: M \rightarrow M$ is a C^{2} conservative AB-system. Then, one of the following occurs.

- f is accessible and stably ergodic.

Theorem. Suppose $f: M \rightarrow M$ is a C^{2} conservative AB-system. Then, one of the following occurs.

- f is accessible and stably ergodic.
- E^{u} and E^{s} are jointly integrable and f is topologically conjugate to $M_{B} \rightarrow M_{B},(\nu, t) \mapsto(A v, t+\theta)$ for some θ.

Theorem. Suppose $f: M \rightarrow M$ is a C^{2} conservative AB-system. Then, one of the following occurs.

- f is accessible and stably ergodic.
- E^{u} and E^{s} are jointly integrable and f is topologically conjugate to $M_{B} \rightarrow M_{B},(\nu, t) \mapsto(A \nu, t+\theta)$ for some θ.
- There are $n \geq 1$, a C^{1} surjection $p: M \rightarrow \mathbb{S}^{1}$, and an open subset $U \subset \mathbb{S}^{1}$, such that

Theorem. Suppose $f: M \rightarrow M$ is a C^{2} conservative AB-system.
Then, one of the following occurs.

- f is accessible and stably ergodic.
- E^{u} and E^{s} are jointly integrable and f is topologically conjugate to $M_{B} \rightarrow M_{B},(\nu, t) \mapsto(A \nu, t+\theta)$ for some θ.
- There are $n \geq 1$, a C^{1} surjection $p: M \rightarrow \mathbb{S}^{1}$,
and an open subset $U \subset \mathbb{S}^{1}$, such that
- If $z \in \mathbb{S}^{1} \backslash U$, then
$p^{-1}(z)$ is an f^{n}-invariant submanifold tangent to $E^{u} \oplus E^{s}$.

Theorem. Suppose $f: M \rightarrow M$ is a C^{2} conservative AB-system.
Then, one of the following occurs.

- f is accessible and stably ergodic.
- E^{u} and E^{s} are jointly integrable and f is topologically conjugate to $M_{B} \rightarrow M_{B},(\nu, t) \mapsto(A \nu, t+\theta)$ for some θ.
- There are $n \geq 1$, a C^{1} surjection $p: M \rightarrow \mathbb{S}^{1}$, and an open subset $U \subset \mathbb{S}^{1}$, such that
- If $z \in \mathbb{S}^{1} \backslash U$, then
$p^{-1}(z)$ is an f^{n}-invariant submanifold tangent to $E^{u} \oplus E^{s}$.
- If I is a connected component of U then
$p^{-1}(I)$ is an ergodic component of f^{n} and is homeomorphic to $N \times I$.

