
Ergodic components

of partially hyperbolic systems

Andy Hammerlindl

Monash University

June 2016

1
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f0(x, y, z)= (2x + y, x + y, z)

This product f0 = A× i d is defined on T
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1 =T
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This product f0 = A× i d is defined on T
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1 =T
3 =R

3/Z3.

It preserves Lebesgue measure, but is not ergodic.

For instance any set of the form T
2×X is invariant

However, “most” perturbations f ∼ f0 are ergodic.
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Conjectures are true when dim(E c) = 1.
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Among C 2 partially hyperbolic diffeomorphisms preserving a

smooth measure:

Pugh-Shub Conjecture 1 Ergodicity is open and dense.

Pugh-Shub Conjecture 2 Accessibility is open and dense.

Pugh-Shub Conjecture 3 Accessibility implies ergodicity.

Long history of related work by

Birkhoff, Hopf, Anosov, Sinai, Brin, Pesin, Grayson, Pugh, Shub,

Burns, Dolgopyat,Wilkinson, Rodriguez-Hertz, Rodriguez-Hertz,

Ures, Avila, Crovisier, and others.
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3.

Ergodicity is open and dense in a neighbourhood of f0.

Can we say exactly when ergodicity holds here? Yes.

Four ways to perturb:

(1) Rotate by a small rational θ ∈S
1 =R/Z to get

fθ(x, y, z) = (2x + y, x + y, z +θ).

(2) Perturb on a set of the form T
2×U .

(3) Compose by a diffeo of the form (x, y, z) 7→ (φ(x, y, z), z).

(4) Conjugate by a map h to get

g = h−1 ◦ f0 ◦h where g is at least C 2.

In some sense, these are the only ways to construct non-ergodic

perturbations.
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Ergodicity is open and dense in the space of partially hyperbolic

systems with one-dimensional center E c .

Question. What are all of the non-ergodic partially hyperbolic

systems with one-dimensional center?

I won’t answer this question, but I’ll give what could be an

answer.

Idea: generalize the previous example.

Consider the product A× i d defined on N ×S
1

where A is an arbitrary Anosov diffeomorphism

defined on a nilmanifold N .

(One can think of A as a hyperbolic toral automorphism on N =T
d =R

d /Zd for

simplicity.)

Also want to include suspensions of Anosov diffeomorphisms.
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(One can think of A,B as toral automorphisms defined by commuting n by n matrices.)

Then A and B define a diffeomorphism

f AB : MB → MB , (v, t ) 7→ (Av, t )

on the manifold

MB =
N × [0,1]

(v,1) ∼ (B v,0),

For a product, A× i d on N ×S
1, B is the identity.

For a suspension, B = A.
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AB-prototypes

Suppose A,B : N → N are commuting nilmanifold

automorphisms and A is hyperbolic.

(One can think of A,B as toral automorphisms defined by commuting n by n matrices.)

Then A and B define a diffeomorphism

f AB : MB → MB , (v, t ) 7→ (Av, t )

on the manifold

MB =
N × [0,1]

(v,1) ∼ (B v,0),

More general examples exist. Say where A,B on N =T
3 given by







1 −1 0

−1 2 −1

0 −1 2






and







2 0 −1

0 1 1

−1 1 2






.
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AB-prototypes

Suppose A,B : N → N are commuting nilmanifold

automorphisms and A is hyperbolic.

(One can think of A,B as toral automorphisms defined by commuting n by n matrices.)

Then A and B define a diffeomorphism

f AB : MB → MB , (v, t ) 7→ (Av, t )

on the manifold

MB =
N × [0,1]

(v,1) ∼ (B v,0),

Note that every AB-prototype is a volume-preserving

non-ergodic partially hyperbolic system.
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(3) Compose with (v, t ) 7→ (φ(v, t ), t )).

(4) Apply a conjugacy: g = h−1 ◦ f0 ◦h.

These need to be included in our taxonomy.
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Definition. f : M → M is an AB-system if it is

partially hyperbolic and leaf conjugate to an AB-prototype.

That is, there is a foliation W c
f

tangent to E c
f

and a

homeomorphism h : M → MB such that

L ∈W c
f ⇒ h(L) ∈W c

f AB
and f ABh(L) = h f (L).

Leaf conjugacy is a technical but natural notion due to

Hirsch-Pugh-Shub.
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Definition. f is an infra-AB-system if there is

an iterate f n (n ≥ 1) which lifts to an AB-system on a finite cover.

Question. Is every non-ergodic partially hyperbolic system with

one-dimensional center necessarily an infra-AB-system?

Open question, so far as I know.

Further, we can classify the ergodic properties of AB-systems and

infra-AB-systems completely.
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Theorem. Suppose f is a volume-preserving partially hyperbolic

skew product over a nilmanifold and dimE c = 1.

If f is not ergodic, then it is an infra-AB-system.

Theorem. Suppose f is leaf conjugate to the time-one map of an

Anosov flow with dimE uu = 1.

If f is not ergodic, then it is an AB-system.
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•There are n ≥ 1, a C 1 surjection p : M →S
1,

and an open subset U ⊂S
1, such that

•If z ∈S
1 \U , then

p−1(z) is an f n-invariant submanifold tangent to

E u ⊕E s.

• If I is a connected component of U then

p−1(I ) is an ergodic component of f n

and is homeomorphic to N × I .
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