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Definition

t-(v , k , λ) design

A (FINITE) t-(v , k , λ) design is a

v-set of points V

with a collection B of k-subsets called blocks

such that

every t-subset of points is contained in precisely λ blocks

A Steiner system is a t-(v , k , 1) design
A 2-(v , k , 1) design is a linear space with constant line length
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Euclidean Plane

This is a 2-(2ℵ0, 2ℵ0 , 1) design
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Euclidean Disk

Another 2-(2ℵ0 , 2ℵ0 , 1) design
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Strambach’s Linear Space

All lines through (0, 0)

plus all the images of

y = 1/x (x > 0)

under SL2(R).

Also a 2-(2ℵ0 , 2ℵ0 , 1) design
(Strambach 1968)
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Countably Infinite Steiner Triple System

0 +

+−

−
Points: Q, +∞, −∞
Triples: Let

f : {r ∈ Q : 1/2 ≤ |r | < 1} 7→ {−1, 1}

(x , y , z) where x + y + z = 0 and
x , y , z unequal

((−2)sr , (−2)s+1r , (−1)sf (r)∞)

(0,+∞,−∞)

A 2-(ℵ0, 3, 1) design (Grannell, Griggs, Phelan 1987)
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Free Construction of Countably Infinite Steiner
Systems

Given t and k with t < k
Start with a partial Steiner system

t points lie in at most 1 block
any block contains at most k points

Adjoin alternatively
new blocks incident with those t-tuples of points not already in a
block
new points so each existing block has k points

After countably many steps we have a Steiner system
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Triangular Lattice

A 2-(ℵ0, 3, 2) design
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A design with v > b

s
Points: unit circle
Blocks: indexed by
S = {e2πip/q : p, q ∈ N}
For each s ∈ S

B1s blue block
B2s purple block

This is a 2-(2ℵ0 , 2ℵ0 ,ℵ0) design
with b = r = λ = ℵ0

More correctly, it is a 2-(2ℵ0 , 2ℵ0 ,Λ)
design

(Cameron, BSW 2002)
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General Definition

t-(v , k , Λ) design

A v-set V of points and a collection of k-subsets B called blocks.

|V\B| = k , for all B ∈ B, where k + k = v

For 0 ≤ i + j ≤ t , the cardinality λi ,j of the set of blocks containing
all of i points x1, . . . xi and none of j points y1, . . . yj , depends only
on i and j

no block contains another block

Λ = (λi ,j) is a (t + 1) × (t + 1) matrix

λt,0 = λ, λ1,0 = r and λ0,0 = b

0 < t ≤ k ≤ v ensures non-degeneracy

(Cameron, BSW 2002)
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Finite t and λ

When t and λ are both FINITE:

λt,0 = λ

λi ,j = v , for all i < t , 0 ≤ i + j ≤ t

We can write t-(v , k , λ), as in the finite, case without ambiguity

These designs are generally well behaved:

Fisher’s Inequality b ≥ v holds since v = b

From now on t and λ will be assumed to be FINITE
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Existence and Large Sets

In contrast to the finite case, the existence problem for INFINITE

t-designs is incomparably simpler — basically, they exist!

Existence with t ≥ 2
k FINITE

Cyclic t-(ℵ0, k , λ) (Köhler 1977)

Large sets t-(∞, t + 1, 1) (Grannell, Griggs, Phelan 1991)

Large sets t-(∞, k , 1) (Cameron 1995)

t-fold transitive t-(ℵ0, t + 1, 1) (Cameron 1984)

Uncountable family of rigid 2-(ℵ0, 3, 1) (Franek 1994)

k not necessarily FINITE

Any t-(∞, k , 1) can be extended (Beutelspacher, Cameron 1994)
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Block’s Lemma

Block’s Lemma (1967)

G any automorphism group of a (FINITE) t-(v , k , λ) design with m orbits
on the v points and n on the b blocks

m ≤ n ≤ m + b − v

There is no infinite analogue of Block’s Lemma
Examples of linear spaces: k INFINITE

n = 1 and m = 2
(Valette 1967)

n = 2 and m = 3
(Prazmowski 1989)
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Orbit Theorems

k FINITE

Steiner Triple Systems
A 2-(v , 3, 1) design has at least as many block orbits as point orbits
(n ≥ m) (Cameron 1994)

2-(∞, k , λ) Designs

n ≥
m +

(m
2

)

(k
2

)
so n ≥ m if n ≥ k2 − k (BSW 1997)

2-(v , 3, λ) Designs

A 2-(v , 3, λ) design has at least as many block orbits as point orbits
(n ≥ m) (BSW 1997)
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Sketch Proofs

Let G be an automorphism group of a 2-(∞, k , λ) design

Colour the m point orbits with m colours:

λ blocks between any pair of points

colours of blocks are G-invariant

r

p’
Q

q

p

P R

only finitely many blocks through p and points
of Q
but infinitely many through p with points of
P\p and R
so infinite orbits with p′ and r but not q

so to minimise n we can consider only infinite point orbits
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Sketch Proofs

Crude bound: n ≥
m +

(m
2

)

(k
2

)

So n ≥ m holds if n ≥ k2 − k

k = 3

A 2-(v , 3, λ) design has at least as many block orbits as point orbits
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Designs with more point orbits than block orbits

Model Theoretic construction of Hrushovski (1993) used to construct

2-(ℵ0, 4, 14) design with n = 1 and m = 2 (Evans 1994?)

2-(ℵ0, k , k + 1) designs with k ≥ 6, n = 1 and m = 2 (Camina
1999)

2-(ℵ0, k , λ) designs with k ≥ 4, n = 1 and m ≤ k/2 for some λ
(BSW 1999)

in particular a block transitive 2-(ℵ0, 4, 6) design with two point
orbits

2-(ℵ0, 4, λ) designs with n ≤ m (where n is feasible) for some λ
(BSW 1999)

t-(ℵ0, k , 1) designs with k > t ≥ 2, n = 1 and m ≤ k/t (Evans
2004)

in particular a block transitive 2-(ℵ0, 4, 1) design with two point
orbits
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Existential Closure Property

Block Intersection Graph of a Design D

GD has vertex set the blocks of D

two vertices are joined if the two blocks share at least one point

n-Existential Property of Graphs
A graph G is said to be n-existentially closed, or n-e.c., if

for each pair (X , Y ) if disjoint subsets of the vertex set V (G) with
|X | + |Y | ≤ n

there exists a vertex in V (G)\(X ∪ Y ) which is adjacent to each
vertex in X but to no vertex in Y

V(G)

X Y

(Erdős, Rényi 1963)
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Existential Closure of Block Intersection Graphs

Existential closure number Ξ(G), is the largest n for which G is n-e.c.
(if it exists)

FINITE Steiner Triple Systems

a 2-(v , 3, 1) design is 2-e.c. iff v ≥ 13

if a 2-(v , 3, 1) design is 3-e.c. then v = 19 or 21
(Forbes, Grannell, Griggs 2005)

In fact, only 2 of the STS(19) are 3-e.c. and ‘probably’ none of the
STS(21)

FINITE 2-(v , k , λ) Designs

Ξ(GD) ≤ k , if λ = 1

Ξ(GD) ≤

⌊

k + 1
2

⌋

, if λ ≥ 2 (McKay, Pike 2007)
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Existential Closure: INFINITE Designs

k FINITE

Ξ(GD) = min{t ,
⌊

k−1
t−1

⌋

+ 1} if λ = 1 and 2 ≤ t ≤ k

2 ≤ Ξ(GD) ≤ min{t ,
⌈ k

t

⌉

} if λ ≥ 2 and 2 ≤ t ≤ k − 1
(Pike, Sanaei 2011)

k INFINITE, k < v
Ξ(GD) = t , if t = 1 or λ = 1, but (t , λ) 6= (1, 1)

2 ≤ Ξ(GD) ≤ t , if t ≥ 2 and λ ≥ 2 (Horsley, Pike, Sanaei 2011)

k INFINITE, k = v
t and λ positive integers such that (t , λ) 6= (1, 1)

there exists a t-(∞,∞, λ) design with Ξ(GD) = n

there exists a t-(∞,∞, λ) design which is n-e.c.

for each non-neg integer n (Horsley, Pike, Sanaei 2011)
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Resolvability

A resolution class (parallel class) in a design is a set of blocks that
partition the point set
A design is resolvable if the block set can be partitioned into resolution
classes

The Euclidean Plane: 2-(2ℵ0 , 2ℵ0 , 1) is resolvable

The Projective Plane: 2-(2ℵ0 , 2ℵ0 , 1) is NOT resolvable

The Triangular Lattice: 2-(ℵ0, 3, 2) design is resolvable
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Existence of Resolvable INFINITE Designs
k < v

any t-(∞, k , λ) design is resolvable with v resolution classes of
size v (Danziger, Horsley, BSW 201?)

k = v

There exists a 2-(∞,∞, 1) design with Ξ(GD) = 0 iff there exists a
resolvable 2-(∞,∞, 1) design

A resolvable t-(∞,∞, 1) design has v resolution classes of v
blocks (Horsley, Pike, Sanaei 2011)

A resolvable t-(∞,∞, λ) design has v resolution classes of v
blocks and up to λ − 1 short resolution classes with less than v
blocks (Danziger, Horsley, BSW 201?)

There exists a 2-(ℵ0,ℵ0, 2) design with ℵ0 resolution classes of size ℵ0

and one resolution class of 4 blocks
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Sparse, Uniform and Perfect Triple Systems

An r -sparse STS contains no (n, n + 2)-configurations for 4 ≤ n ≤ r
A uniform STS has all its cycle graphs Ga,b isomorphic
A perfect STS has each cycle graph Ga,b a single cycle of length v − 3

FINITE Steiner Triple Systems
Infinitely many 4, 5 and 6-sparse systems but no non-trivial
r -sparse systems known for r ≥ 7

Only finitely many uniform systems known, apart from the Affine,
Projective, Hall and Netto triple systems

Only finitely many perfect systems known

Countably INFINITE Steiner triple Systems

2ℵ0 nonisomorphic CISTs that are

r -sparse for all r ≥ 4

uniform (Chicot, Grannell, Griggs, BSW 2009)
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Universality and Homogeneity

A countable structure M is

universal with respect to a class of structures C if M embeds
every member of C

homogeneous if every isomorphism between finite substructures
can be extended to an automorphism of M

There is no universal countable Steiner Triple System (Franek 1994)

There is a unique (up to isomorphism) universal homogeneous locally
finite Steiner Triple System, U (Cameron 2007?)

NOTE: In work on linear spaces, homogeneous as defined here is
called ultrahomogeneous

The classification of ultrahomogeneous linear spaces
(Devillers, Doyen 1998)

does not extend to Steiner Systems
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The Fraïssé Limit

Fraïssé’s Theorem
Suppose C is a class of finitely generated structures such that

C is closed under isomorphisms

C contains only countably many members up to isomorphism

C has the Hereditary Property, HP

C has the Joint Embedding Property, JEP

C has the Amalgamation Property, AP

Then there is a countable homogeneous structure S

which is universal for C

unique up to isomorphisms

We call S the Fraïssé limit of C (Fraïssé 1954, Jónsson 1956)

Such a class is called an amalgamation class
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Steiner Triple Systems

Regard an STS as a Steiner quasigroup

a ◦ b = c iff {a, b, c} is a block (and x ◦ x = x)

Then substructures (in the sense of model theory) are subsystems

The class of all finite STS is an amalgamation class — the Fraïssé limit
is the universal homogeneous locally finite STS, U

The class of all finitely generated STS is NOT an amalgamation class

The class of all affine triple systems is an amalgamation class — the
Fraïssé limit is the countably infinite affine triple system, A

The class of all projective triple systems is an amalgamation class —
the Fraïssé limit is the countably infinite projective triple sysytem, P
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ℵ0-categoricity

A structure is ℵ0-categorical if its automorphism group is oligomorphic

That is, it has finitely many orbits on n-tuples for each positive integer n

U is not ℵ0-categorical

A and P are both ℵ0-categorical

Let S and T be two ℵ0-categorical STS

the direct product S × T is ℵ0-categorical — the direct product of
oligomorphic groups is oligomorphic

(Cameron, Gerwurz, Merola 2008)

d [S], the result of applying the doubling construction to S, is
ℵ0-categorical (Barbina, Chicot, BSW 201?)
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Summary

In general countably infinite Steiner systems are quite well
behaved

In general infinite designs exist

Other FINITE type concepts can be investigated for INFINITE

designs

Work on INFINITE designs can lead to interesting new problems in
the FINITE world

Keep t and λ FINITE to preserve your sanity!
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