Infinite Designs: The Interplay Between Results in the Finite and Infinite Case

Bridget S Webb The Open University

5-9 December 2011 / 35ACCMCC Monash

Bridget S Webb (The Open University)

Definition

- Some Results
- Finite Type Concepts
- Infinite Type Concepts

Definition

t-(v, k, λ) design

A (FINITE) $t-(v, k, \lambda)$ design is a

- v-set of points V
- with a collection **B** of *k*-subsets called blocks

such that

• every *t*-subset of points is contained in precisely λ blocks

A Steiner system is a t-(v, k, 1) design A 2-(v, k, 1) design is a linear space with constant line length

Euclidean Plane

This is a $2-(2^{\aleph_0}, 2^{\aleph_0}, 1)$ design

Another $2-(2^{\aleph_0}, 2^{\aleph_0}, 1)$ design

Strambach's Linear Space

- All lines through (0,0)
- plus all the images of
 - $y = 1/x \quad (x > 0)$

under $SL_2(\mathbf{R})$.

Also a $2-(2^{\aleph_0}, 2^{\aleph_0}, 1)$ design (Strambach 1968)

Countably Infinite Steiner Triple System

Points: \mathbf{Q} , $+\infty$, $-\infty$ Triples: Let

$$f: \{r \in \mathbf{Q}: 1/2 \le |r| < 1\} \mapsto \{-1, 1\}$$

(x, y, z) where x + y + z = 0 and x, y, z unequal

•
$$((-2)^{s}r, (-2)^{s+1}r, (-1)^{s}f(r)\infty)$$

• $(0, +\infty, -\infty)$

A 2-(\aleph_0 , 3, 1) design

(Grannell, Griggs, Phelan 1987)

Free Construction of Countably Infinite Steiner Systems

- Given t and k with t < k
- Start with a partial Steiner system
 - t points lie in at most 1 block
 - any block contains at most k points
- Adjoin alternatively
 - new blocks incident with those *t*-tuples of points not already in a block
 - new points so each existing block has k points
- After countably many steps we have a Steiner system

Triangular Lattice

A design with v > b

Points: unit circle Blocks: indexed by $S = \{e^{2\pi i p/q} : p, q \in \mathbf{N}\}$ For each $s \in S$ B_{1s} blue block B_{2s} purple block

This is a 2- $(2^{\aleph_0}, 2^{\aleph_0}, \aleph_0)$ design with $b = r = \lambda = \aleph_0$

More correctly, it is a 2- $(2^{\aleph_0}, 2^{\aleph_0}, \Lambda)$ design

(Cameron, BSW 2002)

General Definition

t-(v, k, Λ) design

A *v*-set *V* of points and a collection of *k*-subsets \mathcal{B} called blocks.

- $|V \setminus B| = \overline{k}$, for all $B \in \mathcal{B}$, where $k + \overline{k} = v$
- For 0 ≤ i + j ≤ t, the cardinality λ_{i,j} of the set of blocks containing all of i points x₁,... x_i and none of j points y₁,... y_j, depends only on i and j
- no block contains another block

 $\Lambda = (\lambda_{i,j})$ is a $(t+1) \times (t+1)$ matrix

$$\lambda_{t,0} = \lambda, \ \lambda_{1,0} = r \text{ and } \lambda_{0,0} = b$$

 $0 < t \le k \le v$ ensures non-degeneracy

(Cameron, BSW 2002)

When *t* and λ are both **FINITE**:

•
$$\lambda_{t,0} = \lambda$$

•
$$\lambda_{i,j} = v$$
, for all $i < t$, $0 \le i + j \le t$

We can write $t-(v, k, \lambda)$, as in the finite, case without ambiguity

These designs are generally well behaved:

• Fisher's Inequality $b \ge v$ holds since v = b

From now on t and λ will be assumed to be FINITE

In contrast to the finite case, the existence problem for INFINITE *t*-designs is incomparably simpler — basically, they exist!

Existence with $t \ge 2$

- Oyclic *t*-(ℵ₀, *k*, λ)
- Large sets $t-(\infty, t+1, 1)$
- Large sets $t-(\infty, k, 1)$
- *t*-fold transitive t-(\aleph_0, t + 1, 1)
- Uncountable family of rigid $2-(\aleph_0, 3, 1)$
- k not necessarily FINITE
 - Any *t*-(∞ , *k*, 1) can be extended (Beutelspacher, Cameron 1994)

(Köhler 1977)

(Cameron 1995)

(Cameron 1984)

(Franek 1994)

(Grannell, Griggs, Phelan 1991)

Block's Lemma (1967)

G any automorphism group of a (FINITE) *t*-(v, k, λ) design with *m* orbits on the *v* points and *n* on the *b* blocks

$$m \le n \le m + b - v$$

There is no infinite analogue of Block's Lemma Examples of linear spaces: *k* INFINITE

k finite

Steiner Triple Systems

A 2-(v, 3, 1) design has at least as many block orbits as point orbits $(n \ge m)$ (Cameron 1994)

2-(∞ , k, λ) Designs

$$n \ge \frac{m + \binom{m}{2}}{\binom{k}{2}}$$
 so $n \ge m$ if $n \ge k^2 - k$ (BSW 1997)

2-(v, 3, λ) Designs

A 2-(v, 3, λ) design has at least as many block orbits as point orbits ($n \ge m$) (BSW 1997)

Sketch Proofs

Let G be an automorphism group of a 2-(∞ , k, λ) design

Colour the *m* point orbits with *m* colours:

- λ blocks between any pair of points
- colours of blocks are G-invariant

only finitely many blocks through p and points of Qbut infinitely many through p with points of $P \setminus p$ and Rso infinite orbits with p' and r but not q

• so to minimise *n* we can consider only infinite point orbits

A 2-(v, 3, λ) design has at least as many block orbits as point orbits

Designs with more point orbits than block orbits

Model Theoretic construction of Hrushovski (1993) used to construct

- 2-(\aleph_0 , 4, 14) design with n = 1 and m = 2 (Evans 1994?)
- 2-(\aleph_0 , k, k + 1) designs with $k \ge 6$, n = 1 and m = 2 (Camina 1999)
- 2-(\aleph_0 , k, λ) designs with $k \ge 4$, n = 1 and $m \le k/2$ for some λ (BSW 1999)
- in particular a block transitive 2-(ℵ₀, 4, 6) design with two point orbits
- 2-(\aleph_0 , 4, λ) designs with $n \le m$ (where *n* is *feasible*) for some λ (BSW 1999)
- t-(\aleph_0 , k, 1) designs with $k > t \ge 2$, n = 1 and $m \le k/t$ (Evans 2004)
- in particular a block transitive 2-(ℵ₀, 4, 1) design with two point orbits

Block Intersection Graph of a Design $\ensuremath{\mathcal{D}}$

 $G_{\mathcal{D}}$ has vertex set the blocks of \mathcal{D}

two vertices are joined if the two blocks share at least one point

n-Existential Property of Graphs

A graph G is said to be *n*-existentially closed, or *n*-e.c., if

- for each pair (X, Y) if disjoint subsets of the vertex set V(G) with $|X| + |Y| \le n$
- there exists a vertex in V(G)\(X ∪ Y) which is adjacent to each vertex in X but to no vertex in Y

(Erdős, Rényi 1963)

Existential Closure of Block Intersection Graphs

Existential closure number $\Xi(G)$, is the largest *n* for which *G* is *n*-*e*.*c*. (if it exists)

FINITE Steiner Triple Systems

- a 2-(v, 3, 1) design is 2-e.c. iff v ≥ 13
- if a 2-(v, 3, 1) design is 3-e.c. then v = 19 or 21

(Forbes, Grannell, Griggs 2005)

In fact, only 2 of the STS(19) are 3-*e.c.* and 'probably' none of the STS(21)

FINITE 2-
$$(v, k, \lambda)$$
 Designs
• $\Xi(G_D) \le k$, if $\lambda = 1$
• $\Xi(G_D) \le \left\lfloor \frac{k+1}{2} \right\rfloor$, if $\lambda \ge 2$ (McKay, Pike 2007)

Existential Closure: INFINITE Designs

k FINITE

•
$$\Xi(G_{\mathcal{D}}) = \min\{t, \left|\frac{k-1}{t-1}\right| + 1\}$$
 if $\lambda = 1$ and $2 \le t \le k$

• $2 \leq \Xi(G_{\mathcal{D}}) \leq \min\{t, \lceil \frac{k}{t} \rceil\}$ if $\lambda \geq 2$ and $2 \leq t \leq k-1$

(Pike, Sanaei 2011)

k Infinite, k < v

•
$$\Xi(G_D) = t$$
, if $t = 1$ or $\lambda = 1$, but $(t, \lambda) \neq (1, 1)$

• $2 \leq \Xi(G_D) \leq t$, if $t \geq 2$ and $\lambda \geq 2$ (Horsley, Pike, Sanaei 2011)

k Infinite, k = v

t and λ positive integers such that $(t, \lambda) \neq (1, 1)$

- there exists a *t*- $(\infty, \infty, \lambda)$ design with $\Xi(G_D) = n$
- there exists a *t*-(∞, ∞, λ) design which is *n*-*e*.*c*.

for each non-neg integer n

(Horsley, Pike, Sanaei 2011)

A resolution class (parallel class) in a design is a set of blocks that partition the point set A design is resolvable if the block set can be partitioned into resolution classes

The Euclidean Plane: $2-(2^{\aleph_0}, 2^{\aleph_0}, 1)$ is resolvable The Projective Plane: $2-(2^{\aleph_0}, 2^{\aleph_0}, 1)$ is NOT resolvable The Triangular Lattice: $2-(\aleph_0, 3, 2)$ design is resolvable

Existence of Resolvable INFINITE Designs

- k < v
 - any *t*-(∞, *k*, λ) design is resolvable with *v* resolution classes of size *v* (Danziger, Horsley, BSW 201?)
- k = v
 - There exists a 2-(∞, ∞, 1) design with Ξ(G_D) = 0 iff there exists a resolvable 2-(∞, ∞, 1) design
 - A resolvable *t*-(∞, ∞, 1) design has *v* resolution classes of *v* blocks
 (Horsley, Pike, Sanaei 2011)
 - A resolvable t-(∞, ∞, λ) design has v resolution classes of v blocks and up to λ − 1 short resolution classes with less than v blocks
 (Danziger, Horsley, BSW 201?)

There exists a 2-($\aleph_0, \aleph_0, 2$) design with \aleph_0 resolution classes of size \aleph_0 and one resolution class of 4 blocks

Sparse, Uniform and Perfect Triple Systems

An *r*-sparse STS contains no (n, n + 2)-configurations for $4 \le n \le r$ A uniform STS has all its cycle graphs $G_{a,b}$ isomorphic A perfect STS has each cycle graph $G_{a,b}$ a single cycle of length v - 3

FINITE Steiner Triple Systems

- Infinitely many 4, 5 and 6-sparse systems but no non-trivial *r*-sparse systems known for $r \ge 7$
- Only finitely many uniform systems known, apart from the Affine, Projective, Hall and Netto triple systems
- Only finitely many perfect systems known

Countably INFINITE Steiner triple Systems

- 2^{\aleph_0} nonisomorphic CISTs that are
 - *r*-sparse for all $r \ge 4$
 - uniform

(Chicot, Grannell, Griggs, BSW 2009)

Universality and Homogeneity

- A countable structure M is
 - universal with respect to a class of structures *C* if *M* embeds every member of *C*
 - homogeneous if every isomorphism between finite substructures can be extended to an automorphism of *M*

There is no universal countable Steiner Triple System (Franek 1994)

There is a unique (up to isomorphism) universal homogeneous locally finite Steiner Triple System, U (Cameron 2007?)

NOTE: In work on linear spaces, homogeneous as defined here is called ultrahomogeneous

The classification of ultrahomogeneous linear spaces

(Devillers, Doyen 1998)

does not extend to Steiner Systems

Bridget S Webb (The Open University)

Infinite Designs

Fraïssé's Theorem

Suppose C is a class of finitely generated structures such that

- C is closed under isomorphisms
- C contains only countably many members up to isomorphism
- C has the Hereditary Property, HP
- C has the Joint Embedding Property, JEP
- C has the Amalgamation Property, AP

Then there is a countable homogeneous structure \mathcal{S}

- which is universal for C
- unique up to isomorphisms

We call S the Fraïssé limit of C

(Fraïssé 1954, Jónsson 1956)

Such a class is called an amalgamation class

Regard an STS as a Steiner quasigroup

 $a \circ b = c$ iff $\{a, b, c\}$ is a block (and $x \circ x = x$)

Then substructures (in the sense of model theory) are subsystems

The class of all finite STS is an amalgamation class — the Fraı̈ssé limit is the universal homogeneous locally finite STS, ${\cal U}$

The class of all finitely generated STS is **NOT** an amalgamation class

The class of all affine triple systems is an amalgamation class — the Fraïssé limit is the countably infinite affine triple system, A

The class of all projective triple systems is an amalgamation class — the Fraïssé limit is the countably infinite projective triple sysytem, \mathcal{P}

A structure is \aleph_0 -categorical if its automorphism group is oligomorphic That is, it has finitely many orbits on *n*-tuples for each positive integer *n*

- \mathcal{U} is not \aleph_0 -categorical
- \mathcal{A} and \mathcal{P} are both \aleph_0 -categorical

Let S and T be two \aleph_0 -categorical STS

the direct product S × T is ℵ₀-categorical — the direct product of oligomorphic groups is oligomorphic

(Cameron, Gerwurz, Merola 2008)

d[*S*], the result of applying the doubling construction to *S*, is ℵ₀-categorical (Barbina, Chicot, BSW 201?)

- In general countably infinite Steiner systems are quite well behaved
- In general infinite designs exist
- Other FINITE type concepts can be investigated for INFINITE designs
- Work on INFINITE designs can lead to interesting new problems in the FINITE world

• Keep *t* and λ FINITE to preserve your sanity!