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Loops

A set Q with a binary operation - is a loop if for every x € Q

Ly Q—Q, y—x-y
Ri:Q—Q, y—y-x

are bijections of Q, and if there is a neutral element 1 € Q such
that1-x =x-1 = xforevery x € Q.

Multiplication tables of finite loops = normalized Latin squares.

Loop theory usually studies loops with algebraic properties.



Basic concepts

Let Q be a loop with neutral element 1. We define:

commutator  xy = (yx) - [, Y]
associator (xy)z = x(yz) - [x,y, 2]
center Z(Q)={xe Q; [x,yl=[x,y,z]=ly,x, z]=1}
multiplication group  MIt(Q) = (Lx, Rx; x € Q)
inner mapping group Inn(Q) = {f € MIt(Q); f(1) =1}

A subloop S < Qis normal if f(S) = S for every f € Inn(Q).



Outline of the talk

We will discuss:

e Lagrange’s theorem for loops

e enumeration of centrally nilpotent loops
e existence of simple automorphic loops
e |loops with commuting inner mappings

Our approach is mostly computational. We will use:

e combinatorial algorithms

e linear algebraic methods (cohomology)

e graphs based on primitive permutation groups
e automated deduction



Lagrange’s theorem for loops




General Lagrange’s theorem
When does S < Q imply that |S| divides |Q|?

e Hardly ever.
e When Q is associative or S < Q. (Easy.)
e When Q is a Moufang loop, that is, a loop satisfying

(xy)2)y = x(y(2y))-

(Hard [GRISHKOV, ZAVARNITSINE, HALL, GAGOLA 2005].
Proof uses classification of finite simple groups.)

Problem
If S is a subloop of a finite Moufang loop Q, is there a selection

of left cosets of S that partition Q?



Incidence properties of cosets

In groups we have xS = ySor xSN yS = .
For general loops, anything can happen:

Theorem (KINYON, PuLA, V 2011)
IfQis aloop and S < Q then

(Q\'S, {xS; xc Q\ S})

is a symmetric design, and every symmetric design arises in
this way.



Proof of the “symmetric design theorem”
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Proof of the “symmetric design theorem”
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Cosets in Bol loops

Aloop Qs (right) Bol if ((xy)z)y = x((yz)y) holds.

Example (Einstein’s velocity addition)
Define @ on {v € R; ||v| < c} by

uov=

1 1
- (u+—v+— u-viu),
14+ (u-v)/c? ( +7u Jr0214-%( ))

where v, = (1 — ||u||2/c?)~1/2.

Problem
Does Lagrange’s theorem hold for Bol loops?

e yes, if S = (x) [ROBINSON 1966]
e yes, if |Q| is odd [FOGUEL, KINYON, PHILLIPS 2006]
e yes, for certain small subloops S [KINYON, PULA, V 2011]



Greedy orbits of (Ry; x € S)

We assume that S < Q, S is known, Q is not known.

Sy S S3 S4 S5 S 35z = 10 =28

.1 2 3 4 g 62 3 — (236)32_1

id o gp p p° op 1
11 2 3 4 5 6 356 = ((256)s; )%
212 1 7 8 9 10

recall ((xy)z)y = x((yz

3l3 10 1 (xy)2)y = x((y2)y)
414 3ss = 2((SsS; ')Ss) = 253 = 7
5/ 5
6| 6

?]=7

It so happens here that every “orbit” closes at a size (number of
rows) divisible by 6 = |S|. Hence |S| divides |Q)|.

Similarly for some other small Bol loops S.



Observations about greedy orbits

The greedy orbits can get very long (e.g., 720 for |S| = 12).

Often a few select rows partition the greedy orbit.

Problem

Let S be a Bol loop. Consider greedy orbits of (Rx; x € S) in a
Bol loop Q.

e Are all greedy orbits finite?
e Are all greedy orbits actually orbits?
e Is the length of greedy orbits divisible by |S|?
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Enumeration of




Enumeration of loops

Enumerations are usually considered up to

e isomorphism, a permutation of rows, columns and symbols
by the same permutation

e isotopism, a permutation of rows, columns and symbols by
three permutations (carefully with 1!)

e paratopism (or main classes), an isotopism plus a
permutation of the roles of rows, columns and symbols

Note: Isotopic groups are already isomorphic.



Loops up to isomorphism

[McKAY, MEYNERT, MYRvVOLD 2005] for8 < n <10
[HULPKE, KAski, OSTERGARD 2011] for n = 11

S

loops

2
6
109
23,746
106,228, 849
9,365,022, 303, 540
10 20,890, 436,195, 945,769,617
11 1,478,157,455,158, 044, 452,849, 321,016

O© oo NOO O~



Centrally nilpotent loops

Aloop Qs centrally nilpotent if the series
Q. Q/Z(Q), (Q/2(Q))/Z(Q/z(Q))....
terminates with {1} in finitely many steps.

Theorem
Let p be a prime. Then

e groups of order p* are centrally niljpotent

e Moufang loops of order p* are centrally nilpotent
[GLAUBERMAN, WRIGHT 1968]

e Bol loops of order p* are not necessarily centrally nilpotent
[FOGUEL, KINYON 2010]



Central extensions

A loop Q is a central extension of Z by F if
Z<Z(Q)and Q/Z = F.
Write Z = (Z,+,0)and F = (F,-,1).

Theorem
A loop Q is a central extension of Z by F if and only if Q is
isomorphic to the loop O(0) defined on F x Z by

(x.a) = (y,b) = (xy, a+ b+ 0(x,y)),
where 6 : F x F — Z is a (loop) cocycle, that is, it satisfies
0(1,x)=0(x,1)=0

forall x € F.



Cocycles and coboundaries

Suppose from now on that Z = IF, is a prime field.

The cocycles F x F — Z form a vector space C(F, Z) over Fp.

Take any mapping 7 : F — Z such that 7(1) = 0, and define
T:FxF—=2Z, 7(x,¥y)=1(xy)—71(x)—1(y).

Then 7 is a cocycle called coboundary.

The coboundaries form a subspace B(F, Z) of C(F, 2).



Equivalences on cocycles

Theorem
For0, e C(F,2),if0 — € B(F,A) then Q(6) = Q(u).

Theorem

For (o, B) € Aut(F) x Aut(Z) and for 6 € C(F, Z) define
0D Fx F 2, 0°9(x,y) = B0(a™"(x),07'()):

Then 0P € C(F,A) and Q(6) = Q(0(*")).

This defines an action of Aut(F) x Aut(Z) on C(F,Z), in fact on
C(F,2)/B(F,2).



The equivalence =

Let = be the closure of the two equivalences. Then = can be
seen as an equivalence relation on isomorphism classes.

The trouble is that distinct equivalence classes of = can yield
the same isomorphism type of loops. Understanding = is the
isomorphism problem for centrally nilpotent loops.



Cocycles in varieties

Cocycles and coboundaries restrict well to varieties.

Recall (x,a) x (y,b) = (xy,a+ b+ 0(x,y)).

property

equivalent cocycle condition

commutativity
associativity
Moufang

etc.

0(x,y) =0(y,x)
0(x,y) +0(xy,z) =0(y,z) + 0(x,y2)

0(x,y) +0(xy,z) + 0((xy)z.y)
=0(z,y) +0(y, zy) + 0(x, y(zy))



Enumeration of nilpotent loops in varieties

e acocycle 0 : F x F — Zis given by |F|? variables 0(x, y)

e a cocycle condition yields several linear equations on 6, for
instance, associativity 6(x, y) +6(xy, z) = 0(y, z) + 0(x, yz)
is equivalent to |F|2 linear equations

e the resulting system of linear equations is sparse and can
be calculated with efficiently

¢ solving the system yields a subspace of all cocycles in a
given variety

e the equivalence = can be used to replace the subspace
with a smaller set of isomorphism classes

e without additional ideas, the rest is a direct isomorphism
check



Enumeration of small Moufang loops

[CHEIN 1978, GOODAIRE, MAY, RAMAN 1999] for n < 63
[NAGY, V 2007] for n = 64, 81
[SLATTERY, ZENISEK 2011] for n = 243

n groups nonassociative Moufang loops

12 5 1
32 51 71
64 267 4,262
81 15 5

243 67 72



Spectrum of Moufang loops

For which orders n is there a nonassociative Moufang loop?

e none of order p, p?, p°
e none of order p* unless p € {2,3}
e precisely 4 of order p® if p > 3 [NAGY, VALSECCHI 2007]

e of even order 2m iff there is a nonabelian group of order m
[CHEIN, RAJAH 2003]

Much more is known but the problem is open in general.



Separability

... returning to enumeration of general nilpotent loops:

Call C(F, Z) separable if the isomorphism classes coincide
with the equivalence classes of =.

In the separable case, the number of isomorphism classes is
the number of orbits of the action of Aut(F) x Aut(Z) on
C(F,2)/B(F,2).

For instance, if Z = Fp, then Q with |Q| = pgor [Q: Z(Q)] =2
are separable.



Counting orbits

G=Aut(F)x Aut(Z),H< G
Fix(H) = {# € C(F,Z); 6" — 0 € B(F,Z) for all h € H}
Orbits in Fix*(H) = Fix(H) \ Uk~ y Fix(K) have size [G : H].

They can thus be counted by the inclusion-exclusion principle,
if we know how big the fixed spaces are.




The separability formula

Theorem (DALY, V 2009)
Let F be a loop and Z an abelian group, G = Aut(F) x Aut(Z).

Suppose that C(F, Z) is separable. Then there are
3 |Fix*(H)|
= |B(F,A)| - [Na(H) : H)]

central extensions of Z by F up to isomorphism, where the
summation runs over all subgroups H < G up to conjugacy.

To determine the dimensions of the fixed spaces, calculate
kernels of the linear operators

00— )

Some situations can be handled theoretically:



Centrally nilpotent loops of order 2q

N(n) = number of nilpotent loops of order n up to isomorphism.

Theorem (DALY, V 2009)

Let q be an odd prime. For an integer d, let MaxDiv(d) be the
maximal proper divisors of d. Then

NEg) = Y ;<2(qz)d+ S (1P .g(qz)gcd(o)),

d|g—1 (0#DCMaxDiv(d)

-~ 2(9-2)(q—1)

In particular, N(2q) 7



Example: N(14) = N(2-7)

%(256_25-3_2524_25‘1) + %(25-3_254

N(14) = 178,962,784




Small cases, n # p, 2p

[DALY, V 2009]

n centrally nilpotent loops up to isomorphism

8 139
9 10

12 2,623,755

15 66,630

16 466,409, 543, 467, 341

18 157,625,998, 010, 363, 396

20  4,836,883,870,081,433, 134,085,047
21 17,157,596, 742, 633

22 123,794,003,928,541,545,927,226, 368
24 ?



Existence of simple automorphic loops




Automorphic loops

Aloop Q is automorphic if Inn(Q) < Aut(Q).
Note: Inn(Q) = (Lxy, Rxy, Tx; X, ¥y € Q), where

Ley= Ly LyLx,
Rxy= Ry RyRx,
Ty = L, 'Ry.

Automorphic loops include groups, commutative Moufang
loops, and several other varieties of loops.

Theorem (KINYON, KUNEN, PHILLIPS 2002)
Diassociative automorphic loops are Moufang.



Primitive groups

A group G acts primitively on X if no nontrivial partition of X is
invariant under G. The degree of G is the cardinality of X.

2-transitive groups C primitive groups C transitive groups.

A library of all primitive groups of order n < 2,500 is available in
GAP.

Theorem (ALBERT 1943)
A loop Q is simple iff M1t(Q) acts primitively on Q.



Naive search for simple loops, groups

Let G be a pritimive group on a set Q.

To construct all simple loops with Mlt(Q) = G, it suffices to find
all subsets
R ={r; x € Q},

where ry(1) = x, rn = idq,

rer, ! is fixed-point free for x # y, *)
and then check that the resulting Latin square has Mlt(Q) = G.
This is impossible already for very small orders.

Theorem (CAMERON 1992)

As n — oo, the probability that a random loop Q of order n
satisfies MIt(Q) = S, or Mlt(Q) = A, approaches 1.



Right translations of automorphic loops

Let G = MIt(Q), H = Inn(Q) = G.
Lemma
Q is automorphic iff hRyh~' = Ry, forevery x € Q, h € H.

Proof.
The following are equivalent (with y universally quantified):

hRxh~'(y) = Rux ()
h(h~'(y)x) = yh(x),
h(yx) = h(y)h(x).

Lemma
In an automorphic loop Q, Rx commutes with all elements of
the stabilizer Hy.

O



Constructing all finite simple automorphic loops

Constructing the sets R = {ry; x € Q} C G:

we know where to start: ry € Cg(Hy)
we must include entire conjugacy classes

call two conjugacy classes A, B (possibly the same)
compatible if ab~" is fixed-point free forac A, bc B,a+# b
construct a vertex-labeled graph I':

vertices: self-compatible conjugacy classes

edges: defined by compatibility

label: the size of conjugacy class.

find all cliques in I with vertex sum equal to | Q)|

keep cliques that yield loops with Mlt(Q) = G



The algorithm




Restricting the primitive groups in the search

Lemma
If Q is an automorphic loop then Mlt(Q) cannot be 4-transitive.

Theorem (VESANEN 1996)
IfMIt(Q) is solvable then Q is solvable.

We can therefore skip solvable and highly transitive primitive
groups. Generally speaking, if A,, S, cannot be excluded, the
situation is hopeless.

Theorem (JOHNSON, KINYON, NAGY, V 2011)
There are no nonassociative simple automorphic loops of order
less than 2, 500.



Structural results on automorphic loops

Using Lie algebras:

Theorem (GRrisHkov, KINYON, NAGY 2011)

There are no finite simple nonassociative commutative
automorphic loops.

Theorem (KINYON, KUNEN, PHILLIPS, V 2011)
Automorphic loops of odd order are solvable.



More results on automorphic loops

Using derived operations:

Theorem (JEDLICKA, KINYON, V 2010)

Let p be an odd prime. Commutative automorphic loops of
order p* are centrally nilpotent. There is an automorphic loop of
order p? with trivial center.

Using Zp-modules:

Theorem (BARROS, GRISHKOV, V 2011)

For every prime p there are precisely 7 commutative
automorphic loops of order p° up to isomorphism.
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Nilpotency class

Nilpotency class cls(Q) is the length of the upper-central series.
Thus:

cls(Q) = 1if Q is an abelian group
cls(Q) = 2if Q/Z(Q) is an abelian group but Q is not

Theorem
Let Q be a group. Then Q/Z(Q) = Inn(Q). In particular, Inn(Q)
is abelian iffcls(Q) < 2.

Theorem (Bruck)
Let Q be a loop. Ifcls(Q) < 2 then Inn(Q) is abelian.



First examples

If Inn( Q) is abelian, what can be said about cls(Q)?

Theorem (NIEMENMAA, KEPKA 1994)
If Q is finite with Inn( Q) abelian then Q is centrally nilpotent.

[CsORGO 2007] obtained an ad hoc example of a loop Q (of
order 128) such that Inn(Q) is abelian and cls(Q) = 3.

[DRAPAL, V 2008] constructed many such examples
systematically. The construction is ultimately based on the
determinant and the way it controls the associator mapping. (It
looks like |Q| > 128 is necessary.)

[NAGY, V 2009] a Moufang example of order 214



First human results

Theorem (Cs6rGO, DRAPAL 2005)

Let Q be a loop where left translations form a set closed under
conjugation. If Inn(Q) is abelian then cls(Q) < 2.

Theorem (Nagy, V 2009)

If Q is a uniquely 2-divisible (that is, x — x? is a bijection)
Moufang loop with Inn(Q) abelian then cls(Q) < 2.



Inhuman results

Theorem (PHILLIPS, STANOVSKY 2010)

Let Q be a Bol loop such that (xy)~! = x~1y=1. IfInn(Q) is
abelian then cls(Q) < 2.

Proof.
16,000 clauses in Waldmeister = 1,068 pages of pdf output

Theorem 1: unit() = asoc{asoc(a(),b(),c()).d(),e())

unit()
S e’
= by Lemma 2840 RL with {z5 «— e(),z4 «— (), 23 — a(),z2 — b(), z1 — d()}

asoc(d(), asoc(b(), a(), (). ()

= by Lemma 2785 LR with {z5 «— e(), 23 — (), 22 — a(),zl — b(), x4 — d()}

asoc(d(), rd(d(), asoc(a(), b(}, c())), e())

= by Lemma 2726 LR with {23 — (), 22 — asoc(a(), b(), (), 21 — d()}

asoc(asoc(a(), b(), €()), d(), €())



More inhuman results

Similar results were obtained with Prover9, mainly by Veroff.

Theorem (KINYON, VEROFF, V 2011)
Let Q be a Moufang loop with Inn(Q) abelian. Then cls(Q) < 3.

Theorem (KiNYON, VEROFF 2011)
Let Q be a Bol loop with Inn(Q) abelian. Then cls(Q) < 3.

The proofs are probably longest ever produced by automated
deduction: 20,000-30, 000 clauses.



Syntax of the problem - easy!

Suppose we want to prove with Prover9:
If Qis a group and Inn(Q) is abelian then cls(Q) < 2.

[o)

% assumptions
Ixx=x.
x*x1=x.
x*+x"=1.
x"*xx=1.
* (y*z) = (X*xy) *zZ
T(x,y) = x"*x(y*x) .
T(z,T(x,y)) = T(x T(z,y)).
comm (xX,y) = (y*x)'*(x*xy).
% goal
comm (x,y)*z = zxcomm(xX,V) .

Prover9 finds a proof of length 24 in 0.01 seconds.



Syntax of a loopy example

Here is an input file for the conjecture:
If Qis a loop and Inn(Q) is abelian then cls(Q) < 3.

% assumptions
xxl=x. lxx=x. x\(xxy)=y. x*x(x\y)=y. (xxy)/y=x. (x/y)*y=x. % loop

T(x,y) = x\(y*x). % conjugations

L(x,y,z) = (y*x)\(y*(xxz)). % left inner mappings
R(x,v,2) = ((z*x)*y)/(xxy) = z. % right inner mappings
T(x,T(y,z)) = T(y,T(x,2z)). % Inn(Q) abelian
T(x,L(y,z,u)) = L(y,z,T(x,u)).

T(x,R(y,z,u)) = R(y,z,T(x,¥)) .

L(x,y,L(z,u,v)) = L(z,u,L(x,y,Vv)).
L(x,y,R(z,u,v)) = R(z,u,L(x,y,v)).
R(x,y,R(z,u,v)) = R(z,u,R(xX,y,V)).

assc(x,y,z) = (x*x(y*z))\ ((x*y)*z). % associators
comm(x,y,z) = (y*x)\(x*y). % commutators

% goal (one of many, prove them one by one)
this one says: [x,[y,z,u]l] commutes with all elements
comm (x,assc(y,z,u))*v = vscomm(x,assc(y,z,u)).

o



Coaxing the proof out - not so easy!

In Prover9 power users apply three techniques, in addition to
the tweaking of technical parameters of the search:

e hints: provide the prover with clauses from proofs of similar
results, and ask the prover to give such clauses priority in
the search

e sketches: prove a weaker theorem with (several) extra
assumptions, then use the proof as hints for the next round
where an assumption has been removed; repeat

e semantic guidance: generate examples (by finite model
builder), sort clauses by true/false on examples, use these
to construct a bidirectional proof (by contradition)



Automated deduction in loop theory

Automated deduction often provides a key technical step in a
high-level proof. For instance, while proving . ..
Theorem (Decomposition for comm. automorphic loops)

A finite commutative automorphic loop is a direct product of a
loop of odd order and a loop of order a power of 2.

. we needed to show that a product of two squares is a
square. Prover9 discovered that A% « B? is equal to the square

of
(CCC((A *x A) \A) x (B *x (A *A)))
N (B ox (A xRA))) N 1) x (((((((A xR \A) * (Bx (AxA))) \ (Bx* (A*n))) \ 1)
N (R« A) N\ A) » ((A*A) \A)) = (Bx (A A))) \ 1))
VR« A) N\ A) » (B x» (A xA))) \ (Bx (AxA))) \1
* ((CCCC(A « A) N\ A) = (B * (A *A))) \ (B (A A))) \1)
V(R « A) N\ R) » ((A *A) \ A)) » (B x (A xA)))) \1)
« ((((((A «2) \A) = (B * (A * A)))
N (B ox (A xA))) N 1) N ((((AxRA) \A) x ((AxA) \A)) * (B*x (A A))))))



The End
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