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Loops

A set Q with a binary operation · is a loop if for every x ∈ Q

Lx : Q → Q, y 7→ x · y
Rx : Q → Q, y 7→ y · x

are bijections of Q, and if there is a neutral element 1 ∈ Q such
that 1 · x = x · 1 = x for every x ∈ Q.

Multiplication tables of finite loops = normalized Latin squares.

Loop theory usually studies loops with algebraic properties.



Basic concepts

Let Q be a loop with neutral element 1. We define:

commutator xy = (yx) · [x , y ]
associator (xy)z = x(yz) · [x , y , z]

center Z (Q) = {x ∈ Q; [x , y ]=[x , y , z]=[y , x , z]=1}
multiplication group Mlt(Q) = 〈Lx , Rx ; x ∈ Q〉

inner mapping group Inn(Q) = {f ∈ Mlt(Q); f (1) = 1}

A subloop S ≤ Q is normal if f (S) = S for every f ∈ Inn(Q).



Outline of the talk

We will discuss:

• Lagrange’s theorem for loops
• enumeration of centrally nilpotent loops
• existence of simple automorphic loops
• loops with commuting inner mappings

Our approach is mostly computational. We will use:

• combinatorial algorithms
• linear algebraic methods (cohomology)
• graphs based on primitive permutation groups
• automated deduction



Lagrange’s theorem for loops



General Lagrange’s theorem

When does S ≤ Q imply that |S| divides |Q|?

• Hardly ever.
• When Q is associative or S E Q. (Easy.)
• When Q is a Moufang loop, that is, a loop satisfying

((xy)z)y = x(y(zy)).

(Hard [GRISHKOV, ZAVARNITSINE, HALL, GAGOLA 2005].
Proof uses classification of finite simple groups.)

Problem
If S is a subloop of a finite Moufang loop Q, is there a selection
of left cosets of S that partition Q?



Incidence properties of cosets

In groups we have xS = yS or xS ∩ yS = ∅.

For general loops, anything can happen:

Theorem (KINYON, PULA, V 2011)
If Q is a loop and S ≤ Q then

(Q \ S, {xS; x ∈ Q \ S})

is a symmetric design, and every symmetric design arises in
this way.



Proof of the “symmetric design theorem”
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Cosets in Bol loops

A loop Q is (right) Bol if ((xy)z)y = x((yz)y) holds.

Example (Einstein’s velocity addition)
Define ⊕ on {v ∈ R; ‖v‖ < c} by

u ⊕ v =
1

1 + (u · v)/c2

(
u +

1
γu

v +
1
c2

γu

1 + γu
(u · v)u

)
,

where γu = (1− ‖u‖2/c2)−1/2.

Problem
Does Lagrange’s theorem hold for Bol loops?

• yes, if S = 〈x〉 [ROBINSON 1966]

• yes, if |Q| is odd [FOGUEL, KINYON, PHILLIPS 2006]

• yes, for certain small subloops S [KINYON, PULA, V 2011]



Greedy orbits of 〈Rx ; x ∈ S〉

We assume that S ≤ Q, S is known, Q is not known.

s1 s2 s3 s4 s5 s6
id σ σρ ρ ρ2 σρ2

1 1 2 3 4 5 6
2 2 1 7 8 9 10
3 3 10 1 ?
4 4
5 5
6 6

3s2 = 10 = 2s6

3 = (2s6)s−1
2

3s6 = ((2s6)s−1
2 )s6

recall ((xy)z)y = x((yz)y)

3s6 = 2((s6s−1
2 )s6) = 2s3 = 7

? = 7

It so happens here that every “orbit” closes at a size (number of
rows) divisible by 6 = |S|. Hence |S| divides |Q|.

Similarly for some other small Bol loops S.



Observations about greedy orbits

The greedy orbits can get very long (e.g., 720 for |S| = 12).

Often a few select rows partition the greedy orbit.

Problem
Let S be a Bol loop. Consider greedy orbits of 〈Rx ; x ∈ S〉 in a
Bol loop Q.
• Are all greedy orbits finite?
• Are all greedy orbits actually orbits?
• Is the length of greedy orbits divisible by |S|?



Enumeration of centrally nilpotent loops



Enumeration of loops

Enumerations are usually considered up to
• isomorphism, a permutation of rows, columns and symbols

by the same permutation
• isotopism, a permutation of rows, columns and symbols by

three permutations (carefully with 1!)
• paratopism (or main classes), an isotopism plus a

permutation of the roles of rows, columns and symbols

Note: Isotopic groups are already isomorphic.



Loops up to isomorphism

[MCKAY, MEYNERT, MYRVOLD 2005] for 8 ≤ n ≤ 10
[HULPKE, KASKI, ÖSTERGÅRD 2011] for n = 11

n loops

4 2
5 6
6 109
7 23,746
8 106,228,849
9 9,365,022,303,540

10 20,890,436,195,945,769,617
11 1,478,157,455,158,044,452,849,321,016



Centrally nilpotent loops

A loop Q is centrally nilpotent if the series

Q, Q/Z (Q), (Q/Z (Q))/Z (Q/Z (Q)), . . .

terminates with {1} in finitely many steps.

Theorem
Let p be a prime. Then
• groups of order pk are centrally nilpotent
• Moufang loops of order pk are centrally nilpotent

[GLAUBERMAN, WRIGHT 1968]

• Bol loops of order pk are not necessarily centrally nilpotent
[FOGUEL, KINYON 2010]



Central extensions

A loop Q is a central extension of Z by F if

Z ≤ Z (Q) and Q/Z ∼= F .

Write Z = (Z ,+,0) and F = (F , ·,1).

Theorem
A loop Q is a central extension of Z by F if and only if Q is
isomorphic to the loop Q(θ) defined on F × Z by

(x ,a) ∗ (y ,b) = (xy , a + b + θ(x , y)),

where θ : F × F → Z is a (loop) cocycle, that is, it satisfies

θ(1, x) = θ(x ,1) = 0

for all x ∈ F.



Cocycles and coboundaries

Suppose from now on that Z = Fp is a prime field.

The cocycles F × F → Z form a vector space C(F ,Z ) over Fp.

Take any mapping τ : F → Z such that τ(1) = 0, and define

τ̂ : F × F → Z , τ̂(x , y) = τ(xy)− τ(x)− τ(y).

Then τ̂ is a cocycle called coboundary.

The coboundaries form a subspace B(F ,Z ) of C(F ,Z ).



Equivalences on cocycles

Theorem
For θ, µ ∈ C(F ,Z ), if θ − µ ∈ B(F ,A) then Q(θ) ∼= Q(µ).

Theorem
For (α, β) ∈ Aut(F )× Aut(Z ) and for θ ∈ C(F ,Z ) define

θ(α,β) : F × F → Z , θ(α,β)(x , y) = β(θ(α−1(x), α−1(y))).

Then θ(α,β) ∈ C(F ,A) and Q(θ) ∼= Q(θ(α,β)).

This defines an action of Aut(F )×Aut(Z ) on C(F ,Z ), in fact on
C(F ,Z )/B(F ,Z ).



The equivalence ≡

Let ≡ be the closure of the two equivalences. Then ≡ can be
seen as an equivalence relation on isomorphism classes.

The trouble is that distinct equivalence classes of ≡ can yield
the same isomorphism type of loops. Understanding ≡ is the
isomorphism problem for centrally nilpotent loops.



Cocycles in varieties

Cocycles and coboundaries restrict well to varieties.

Recall (x ,a) ∗ (y ,b) = (xy ,a + b + θ(x , y)).

property equivalent cocycle condition
commutativity θ(x , y) = θ(y , x)

associativity θ(x , y) + θ(xy , z) = θ(y , z) + θ(x , yz)

Moufang θ(x , y) + θ(xy , z) + θ((xy)z, y)
= θ(z, y) + θ(y , zy) + θ(x , y(zy))

etc.



Enumeration of nilpotent loops in varieties

• a cocycle θ : F × F → Z is given by |F |2 variables θ(x , y)

• a cocycle condition yields several linear equations on θ, for
instance, associativity θ(x , y) + θ(xy , z) = θ(y , z) + θ(x , yz)
is equivalent to |F |3 linear equations
• the resulting system of linear equations is sparse and can

be calculated with efficiently
• solving the system yields a subspace of all cocycles in a

given variety
• the equivalence ≡ can be used to replace the subspace

with a smaller set of isomorphism classes
• without additional ideas, the rest is a direct isomorphism

check



Enumeration of small Moufang loops

[CHEIN 1978, GOODAIRE, MAY, RAMAN 1999] for n ≤ 63
[NAGY, V 2007] for n = 64, 81

[SLATTERY, ZENISEK 2011] for n = 243

n groups nonassociative Moufang loops

12 5 1
...

32 51 71
...

64 267 4,262
81 15 5
243 67 72



Spectrum of Moufang loops

For which orders n is there a nonassociative Moufang loop?

• none of order p, p2, p3

• none of order p4 unless p ∈ {2,3}
• precisely 4 of order p5 if p > 3 [NAGY, VALSECCHI 2007]

• of even order 2m iff there is a nonabelian group of order m
[CHEIN, RAJAH 2003]

Much more is known but the problem is open in general.



Separability

... returning to enumeration of general nilpotent loops:

Call C(F ,Z ) separable if the isomorphism classes coincide
with the equivalence classes of ≡.

In the separable case, the number of isomorphism classes is
the number of orbits of the action of Aut(F )× Aut(Z ) on
C(F ,Z )/B(F ,Z ).

For instance, if Z = Fp, then Q with |Q| = pq or [Q : Z (Q)] = 2
are separable.



Counting orbits

G = Aut(F )× Aut(Z ), H ≤ G

Fix(H) = {θ ∈ C(F ,Z ); θh − θ ∈ B(F ,Z ) for all h ∈ H}

Orbits in Fix∗(H) = Fix(H) \
⋃

K>H Fix(K ) have size [G : H].

They can thus be counted by the inclusion-exclusion principle,
if we know how big the fixed spaces are.



The separability formula

Theorem (DALY, V 2009)
Let F be a loop and Z an abelian group, G = Aut(F )× Aut(Z ).
Suppose that C(F ,Z ) is separable. Then there are∑

H

|Fix∗(H)|
|B(F ,A)| · [NG(H) : H)]

central extensions of Z by F up to isomorphism, where the
summation runs over all subgroups H ≤ G up to conjugacy.

To determine the dimensions of the fixed spaces, calculate
kernels of the linear operators

θ 7→ θ − θ(α,β).

Some situations can be handled theoretically:



Centrally nilpotent loops of order 2q

N(n) = number of nilpotent loops of order n up to isomorphism.

Theorem (DALY, V 2009)
Let q be an odd prime. For an integer d, let MaxDiv(d) be the
maximal proper divisors of d. Then

N(2q) =
∑

d |q−1

1
d

2(q−2)d +
∑

∅6=D⊆MaxDiv(d)

(−1)|D| · 2(q−2) gcd(D)

 .

In particular, N(2q) ∼ 2(q−2)(q−1)

q−1 .



Example: N(14) = N(2 · 7)

1
6

(25·6−25·3−25·2+25·1) +
1
3

(25·3−25·1) +
1
2

(25·2−25·1) +
1
1

25·1

N(14) = 178,962,784



Small cases, n 6= p, 2p

[DALY, V 2009]

n centrally nilpotent loops up to isomorphism

8 139
9 10

12 2,623,755
15 66,630
16 466,409,543,467,341
18 157,625,998,010,363,396
20 4,836,883,870,081,433,134,085,047
21 17,157,596,742,633
22 123,794,003,928,541,545,927,226,368
24 ?



Existence of simple automorphic loops



Automorphic loops

A loop Q is automorphic if Inn(Q) ≤ Aut(Q).

Note: Inn(Q) = 〈Lx ,y , Rx ,y , Tx ; x , y ∈ Q〉, where

Lx ,y = L−1
yx LyLx ,

Rx ,y = R−1
xy RyRx ,

Tx = L−1
x Rx .

Automorphic loops include groups, commutative Moufang
loops, and several other varieties of loops.

Theorem (KINYON, KUNEN, PHILLIPS 2002)
Diassociative automorphic loops are Moufang.



Primitive groups

A group G acts primitively on X if no nontrivial partition of X is
invariant under G. The degree of G is the cardinality of X .

2-transitive groups ⊆ primitive groups ⊆ transitive groups.

A library of all primitive groups of order n < 2,500 is available in
GAP.

Theorem (ALBERT 1943)
A loop Q is simple iff Mlt(Q) acts primitively on Q.



Naive search for simple loops, groups

Let G be a pritimive group on a set Q.

To construct all simple loops with Mlt(Q) = G, it suffices to find
all subsets

R = {rx ; x ∈ Q},

where rx (1) = x , r1 = idQ,

rx r−1
y is fixed-point free for x 6= y , (*)

and then check that the resulting Latin square has Mlt(Q) = G.

This is impossible already for very small orders.

Theorem (CAMERON 1992)
As n→∞, the probability that a random loop Q of order n
satisfies Mlt(Q) = Sn or Mlt(Q) = An approaches 1.



Right translations of automorphic loops

Let G = Mlt(Q), H = Inn(Q) = G1.

Lemma
Q is automorphic iff hRxh−1 = Rh(x) for every x ∈ Q, h ∈ H.

Proof.
The following are equivalent (with y universally quantified):

hRxh−1(y) = Rh(x)(y),

h(h−1(y)x) = yh(x),

h(yx) = h(y)h(x).

Lemma
In an automorphic loop Q, Rx commutes with all elements of
the stabilizer Hx .



Constructing all finite simple automorphic loops

Constructing the sets R = {rx ; x ∈ Q} ⊆ G:

• we know where to start: rx ∈ CG(Hx )

• we must include entire conjugacy classes
• call two conjugacy classes A, B (possibly the same)

compatible if ab−1 is fixed-point free for a ∈ A, b ∈ B, a 6= b
• construct a vertex-labeled graph Γ:

vertices: self-compatible conjugacy classes
edges: defined by compatibility
label: the size of conjugacy class.
• find all cliques in Γ with vertex sum equal to |Q|
• keep cliques that yield loops with Mlt(Q) = G



The algorithm



Restricting the primitive groups in the search

Lemma
If Q is an automorphic loop then Mlt(Q) cannot be 4-transitive.

Theorem (VESANEN 1996)
If Mlt(Q) is solvable then Q is solvable.

We can therefore skip solvable and highly transitive primitive
groups. Generally speaking, if An, Sn cannot be excluded, the
situation is hopeless.

Theorem (JOHNSON, KINYON, NAGY, V 2011)
There are no nonassociative simple automorphic loops of order
less than 2,500.



Structural results on automorphic loops

Using Lie algebras:

Theorem (GRISHKOV, KINYON, NAGY 2011)
There are no finite simple nonassociative commutative
automorphic loops.

Theorem (KINYON, KUNEN, PHILLIPS, V 2011)
Automorphic loops of odd order are solvable.



More results on automorphic loops

Using derived operations:

Theorem (JEDLIČKA, KINYON, V 2010)
Let p be an odd prime. Commutative automorphic loops of
order pk are centrally nilpotent. There is an automorphic loop of
order p3 with trivial center.

Using Zp-modules:

Theorem (BARROS, GRISHKOV, V 2011)
For every prime p there are precisely 7 commutative
automorphic loops of order p3 up to isomorphism.



Loops with commuting inner mappings



Nilpotency class

Nilpotency class cls(Q) is the length of the upper-central series.
Thus:

cls(Q) = 1 if Q is an abelian group
cls(Q) = 2 if Q/Z (Q) is an abelian group but Q is not

. . .

Theorem
Let Q be a group. Then Q/Z (Q) ∼= Inn(Q). In particular, Inn(Q)
is abelian iff cls(Q) ≤ 2.

Theorem (BRUCK)
Let Q be a loop. If cls(Q) ≤ 2 then Inn(Q) is abelian.



First examples

If Inn(Q) is abelian, what can be said about cls(Q)?

Theorem (NIEMENMAA, KEPKA 1994)
If Q is finite with Inn(Q) abelian then Q is centrally nilpotent.

[CSÖRGŐ 2007] obtained an ad hoc example of a loop Q (of
order 128) such that Inn(Q) is abelian and cls(Q) = 3.

[DRÁPAL, V 2008] constructed many such examples
systematically. The construction is ultimately based on the
determinant and the way it controls the associator mapping. (It
looks like |Q| ≥ 128 is necessary.)

[NAGY, V 2009] a Moufang example of order 214



First human results

Theorem (CSÖRGŐ, DRÁPAL 2005)
Let Q be a loop where left translations form a set closed under
conjugation. If Inn(Q) is abelian then cls(Q) ≤ 2.

Theorem (NAGY, V 2009)
If Q is a uniquely 2-divisible (that is, x 7→ x2 is a bijection)
Moufang loop with Inn(Q) abelian then cls(Q) ≤ 2.



Inhuman results

Theorem (PHILLIPS, STANOVSKÝ 2010)
Let Q be a Bol loop such that (xy)−1 = x−1y−1. If Inn(Q) is
abelian then cls(Q) ≤ 2.

Proof.
16,000 clauses in Waldmeister = 1,068 pages of pdf output



More inhuman results

Similar results were obtained with Prover9, mainly by Veroff.

Theorem (KINYON, VEROFF, V 2011)
Let Q be a Moufang loop with Inn(Q) abelian. Then cls(Q) ≤ 3.

Theorem (KINYON, VEROFF 2011)
Let Q be a Bol loop with Inn(Q) abelian. Then cls(Q) ≤ 3.

The proofs are probably longest ever produced by automated
deduction: 20,000–30,000 clauses.



Syntax of the problem - easy!

Suppose we want to prove with Prover9:
If Q is a group and Inn(Q) is abelian then cls(Q) ≤ 2.

% assumptions
1*x=x.
x*1=x.
x*x’=1.
x’*x=1.
x*(y*z) = (x*y)*z.
T(x,y) = x’*(y*x).
T(z,T(x,y)) = T(x,T(z,y)).
comm(x,y) = (y*x)’*(x*y).
% goal
comm(x,y)*z = z*comm(x,y).

Prover9 finds a proof of length 24 in 0.01 seconds.



Syntax of a loopy example

Here is an input file for the conjecture:
If Q is a loop and Inn(Q) is abelian then cls(Q) ≤ 3.

% assumptions
x*1=x. 1*x=x. x\(x*y)=y. x*(x\y)=y. (x*y)/y=x. (x/y)*y=x. % loop
T(x,y) = x\(y*x). % conjugations
L(x,y,z) = (y*x)\(y*(x*z)). % left inner mappings
R(x,y,z) = ((z*x)*y)/(x*y) = z. % right inner mappings
T(x,T(y,z)) = T(y,T(x,z)). % Inn(Q) abelian
T(x,L(y,z,u)) = L(y,z,T(x,u)).
T(x,R(y,z,u)) = R(y,z,T(x,y)).
L(x,y,L(z,u,v)) = L(z,u,L(x,y,v)).
L(x,y,R(z,u,v)) = R(z,u,L(x,y,v)).
R(x,y,R(z,u,v)) = R(z,u,R(x,y,v)).
assc(x,y,z) = (x*(y*z))\((x*y)*z). % associators
comm(x,y,z) = (y*x)\(x*y). % commutators

% goal (one of many, prove them one by one)
% this one says: [x,[y,z,u]] commutes with all elements
comm(x,assc(y,z,u))*v = v*comm(x,assc(y,z,u)).



Coaxing the proof out - not so easy!

In Prover9 power users apply three techniques, in addition to
the tweaking of technical parameters of the search:

• hints: provide the prover with clauses from proofs of similar
results, and ask the prover to give such clauses priority in
the search
• sketches: prove a weaker theorem with (several) extra

assumptions, then use the proof as hints for the next round
where an assumption has been removed; repeat
• semantic guidance: generate examples (by finite model

builder), sort clauses by true/false on examples, use these
to construct a bidirectional proof (by contradition)



Automated deduction in loop theory

Automated deduction often provides a key technical step in a
high-level proof. For instance, while proving . . .

Theorem (Decomposition for comm. automorphic loops)
A finite commutative automorphic loop is a direct product of a
loop of odd order and a loop of order a power of 2.

. . . we needed to show that a product of two squares is a
square. Prover9 discovered that A2 ∗ B2 is equal to the square
of

((((((A * A) \ A) * (B * (A * A)))
\ (B * (A * A))) \ 1) * (((((((A * A) \ A) * (B * (A * A))) \ (B * (A *A))) \ 1)
\ ((((A * A) \ A) * ((A * A) \ A)) * (B * (A * A)))) \ 1))
\ ((((((A * A) \ A) * (B * (A * A))) \ (B * (A * A))) \ 1)

* ((((((((A * A) \ A) * (B * (A * A))) \ (B * (A * A))) \ 1)
\ ((((A * A) \ A) * ((A *A) \ A)) * (B * (A * A)))) \ 1)

* ((((((A * A) \ A) * (B * (A * A)))
\ (B * (A * A))) \ 1) \ ((((A * A) \ A) * ((A * A) \ A)) * (B * (A * A))))))



The End
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