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Communicating Information

Electronically brings danger of introducing errors

International Morse Code

1. A dash is equal to three dots.

2. The space between parts of the same letter is equal to one dot.
3. The space between two letters is equal to three dots.

4, The space between two words is equal to seven dots.
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Standard representation

Block codes:
Codewords are strings
Errors are incorrect entries

Distance(sent, received)
= number of errors
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Codes in
Graphs
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1973 Delsarte

Interpret vertex subsets C of
any graph X as codes

svertices in C are codewords

Introducing a “single error”
Into a codeword v gives
vertex u at distance 1 from v
In X

if u notin C then call u a
neighbour of code C
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Classical setup:
X = H(m,q) a Hamming graph

In H(3,2) take

VX = m-tuples from C={000,111}s086=3
alphabet of size g

« {X,y}edgein Xif X,y "
differ in one entry

 Distance d(x,y) = number of
different entries 101

« Minimum distance © for C is
least d(x,y) for x,y in C
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Delsarte suggested: take X a
completely regular graph

Distance partition of C Introduced completely
regular codes

 Distance partition is
equitable

o e - For v in C; numbers of

| edges from v to vertices in
Cj depend onlyoniandj—
iIndependent of v

C C1 Cr

C, = neighbour set of C
r = covering radius
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Example of completely regular code

Cin H(4,2)
Completely regular codes
®
/\ W |  Delsarte: Generalising
@ O - perfect codes

™., /O - - O\ d . . .

X X  Disappointingly not many
g AN . CR codes known with large

v ‘ minimum distance &

L= S = = =
[l =T o i = T = I o = ]
[l = = T R = T =]
[l el = T T = R = T =}

4 ©  Led to Conjectures for CR

codes in H(m,q)
Minimum distance 6 = 2
covering radius =1
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Conjectures for CR codes in H(m,q)

Cin H(4,2) Conjectures
@ « Neumaier 1992 only CR
/\ - ‘ code in an H(m,q) with & =
o O_ o 8 is the binary Golay code
AO/ J

| olo1:: ¢ Borges, Rifa, Zinoviev 2001

‘ / . ‘ every CR code in an

& . H(m,g) has & at most 8

Minimal distance 6 = 2
covering radius = 2
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Two directions for further study
using symmetry

Automorphism group Aut(C):
Setwise stabilser of C in Aut(X)

For all codes C:
. - Aut(C) leaves each C;
o o b Invariant
C C, C C is completely transitive:

 Aut(C) is transitive on C; for

Warning: Some use more each |
restrictive definition of
Aut(C) !!
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Work on completely transitive
codes in graphs

In H(m,q) In Johnson graphs J(v,k)

o Patrick Sole e Bill Martin
 Michael Giudici and CEP  Chris Godsil and CEP

 Rifa and Zinoviev: with
restrictive Aut(C) show 0 at
most 8

* Nell Gillespie PhD 2012



NASA space probe Mariner 9in 1971
used the Hadamard code n=32 to

An example- transmit photos of Mars back to Earth

Hadamard codes

« Take Hadamard matrix H

« “Double and negate” Tiny Example:
11
« Change-1t00 11 1-1
1-1 ‘ -1-1
* Code(H) in H(n,2) 11

e Automorphism (P, Q) with

H=PHQ with P, Q monomial 11
‘ 10
« Aut(H) = Aut(Code(H)) 8 (1)

e Size2n, ©d=n/2
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A completely transitive Hadamard code

Neil Gillespie and CEP

« Uniquel2 x 12 matrix H

1962 M Hall Aut(H)=2.M,,

Code(H) is completely
transitive!

*0=06

Covering radius = 3
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Second direction: neighbour-transitive codes

Aut(C) transitive on C & C4
.
* Gillespie: C in H(m,q) |
: i ‘ e o o
 Liebler & CEP: C in J(v,k)
C C1 Cr

We don’t care about the

“far-away” vertices



Neil Gillespie’s work

Constructions &
Classifications

 Remarkable new family of
codes C(T)

 Building blocks for large
class of neighbour-
transitive codes
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Neil’'s C(T) codes

Choose favourite For T=Sz on{1,2 3}

permutation group T
« C(T)InH(3,3)

« Each xin T becomes a * |T| = 6 codewords

codeword:
« Length 3, Alphabet {1,2,3}
* E.g. If T=S5 then (123)

sometimes written as » Distance between
;;i (1% 2% 3%) and (1Y 2Y 3Y)
+ Take associated codeword S nu_rlnber of points moved by
as (231)=(1X2X3% Xy~ s0 0 = 2 for C(Sg)

Gillespie & CEP
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In Neil’s classification T is simple
“socle” of 2-transitive group

T=PSL(2,29) on PG(1,29)

« & = minimal degree(T)

C(T) in H(30,30)
Size [T|=13K
Length 30 = |PG(1,29)|

 Aut (C(T))contains Tx T
and is neighbour-transitive

* Proof uses 2-transitivity

Alphabet PG(1,29)

® = 28 = minimal degree(T)
Gillespie & CEP

So corrects 13 errors!
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N. Tr. codes in Johnson graphs  **

Johnson graph J(v,k) Based on av-set V

Johnson graph J(v. k) based on v-set V
o vertex set (})
@ arc set J: all vertex pairs (o, 1) with |a Naq| = k — 1
@ distance in J(v.k): dy(a.B) =i & |lanp|=k—i
View code C as subset of vertices of J(v. k)

Neighbourset Ci={y1 €C | dy(v,71) =13~ € C}
Minimum distance §(C) = minimum of d;(v,~') = k — |y N+/|
where 7,7 € C,~v £ +/
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AUt(C) < Aut(J(v,k)) = Sym(V)=S, *

12 12 :
» »” CinJ(4,2)
14 /T\ 14 /1'\
13 || —>24 13 « e24
1723 23
*34 “34

Example 1. C={12.13.23}, C; = {14.24.34},
Aut(C) = Sz = ((12).(123))

Example 2. C = {12.34}, C; = {13, 14,23. 24},
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Aut(C) < Aut(J(v,k)) = Sym(V)=S, 2

CinJ(4,2)

Non-Example 3. C = {12.13}, Cy = {14.22,24, 34},
Aut(C) = ((23)) transitive on C (code-transitive) but not on C;

Non-Example 4. C = {14.22,24,34}, C; = {12.13},
Aut(C) transitive on C; but not on C.
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Some Questions:

@ Are there many examples?

@ Are most completely transitive?

@ How large can §(C) be?

@ J examples involving interesting ‘geometry’?

@ Is any kind of classification feasible?



LBER THE UNIVERSITY OF
W'Y WESTERN AUSTRALIA
@,

Comment on “design” interpretation

 Since vertices in J(v,k) are k-sets

* Natural to interpret codes C in J(v,k)
as designs

* Nice examples arise from nice
designs!



RN THE UNIVERSITY OF
%Y WESTERN AUSTRALIA

A few nice neighbour-transitive examples

 Blocks of 2-(11, 5, 2) biplane in J(11,5) with
group PSL(2,11)

 Blocks of the Witt designs for Mathieu groups
M1, M5, Mys, Mya, My, and other goodies!

« Quadrics in the Higman-Sims graph with
group HS Il.e. a 2-(176,50,14) design

» Exactly four examples with group Co5 and
v=276, k = 6, 36, 100, 126
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This classification problem comes from a
reduction to problem about 2-transitive
permutation groups

« Case of sporadic 2-transitive permutation
groups (such as Mathieu groups, HS, Co,)

 Finite problem solved using theory and GAP
» Collaboration with Max Neunhoeffer

 Complete list of sporadic examples [21 of
them] along with their minimum distances o
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Comment on “code” interpretation
arising from discussions with Max

 Since vertices in J(v,k) are k-sets

« Another natural interpretation: codeword = binary
v-tuple [characteristic function of the k-set]

 Then C becomes a constant weight binary code in
Hamming graph H(v,2)

* Distance between code words in H(v,2)
= 2 x distance In J(v,k)

e Group of C in Aut(J(v,k)) contained in group of C in
Aut(H(v,2)) — neighbour transitivity does not go through
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Comment on “complements”

@ Givencode Cin J(Vv. k)
fory Cc Vwritey =V \~
@ DefineC={7|y€C} Ci={7|m €Ci}
@ Then Cis a code in J(v. Vv — k) = J(v. k) with ‘block size’
vV —K
C has neighbour set Cy and Aut(C) = Aut(C)
C is neighbour-transitive < C is neighbour-transitive

SO assuming k < % really no restriction
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Comment on “geometrical” interpretation

@ Regard (C, Cy) as an incidence structure. For
v € C,v1 € Cyq, (v,7) incident & dy(v.7v1) =1

e Let INC(C. Cy) be set of incident (v.v1) with~ € C.~1 € Cq
e Cis called incidence-transitive if Aut(C) is transitive on
INC(C. Cy)

@ if 5(C) > 2, then C incidence-trans = C neighbour-trans

@ if 5(C) > 3, then C incidence-trans < C neighbour-trans
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More neighbour-transitive examples

@ Fix cV, k< |U|,andwriteld =V \ U.
@ Let C=C(U. k) = (%), so Aut(C) = Sym(U) x Sym(iA)
o Ci={me(y)|Imnul=k-1}

e C is neighbour-transitive

@ Alsoif || < kthen C(U. k) := { all k-subsets containing

4} also neighbour-transitive



Comments on these
[work with Bob Liebler]

Theorem These are all the neighbour-transitive -
examples with Aut(C) intransitive on V

1993, 2003 Meyerowitz classified all completely regular
codes in J(v,k) of “strength zero” — they are precisely
the intransitive neighbour-transitive examples!



L] THE UNIVERSITY OF
'Y WESTERN AUSTRALIA
@,

Another set of known examples:

1994 BiIll Martin  “groupwise complete designs”
Partition U ={ U4,U,, ..., U} of Vwith | U;| = a, and b >3
Choose c with 1 < c at most b/2 and k = bc

Define C = all unions of ¢ parts of U code in J(v,k)

1994 Bill determined which groupwise complete designs
are completely regular codes in J(v,k)

Showed: if C in J(v,k) completely regular and C is a 1-
design but not a 2-design then C is a groupwise
complete design
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From now on this is work with Bob Liebler

Group of groupwise complete design C: Stab(U) = S, wr Sy
Stab(U): always neighbour transitive on C

Bob and I: generalised g.c.d. construction — take any code C
iIn J(b,c) based on the b-set U and define

C ={union of all parts in x | x in Cg }

Theorem C is neighbour-transitive if C, is “strongly
iIncidence transitive”
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From now on this is work with Bob Liebler

Bob and I: take any code Cg in J(b,c) based on the b-set U
and define

C ={union of all parts in x | x in Cg }

5 more explicit constructions based on partition U of V
[a couple are completely transitive — discovered with Chris Godsil]

Theorem If C is neighbour-transitive in J(v,k) and Aut(C) is
Imprimitive on V (preserves some partition U) then C is one
of these examples
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From now on assume Aut(C) primitive on V

Given Aut(C) is primitive on V and neighbour trans on C
(@) o(C) > 3 implies Aut(C) is 2-transitive on V
(b) o(C) > 2 and C inc-trans implies Aut(C) is 2-trans on V

o

Idea of Proof Strategy

@ LetueVand A(u) =n{y € Clu e v}

@ Prove A(u) block of imprimitivity for Aut(C). Conclude
A(u) = {u}

@ ‘Use incidence-transitivity’ to prove Aut(C) 2-trans.

Opens possibility to classify incidence-transitive codes with
a(C) > 2, using classification of 2-transitive groups.
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This is the 2-transitive reduction for™
neighbour transitive codes in J(v, k)

Still not complete — significant guestions remain!
Already showed you sporadic case — complete classification

This leaves essentially four cases

— Projective

— Affine

— Rank 1 groups (Sz, Ree, unitary)
— Symplectic
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Projective groups: G = Aut(C)

PSL(n.q) < G <PIrL(n.q)withY =PG(n—-1.q)

Example n=2 g= g3, v = Baer sub-line PG(1, q), C = ~C

Theorem for n =2

These are the only examples withn=2, k > 3

Examples n >3 ~ = asubspace of PG(n—1,q), C =+C©



Theorem for n > 3: Either C as in the examples or

for each line A of PG(n—1.q), [AN~| € {0.x.qg + 1} for x fixed,
and moreover, either x = 2, or g = g& and x = qp + 1

Examples with x = 2

C = the complements of r-subspaces in PG(n.2) - any others?
Any with g = g5. x = go + 1?7 — Baer sub-geoms are not
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Affine actions: G = Aut(C) in AT'L(n,q)

G < ATL(n.q) with V = AG(n. q)

Examplen=1 q=4,V=F4, C={y=1{0,1} =F>},
Cy = {{0.€}.{0.€ + 1}, {1.€}.{1. £ +1})
G generatedby t; : x — x +1and o : X — x?

Theorem for n = 1

This is the only example with n = 1 with G incidence-transitive

Proof is surprisingly difficult
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Affine actions: G = Aut(C) in AT'L(n,q)

Examples n > 2 ~ = a subspace of AG(n. q), C =~©
Examplesn>2 g =4,y = AG(n.2) a Baer sub-geometry,
C=+C%

Theorem for n > 2: Either C as in the examples or

g = 4 and, for each line A\ of AG(n.q), |AN~| € {0.2.4}




Rank 1 groups: Ree, Sz, Unitary

—-Sz(g) on V, |V|=g%+1, g=222*1 no
examples

—Ree(q) on V, |V|=03+1, g=3%2"1 no
examples

—PSU(3, q) on V, |V|=g3+1, examples from
unital k=g+1
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Symplectic groups G=Sp(2n,2) with
|V|= 2n1(22+1) or 2-1(21-1)

G = Sp(n.2) with V = Q°
set of non-degenerate quadratic forms of type = = + that

polarise to the symplectic form preserved by G

Let V(2n.2) be the underlying space for natural G-action
Example U nonsingular so V(2n.2) =U 1L U™+
v = { all forms p € Q- such that |y, ¢|;,. have

typeS EUs EYL where EUEYL = € }
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So that’s it:

Several open problems

Affine and projective cases: Very symmetrical geometrical
configurations - do they exist?

Symplectic groups: huge analytical issues — orthogonal model

Ways forward?

— Computation for small n
— Use geometry and algebra for better understanding
— Use knowledge of maximal subgroups to restrict possibilities



