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Communicating Information

Electronically brings danger of introducing errors



Standard representation

Block codes:

Codewords are strings

Errors are incorrect entries

Distance(sent, received)
= number of errors



Codes in 
Graphs

1973 Delsarte

•Interpret vertex subsets C of 

any graph X as codes

•vertices in C are codewords

•Introducing a “single error” 

into a codeword v gives 

vertex u at distance 1 from v 

in X 

•if u not in C then call u a 

neighbour of code C



Classical setup: 
X = H(m,q) a Hamming graph

• VX = m-tuples from 

alphabet of size q

• { x, y } edge in X if  x, y 

differ in one entry

• Distance d(x,y) = number of 

different entries

• Minimum distance δ for C is 

least d(x,y) for x,y in C

In  H(3,2)  take

C={ 000, 111 } so δ = 3



Delsarte suggested: take X a 
completely regular graph 

Distance partition of C Introduced completely 

regular codes

• Distance partition is 

equitable

• For v in Ci numbers of 

edges from v to vertices in 

Cj depend only on i and j –

independent of v

C1 = neighbour set of C
r = covering radius



Example of completely regular code

C  in  H ( 4 , 2 )
Completely regular codes

• Delsarte: Generalising 

perfect codes

• Disappointingly not many 

CR codes known with large 

minimum distance δ

• Led to Conjectures for CR 

codes in H(m,q)
Minimum distance δ = 2
covering radius = 1



Conjectures for CR codes in H(m,q)

C  in  H ( 4 , 2 )

• Neumaier 1992 only CR 

code in an H(m,q) with  δ = 

8 is the binary Golay code 

• Borges, Rifa, Zinoviev 2001

every CR code in an 

H(m,q) has δ at most 8

Minimal distance δ = 2
covering radius = 2

Conjectures



Two directions for further study
using symmetry

Automorphism group Aut(C):     

Setwise stabilser of C in Aut(X)

For all codes C:

• Aut(C) leaves each Ci
invariant

C is completely transitive:

• Aut(C) is transitive on Ci for 

each iWarning: Some use more 
restrictive definition of 
Aut(C)  !!



Work on completely transitive
codes in graphs

In H(m,q)

• Patrick Sole

• Michael Giudici and CEP

• Rifa and Zinoviev: with 

restrictive Aut(C) show δ at 

most 8 

• Neil Gillespie  PhD 2012

In Johnson graphs J(v,k)

• Bill Martin

• Chris Godsil and CEP



An example: 

Hadamard codes

• Take Hadamard matrix H

• “Double and negate”

• Change -1 to 0

• Code(H) in H(n,2) 

• Automorphism (P, Q) with 

H=PHQ with  P, Q monomial

• Aut(H) = Aut(Code(H))

• size 2n ,  δ = n/2

Tiny Example:

1 1
1 -1

1  1
1 -1
-1 -1
-1  1

1  1
1  0
0  0
0  1

NASA space probe Mariner 9 in 1971 
used the Hadamard code  n=32 to 
transmit photos of Mars back to Earth



A completely transitive Hadamard code 

Neil Gillespie and CEP

• Unique12 x 12 matrix H 

• 1962 M Hall Aut(H)=2.M12

• Code(H) is completely 

transitive!

• δ = 6

• Covering radius = 3



Second direction: neighbour-transitive codes

Aut(C) transitive on C & C1

• Gillespie: C in H(m,q)

• Liebler & CEP: C in J(v,k)

We don’t care about the 

“far-away” vertices



Neil Gillespie’s work

Constructions & 

Classifications

• Remarkable new family of 

codes C(T)

• Building blocks for large 

class of neighbour-

transitive codes



Neil’s    C(T) codes

Choose favourite 

permutation group T

• Each x in T becomes a 

codeword:

• E.g. If T=S3 then (123) 

sometimes written as

• Take associated codeword 

as  (2 3 1) = (1x 2x 3x)

Gillespie & CEP

For  T = S3  on { 1, 2, 3 }

• C(T) in H(3,3)

• |T| = 6 codewords

• Length 3, Alphabet {1,2,3}

• Distance between 

(1x 2x 3x) and (1y 2y 3y)

Is number of points moved by 

xy-1 so δ = 2 for C(S3)

1 2 3
2 3 1



In Neil’s classification T is simple 
“socle” of 2-transitive group 

• δ = minimal degree(T)

• Aut (C(T)) contains T x T 

and is neighbour-transitive

• Proof uses 2-transitivity

Gillespie & CEP

T=PSL(2,29) on PG(1,29)

• C(T) in H(30,30)

• Size  |T| ≈ 13K 

• Length 30 = |PG(1,29)|

• Alphabet PG(1,29)

• δ = 28 = minimal degree(T)

• So corrects 13 errors!



N. Tr. codes in Johnson graphs 

Johnson graph J(v,k) Based on a v-set  V



Aut(C) < Aut(J(v,k)) = Sym(V)=Sv

C in J(4,2)



Aut(C) < Aut(J(v,k)) = Sym(V)=Sv

C in J(4,2)



Some Questions:



Comment on “design” interpretation

• Since vertices in J(v,k) are k-sets

• Natural to interpret codes C in J(v,k) 

as designs

• Nice examples arise from nice 

designs!



A few nice neighbour-transitive examples

• Blocks of 2-(11, 5, 2) biplane in J(11,5) with 

group PSL(2,11)

• Blocks of the Witt designs for Mathieu groups 

M11, M12, M22, M23, M24 and other goodies!

• Quadrics in the Higman-Sims graph with 

group HS     i.e. a 2-(176,50,14) design

• Exactly four examples with group Co3 and 

v=276, k = 6, 36, 100, 126



This classification problem comes from a 

reduction to problem about 2-transitive 

permutation groups 

• Case of sporadic 2-transitive permutation 

groups (such as Mathieu groups, HS, Co3)

• Finite problem solved using theory and GAP

• Collaboration with Max Neunhoeffer

• Complete list of sporadic examples [21 of 

them] along with their minimum distances δ



Comment on “code” interpretation 

arising from discussions with Max

• Since vertices in J(v,k) are k-sets

• Another natural interpretation: codeword = binary 

v-tuple [characteristic function of the k-set]

• Then C becomes a constant weight binary code in 

Hamming graph H(v,2)

• Distance between code words in H(v,2)                  

=  2  x  distance in J(v,k)

• Group of C in Aut(J(v,k)) contained in group of C in 

Aut(H(v,2)) – neighbour transitivity does not go through



Comment on “complements”



Comment on “geometrical” interpretation



More neighbour-transitive examples



Comments on these  
[work with Bob Liebler]

Theorem These are all the neighbour-transitive 

examples with Aut(C) intransitive on V

1993, 2003  Meyerowitz classified all completely regular 

codes in J(v,k) of “strength zero” – they are precisely 

the intransitive neighbour-transitive examples!



Another set of known examples:

1994   Bill Martin “groupwise complete designs”

Partition U = { U1,U2, ... , Ub}  of V with | Ui| = a, and b >3

Choose c with 1 < c at most b/2 and k = bc

Define C = all unions of c parts of U   code in J(v,k)

1994  Bill  determined which groupwise complete designs 

are completely regular codes in J(v,k) 

Showed: if C in J(v,k)  completely regular and C is a 1-

design but not a 2-design then C is a groupwise

complete design



From now on this is work with Bob Liebler

Group of groupwise complete design C: Stab(U) = Sa wr Sb

Stab(U):     always neighbour transitive on C

Bob and I: generalised g.c.d. construction – take any code C0
in J(b,c) based on the b-set U and define 

C = { union of all parts in x | x in C0 }

Theorem C is neighbour-transitive if C0  is “strongly 

incidence transitive”



From now on this is work with Bob Liebler

Bob and I: take any code C0 in J(b,c) based on the b-set U 

and define 

C = { union of all parts in x | x in C0 }

5 more explicit constructions based on partition U of V 
[a couple are completely transitive – discovered with Chris Godsil]

Theorem If C is neighbour-transitive in J(v,k) and Aut(C) is 

imprimitive on V (preserves some partition U) then C is one 

of these examples



From now on assume Aut(C) primitive on V



This is the 2-transitive reduction  for 
neighbour transitive codes in J(v, k)

Still not complete – significant questions remain!

Already showed you sporadic case – complete classification

This leaves essentially four cases

– Projective 

– Affine

– Rank 1 groups (Sz, Ree, unitary)

– Symplectic



Projective groups: G = Aut(C)



Projective groups: G = Aut(C)



Affine actions: G = Aut(C) in AΓL(n,q)



Affine actions: G = Aut(C) in AΓL(n,q)



Rank 1 groups: Ree, Sz, Unitary

– Sz(q) on V, |V|=q2+1, q=22a+1 no 

examples

– Ree(q) on V, |V|=q3+1, q=32a+1 no 

examples

– PSU(3, q) on V, |V|=q3+1, examples from 

unital k=q+1



Symplectic groups G=Sp(2n,2) with 
|V|= 2n-1(2n+1) or 2n-1(2n-1) 



So that’s it:

• Several open problems

• Affine and projective cases: Very symmetrical geometrical 

configurations - do they exist? 

• Symplectic groups: huge analytical issues – orthogonal model

• Ways forward? 

– Computation for small n

– Use geometry and algebra for better understanding

– Use knowledge of maximal subgroups to restrict possibilities


