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A Hierarchy of Problems

Existence problem Given a collection of properties, decide
whether there exists an object realizing these
properties.

Counting problem Given a collection of properties, count the
number of distinct objects meeting the properties.
Two versions: all, all up to isomorphism/equivalence.

Classification problem Given a collection of properties, describe,
up to some criterion of isomorphism, all the objects
that have the desired properties.

Characterization problem Develop a deeper understanding of
classified objects.
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Counting
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Counting by Dynamic Programming
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Counting by Dynamic Programming

Count the matches in one box: 50
Count the boxes: 19
50 · 19 = 950

Earlier: 1-factorizations of complete graphs, Latin squares,. . .
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Definitions

A) Directed Hamiltonian cycles:

B) (Undirected) Hamiltonian cycles: Divide #A by 2.

C) Gray code: 000, 001, 011, 111, 101, 100, 110, 010
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Example: 3-Cube (Q3)
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Patric Österg̊ard 35th ACCMCC, Melbourne, 5.–9.12.2011 7 / 24



Example: 3-Cube (Q3)

010

000

001 100

011

111

101 110
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Example: 3-Cube (Q3)
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Outline of Algorithm

Consider a finite bipartite graph Γ = (V ,E ).

1. Partition V into sets Vi such that every edge has its
endpoints in consecutive sets Vk and Vk+1 for some k .

2. For k = 0, 1, . . . build up (and count) collections of subpaths
of a Hamiltonian cycle that are induced by ∪ji=0Vi for
j = 0, 1, . . ..

Related old algorithm: W. Kocay, An extension of the multi-path
algorithm for finding hamilton cycles, Discrete Math. 101 (1992),
171–188.
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Utilizing Symmetries

The stabilizer of the partition V0,V1, . . . ,VM can be used to speed
up the counting.

Qn, the n-cube: Vi contains the vertices with Hamming weight i .
The order of the stabilizer is n!.

Example. 3-cube:

V0 = {000}
V1 = {001, 010, 100}
V2 = {011, 101, 110}
V3 = {111}
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A Bidirectional Approach, or Gluing

(a) Proceed Vo → V1 →.
(b) Proceed VM → VM−1 →.

Glue the structures when they meet!
Meet in the middle.

If there is an automorphism of the original graph mapping the
elements of Vi to VM−i , then (b) can be omitted.
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Two gluing strategies
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Two gluing strategies

1. Make exhaustive attempts

2. Determine what the counterpart should look like
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The 6-Cube

The number of Hamiltonian cycles of the n-cube is 0, 1, 6, 1344,
906 545 760 for i = 1, 2, 3, 4, and 5, respectively (A066037 in the
OEIS). The case n = 6 has attracted a lot of interest along the
years:
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Solutions up to Level 3, up to Equivalence

Level 0: 1 solution (counter value 1)
Level 1: 1 solution (counter value 15)
Level 2: 3446 solutions

Paths #

1 13 495
2 263 305
3 2 782 510
4 17 003 576
5 61 154 671
6 127 360 225
7 142 398 993
8 65 084 556
9 7 887 199

10 139 098

Total 424 087 628
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Glued Hamiltonian Cycles of the 6-cube

Paths #

1 269 635 088 041 094 880
2 19 221 791 375 622 767 040
3 361 924 641 407 769 994 080
4 2 623 087 675 470 868 439 040
5 8 443 693 910 745 312 544 800
6 12 696 602 985 718 261 583 040
7 8 812 957 118 756 042 697 120
8 2 606 036 710 760 600 434 560
9 268 829 026 417 644 883 200

10 5 590 226 830 719 432 960

Total 35 838 213 722 570 883 870 720

Note. Deza and Shklyar make incorrect claims for n = 6 in
arXiv:10043.4291v1
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Enumeration of Hamiltonian Cycles in 6-cube

March 24, 2010

Michel Deza1 and Roman Shklyar2

Abstract

Finding the number 2H6 of directed Hamiltonian cycles in 6-cube
is problem 43 in Section 7.2.1.1 of Knuth’s The Art of Computer Pro-
gramming ([Kn10]); various proposed estimates are surveyed below.
We computed exact value:

H6=14, 754, 666, 508, 334, 433, 250, 560=6!*24*217, 199*1, 085, 989*5, 429, 923.
Also the number Aut6 of those cycles up to automorphisms of 6-cube
was computed as 147,365,405,634,413,085

Key Words: hypercube, Hamiltonian cycle, computation.

A Hamiltonian cycle in a graph is a cycle that visits each vertex exactly
once. Let Hn denote the number of Hamiltonian cycles in n-cube(the graph
of n-dimensional hypercube). An automorphism of a graph is a permutation
of its vertex-set preserving its edge-set. Let Autn denote the number of
Hamiltonian cycles in n-cube up to the group of automorphisms of n-cube.
Let Weightn denote the number of Hamiltonian cycles in n-cube up to the
weight. (This another equivalence is well explaned in (citePa01).

The number Hn is given for n ≤ 5 in OEIS (On-Line Encyclopedia of
Integer Sequences) as the sequence A066037: number of Hamiltonian cycles
in the binary n-cube, or the number of cyclic n-bit Gray codes ([Sl08]). In

1Michel.Deza@ens.fr, École Normale Supérieure, Paris, and JAIST, Ishikawa
2romans@ariel.ac.il, Ariel University Center of Samaria

1
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Counting Equivalence Classes of Hamiltonian Cycles

N Total number of Hamiltonian cycles

Ni The number of equivalence classes of Hamiltonian
cycles with an automorphism group of order i

By the Orbit-Stabilizer Theorem,

N =
∑
i

|G |Ni

i
=

∑
i

2nn!Ni

i
(1)

1. Determine N2, . . .

2. Solve N1 from (1)

3. Determine
∑

i Ni
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Hamiltonian Cycles with Prescribed Automorphisms

When considering automorphisms of Hamiltonian cycles in a graph
Γ = (V ,E ), it is convenient that these can be considered both as

I subgroups of Aut(Γ) and

I subgroups of Aut(C|V |).

Lemma 1. A Hamiltonian cycle in the n-cube cannot have an
automorphism of prime order greater than 2.

A Hamiltonian cycle consists of the union of two perfect matchings.

Lemma 2. Let n ≥ 3. The automorphisms of a Hamiltonian cycle
in the n-cube stabilizes the two perfect matchings formed by
taking every second edge of the cycle.
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Hamiltonian Cycles with Prescribed Automorphisms

Classification is carried out via perfect matchings.

|Aut|\Type All Reflected

2 7 001 923 981 4 369 328 232
4 220 165 195 606
8 568 494

16 20 20

Total 7 002 144 734 4 369 524 352

It now follows that there are 777 739 016 577 752 714 inequivalent
Hamiltonian cycles in the 6-cube.
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Details Regarding Computations

CPU-time: Gluing for the 6-cube took just under 10 core-years.

Memory: Up to 8GB.

Validation: Double counting and independent implementations,
etc. ⇒ r × 10 core-years. . .

Implementation: Some subproblems and many technical details
omitted here.
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Knight’s Tours of a Chessboard
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Partitions of Vertices

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2

2 3 2 3 2 3 2 3

3 2 3 2 3 2 3 2

4 3 4 3 4 3 4 3

3 4 3 4 3 4 3 4

8–16–16–16–8

0 1 2 1 2 3 2 3

1 2 1 2 3 2 3 4

2 1 2 3 2 3 4 3

1 2 3 2 3 4 3 4

2 3 2 3 4 3 4 5

3 2 3 4 3 4 5 4

2 3 4 3 4 5 4 5

3 4 3 4 5 4 5 6

1–6–15–20–15–6–1
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Results

Old results:

M. Loebbing and I. Wegener, The number of knight’s tours equals
33,439,123,484,294—Counting with binary decision diagrams,
Electron. J. Combin. 3(1) (1996), Research Paper 5 and
Comment 1.

B. D. McKay, Knight’s tours of an 8× 8 chessboard, Technical
Report TR-CS-97-03, Computer Science Department, Australian
National University, Canberra, 1997.

Our result:

The number of partial solutions is 1, 143 379, and 95 345 608 on
the levels 0, 1, and 2, respectively. Gluing ⇒ 13 267 364 410 532
Hamiltonian cycles (=McKay).
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Final Comment and Generalizations

The main contribution here is not the numbers but the algorithm.

Note! The problem of determining the number of Hamiltonian
cycles in a graph is #P-complete and determining whether it is
> 0 is NP-complete.

Possible variants and generalizations:

I Consider nonbipartite graphs

I Consider directed graphs

I Count Hamiltonian paths

I Count (perfect) matchings

I Snake-in-the-box (longest induced path)

Patric Österg̊ard 35th ACCMCC, Melbourne, 5.–9.12.2011 23 / 24



The End

Thank You!!! Questions?
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