A Dynamic Programming Approach to Counting Hamiltonian Cycles in Bipartite Graphs

Patric R. J. Östergård
Department of Communications and Networking
Aalto University School of Electrical Engineering P.O. Box 13000, 00076 Aalto, Finland

E-mail: patric.ostergard@tkk.fi
Joint work with Harri Haanpää.
Supported in part by the Academy of Finland.

The Authors

A Hierarchy of Problems

Existence problem Given a collection of properties, decide whether there exists an object realizing these properties.
Counting problem Given a collection of properties, count the number of distinct objects meeting the properties. Two versions: all, all up to isomorphism/equivalence.
Classification problem Given a collection of properties, describe, up to some criterion of isomorphism, all the objects that have the desired properties.
Characterization problem Develop a deeper understanding of classified objects.

Counting

Please count the objects and write the number in the boxes!

Counting by Dynamic Programming

Counting by Dynamic Programming

Count the matches in one box: 50
Count the boxes: 19
$50 \cdot 19=950$
Earlier: 1-factorizations of complete graphs, Latin squares,...

Definitions

A) Directed Hamiltonian cycles:

B) (Undirected) Hamiltonian cycles: Divide \#A by 2.
C) Gray code: $000,001,011,111,101,100,110,010$

Example: 3-Cube $\left(Q_{3}\right)$

Example: 3-Cube $\left(Q_{3}\right)$

Example: 3-Cube $\left(Q_{3}\right)$

Example: 3-Cube $\left(Q_{3}\right)$

Outline of Algorithm

Consider a finite bipartite graph $\Gamma=(V, E)$.

1. Partition V into sets V_{i} such that every edge has its endpoints in consecutive sets V_{k} and V_{k+1} for some k.
2. For $k=0,1, \ldots$ build up (and count) collections of subpaths of a Hamiltonian cycle that are induced by $\cup_{i=0}^{j} V_{i}$ for $j=0,1, \ldots$.

Related old algorithm: W. Kocay, An extension of the multi-path algorithm for finding hamilton cycles, Discrete Math. 101 (1992), 171-188.

Utilizing Symmetries

The stabilizer of the partition $V_{0}, V_{1}, \ldots, V_{M}$ can be used to speed up the counting.
Q_{n}, the n-cube: V_{i} contains the vertices with Hamming weight i. The order of the stabilizer is $n!$.

Example. 3-cube:

$$
\begin{aligned}
& V_{0}=\{000\} \\
& V_{1}=\{001,010,100\} \\
& V_{2}=\{011,101,110\} \\
& V_{3}=\{111\}
\end{aligned}
$$

A Bidirectional Approach, or Gluing

(a) Proceed $V_{o} \rightarrow V_{1} \rightarrow$.
(b) Proceed $V_{M} \rightarrow V_{M-1} \rightarrow$.

Glue the structures when they meet! Meet in the middle.

If there is an automorphism of the original graph mapping the elements of V_{i} to V_{M-i}, then (b) can be omitted.

Two gluing strategies

Two gluing strategies

1. Make exhaustive attempts
2. Determine what the counterpart should look like

The 6-Cube

The number of Hamiltonian cycles of the n-cube is $0,1,6,1344$, 906545760 for $i=1,2,3,4$, and 5 , respectively (A066037 in the OEIS). The case $n=6$ has attracted a lot of interest along the years:

THE CLASSIC WORK
EXTENDED AND REFINED
The Art of Computer Programming

VOLUME 4A
Combinatorial Algorithms
Part 1

DONALD E. KNUTH

Solutions up to Level 3, up to Equivalence

```
Level 0: 1 solution (counter value 1)
Level 1: 1 solution (counter value 15)
Level 2: 3446 solutions
```

Paths	$\#$
1	13495
2	263305
3	2782510
4	17003576
5	61154671
6	127360225
7	142398993
8	65084556
9	7887199
10	139098
Total	424087628

Glued Hamiltonian Cycles of the 6-cube

Paths	$\#$
1	269635088041094880
2	19221791375622767040
3	361924641407769994080
4	2623087675470868439040
5	8443693910745312544800
6	12696602985718261583040
7	8812957118756042697120
8	2606036710760600434560
9	268829026417644883200
10	5590226830719432960
Total	35838213722570883870720

Note. Deza and Shklyar make incorrect claims for $n=6$ in arXiv:10043.4291v1

arXiv:1004.4391v1

Enumeration of Hamiltonian Cycles in 6-cube

March 24, 2010

Michel Deza ${ }^{1}$ and Roman Shklyar ${ }^{2}$

Abstract

Finding the number $2 \mathrm{H}_{6}$ of directed Hamiltonian cycles in 6-cube is problem 43 in Section 7.2.1.1 of Knuth's The Art of Computer Programming ([Kn10]); various proposed estimates are surveyed below. We computed exact value: $H_{6}=14,754,666,508,334,433,250,560=6!* 2^{4 *} 217,199^{*} 1,085,989^{*} 5,429,923$. Also the number $A u t_{6}$ of those cycles up to automorphisms of 6 -cube was computed as $147,365,405,634,413,085$

Key Words: hypercube, Hamiltonian cycle, computation.

A Hamiltonian cycle in a graph is a cycle that visits each vertex exactly once. Let H_{n} denote the number of Hamiltonian cycles in n-cube (the graph of n-dimensional hypercube). An automorphism of a graph is a permutation of its vertex-set preserving its edge-set. Let $A u t_{n}$ denote the number of

Counting Equivalence Classes of Hamiltonian Cycles

N Total number of Hamiltonian cycles
N_{i} The number of equivalence classes of Hamiltonian cycles with an automorphism group of order i

By the Orbit-Stabilizer Theorem,

$$
\begin{equation*}
N=\sum_{i} \frac{|G| N_{i}}{i}=\sum_{i} \frac{2^{n} n!N_{i}}{i} \tag{1}
\end{equation*}
$$

1. Determine N_{2}, \ldots
2. Solve N_{1} from (1)
3. Determine $\sum_{i} N_{i}$

Hamiltonian Cycles with Prescribed Automorphisms

When considering automorphisms of Hamiltonian cycles in a graph $\Gamma=(V, E)$, it is convenient that these can be considered both as

- subgroups of $\operatorname{Aut}(\Gamma)$ and
- subgroups of $\operatorname{Aut}\left(C_{|V|}\right)$.

Lemma 1. A Hamiltonian cycle in the n-cube cannot have an automorphism of prime order greater than 2.

A Hamiltonian cycle consists of the union of two perfect matchings.
Lemma 2. Let $n \geq 3$. The automorphisms of a Hamiltonian cycle in the n-cube stabilizes the two perfect matchings formed by taking every second edge of the cycle.

Hamiltonian Cycles with Prescribed Automorphisms

Classification is carried out via perfect matchings.

\mid Aut $\mid \backslash$ Type	All	Reflected
2	7001923981	4369328232
4	220165	195606
8	568	494
16	20	20
Total	7002144734	4369524352

It now follows that there are 777739016577752714 inequivalent Hamiltonian cycles in the 6-cube.

Details Regarding Computations

CPU-time: Gluing for the 6-cube took just under 10 core-years. Memory: Up to 8GB.

Validation: Double counting and independent implementations, etc. $\Rightarrow r \times 10$ core-years. . .

Implementation: Some subproblems and many technical details omitted here.

Knight's Tours of a Chessboard

Partitions of Vertices

0	1	0	1	0	1	0	1
1	0	1	0	1	0	1	0
2	1	2	1	2	1	2	1
1	2	1	2	1	2	1	2
2	3	2	3	2	3	2	3
3	2	3	2	3	2	3	2
4	3	4	3	4	3	4	3
3	4	3	4	3	4	3	4

8-16-16-16-8

0	1	2	1	2	3	2	3
1	2	1	2	3	2	3	4
2	1	2	3	2	3	4	3
1	2	3	2	3	4	3	4
2	3	2	3	4	3	4	5
3	2	3	4	3	4	5	4
2	3	4	3	4	5	4	5
3	4	3	4	5	4	5	6

1-6-15-20-15-6-1

Results

Old results:

M. Loebbing and I. Wegener, The number of knight's tours equals 33,439,123,484,294—Counting with binary decision diagrams, Electron. J. Combin. 3(1) (1996), Research Paper 5 and Comment 1.
B. D. McKay, Knight's tours of an 8×8 chessboard, Technical Report TR-CS-97-03, Computer Science Department, Australian National University, Canberra, 1997.

Our result:

The number of partial solutions is 1,143379 , and 95345608 on the levels 0,1 , and 2 , respectively. Gluing $\Rightarrow 13267364410532$ Hamiltonian cycles (=McKay).

Final Comment and Generalizations

The main contribution here is not the numbers but the algorithm.
Note! The problem of determining the number of Hamiltonian cycles in a graph is \#P-complete and determining whether it is >0 is NP-complete.

Possible variants and generalizations:

- Consider nonbipartite graphs
- Consider directed graphs
- Count Hamiltonian paths
- Count (perfect) matchings
- Snake-in-the-box (longest induced path)

The End

Thank You!!! Questions?

